Award Number: DAMD17-99-1-9092

TITLE: Cloning and Characteristics of Active Egr-1 Target Genes by In Vivo Crosslinking

PRINCIPAL INVESTIGATOR: Ian de Belle, Ph.D.

CONTRACTING ORGANIZATION: The Burnham Institute
La Jolla, CA 92037

REPORT DATE: December 2003

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Cloning and Characteristics of Active Egr-1 Target Genes by
In Vivo Crosslinking

Ian de Belle, Ph.D.

The Burnham Institute
La Jolla, CA 92037
E-Mail: idebelle@burnham.org

This project is designed toward the identification of a comprehensive set of target genes
for the transcription factor Egr-1. Since breast cancer cells often do not express Egr-1
while normal breast epithelial cells do, it is important to define Egr-1 target genes with
the hope that critical patterns of Egr-1 regulated gene expression active only in normal
cells will be revealed. I have chosen to approach this project using an in vivo
crosslinking and chromatin immunoprecipitation (ChIP), protocol.

Using this approach I have successfully cloned a newly identified Egr-1 target gene called
TOE1. This gene is currently being characterized, but has the property of an inhibitor of
cellular growth when overexpressed. Furthermore, TOE1 may act through interaction and
modification of the activity of p53.

I have furthered the search for Egr-1 target genes using the ChIP approach by adapting an
array hybridization protocol using custom generated mammalian gene promoter arrays using a
high throughput approach.
Table of Contents

Cover...1

SF 298...2

Table of Contents..3

Introduction..4

Body...4

Key Research Accomplishments..7

Reportable Outcomes..7-8

Appendices...three manuscripts attached
Introduction
This final report provides a detailed description of my research activities and accomplishments for the period of funding support from the USAMRMC Breast Cancer Research Program. The project had as its major goal to define important target genes for the Egr1 transcription factor in breast cells using the ChIP approach. With Egr1 being a primary response gene that is expressed in normal, but not rarely in breast cancer cells, identification of its gene targets represents an important means by which potentially important transcriptional deficiencies in breast cancer cells may be discovered. Here, I present a detailed summary on this project and its accomplishments. I also attach three published manuscripts detailing the experimental protocols used for analysis of Egr1 target genes.

Body
The results highlighted from the first year documented the successful use of the in vivo crosslinking technique to recover DNA targets directly bound by a transcription factor, in this case Egr-1. Additionally, the application of multiplex PCR allowed the amplification of cDNA sequences permitting target gene identification and completing part one of the Statement of Work and initiating part two of the Statement of Work. These studies resulted in the publication of a BioTechniques article, attached in the appendix of this report.

The complex task of identifying target genes through which key Egr-1 regulatory effects result in the maintenance of normal breast cell function was addressed next. After successfully multiplex amplification, it was critical to determine whether the protocol faithfully achieved the amplification of genuine Egr-1 target genes. To address this, I proceeded to isolate individual cDNA’s to allow their characterization and sequence identification. During this process, I have sequenced a full length cDNA for which no homolog or ortholog is known, by genomic database searching. I have named this new gene TOEl for Target of Egr-1. Therefore, to identify this new gene as a target for Egr-1 transcriptional activity, it was necessary to perform an in depth characterization of the gene. A full length cDNA was isolated and sequenced. While homology searches
of DNA databases revealed no match to the cDNA, I found that the human genome sequencing project was able to map the gene to human chromosome 1. In order to characterize and confirm the regulation of this new gene by Egr-1, I performed both RT-PCR and gel shift experiments. Following transfection of Egr-1 into H4 cells (which do not express endogenous Egr-1), a dose dependent induction of the expression of TOE1 was noted. This result indicated that Egr-1 was indeed able to regulate the expression of TOE1 by activating its transcription. We were also able to find that expression of TOE1 resulted in the inhibition of cell growth including a G2 cell cycle phase pausing, as well as an inhibition of transformed growth as determined by the ability of cells to form colonies. Experimental details of these studies is provided in the attached publication in the Journal of Biological Chemistry. These studies addressed, in part, the Statement of Work parts 3 and 4. Further studies on the mechanism by which TOE1 is able to inhibit cell growth were initiated. We have demonstrated that TOE1 can physically interact with p53 in a signal dependent manner and that this interaction can affect the transcriptional activity of p53 (Figures 1-2). We have also found that TOE1 can be phosphorylated in response to exposure to UV irradiation (Figure 3). We hypothesize that one potential activity of TOE1 is to serve as a modulator for transcription factors regulating growth and the cell cycle, and that this activity can be affected by signal transduction pathways resulting in the post-translational modification of TOE1.

![Table](image)

Figure 1. Co-immunoprecipitation of TOE1 with p53 following uv irradiation
293 cells were transfected with empty vector (pcDNA3), or vectors expressing p53 alone or together with FLAG-tagged TOE1. Following transfection cells were either untreated or exposed to 40 J/m² uv and incubated for 2h at 37°C. Cell lysates were immunoprecipitated with anti-p53 antibodies, and western blots probed for either p53 or FLAG-TOE1. The left panels show the immunoprecipitates and the right panels show the presence of the transfected and expressed proteins from whole cell lysates.
Figure 2. Transactivation of the p21 promoter by p53 and TOE1
293 cells were transfected with a luciferase reporter vector containing the p21 promoter together with the indicated expression vectors. Control samples were transfected with empty expression vector. 24 hours after transfection, cells were collected and assayed for luciferase activity by luminometry. Results are presented as the average of triplicate samples with the standard deviations indicated with error bars.

A further contribution to Statement of Work parts 2 and 4 were achieved by our findings that Egr1 serves as a direct activator of the recognized tumor suppressor gene PTEN. These studies show that Egr1 can activate PTEN expression during irradiation induced signaling in various cell systems including breast cells. These studies were published in Nature Cell Biology, and experimental details of this work can be found in the attached manuscript. Together, our work has demonstrated that chromatin immunoprecipitation can be an effective technique for the identification of transcription factor target genes, and that we have been successful in determining some relevant Egr1 targets for growth regulation.

Figure 3. TOE1 is a phosphoprotein.
HT1080 cells were transfected with a TOE1 expression vector, and 24 hours later one dish of cells was exposed to 40J/m² uv irradiation while a second dish left untreated. The cells were labeled with 32P inorganic phosphate for 2 hours and then extracted and immunoprecipitated with TOE1 antibodies. Phosphorylated TOE1 is seen only following exposure to uv irradiation.
While this work has been effective in target gene identification as well as novel gene cloning, we have extended our search for Egr1 target genes through the generation of a novel type of DNA microarray. We have successfully amplified over 4,000 gene promoter regions which have been spotted on glass slides to generate a "promoter array". We are using these arrays to screen, by hybridization, for additional Egr1 targets captured by the chromatin immunoprecipitation protocol. While these studies are ongoing, I believe that these arrays will greatly facilitate the ease by which large scale target identification will be accomplished. The use of this type of array will also be applicable to target gene identification for other important transcription factors involved in the control of breast cell growth and differentiation.

Key Accomplishments

1. Demonstration that Egr1 and crosslinked genomic binding sites can be immunoprecipitated and cloned.
2. Cloning of a newly identified target gene for Egr1 called TOE1. Demonstration that TOE1 plays a role in the growth suppressive effects of Egr1.
3. Demonstration that the growth suppressive effects of TOE1 may be mediated by its interaction with and modulation of the activity of p53.
4. Demonstration that TOE1 is phosphorylated in UV treated cells and that this is modification is a likely event in regulating the interaction between TOE1 and p53.
5. Demonstration that another recognized tumor suppressor, PTEN, is a direct target for Egr1, and also contributes to the effects of Egr1 on the growth of breast cells.

Outcomes

Personnel:
Ian de Belle, Ph.D., principal investigator
Virginie de Thillot, M.Sc., research technician
Aleks Surzycki, B.S., research technician
Publications:

1. de Belle, I., Mercola, D., and Adamson E.D.
2. Viroille, T., Adamson, E.D., Baron V., Birle, D., Mercola, D., Mustelin, T., and de Belle, I.
4. de Belle, I., Wu, J.-X., Sperandio, S., Mercola, D., and Adamson, E.D.
In Vivo Cloning and Characterization of a New Growth Suppressor Protein TOE1 as a Direct Target Gene of Egr1*

Received for publication, October 14, 2002, and in revised form, January 31, 2003
Published, JBC Papers in Press, January 31, 2003, DOI 10.1074/jbc.M210502200

Ian de Belle‡§, Jie-Xin Wu‡, Sabina Sperandio®, Dan Mercola†**, and Eileen D. Adamson‡

From the ‡Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037, the §National Institute for Age Research, Novato, California 94945, the ¶Sidney Kimmel Cancer Center, San Diego, California 92121, and the **Cancer Center, University of California at San Diego, La Jolla, California 92093

Egr1, an immediate early transcription factor, responds to diverse stimuli and affects gene transcription to accomplish its biological effects. One important effect of Egr1 expression is to decrease the growth and tumorigenic potential of several tumor cell types. To identify important Egr1 target genes, we have adapted a methodology involving formaldehyde-induced protein-DNA cross-linking, chromatin immunoprecipitation, and multiplex PCR. Using this approach, we report the cloning of a new Egr1 target gene that is able to account, at least in part, for the growth inhibitory activity of Egr1. We have named this new protein TOE1 for target gene of Egr1.

A common feature associated with the expression of immediate-early genes is their rapid, transient response to a diverse variety of extracellular signals. We have been studying the properties of the early growth response gene, Egr1, which can be transcriptionally induced by a wide spectrum of stimuli including growth factors, cytokines, stresses, depolarizing stimuli, phorbol esters, vascular injury, and irradiation, both ionizing and nonionizing, in a rapid and transient manner with kinetics mirroring those of c-fos (1). We have previously presented evidence suggesting a role for Egr1 in suppressing tumor cell growth (2, 3). Specifically, we demonstrated that overexpression of Egr1 in transformed cells suppresses growth in soft agar as well as inhibits their tumor formation in nude mice. Furthermore, it was shown that the DNA-binding domain of Egr1 is necessary for its ability to suppress tumor formation, highlighting the importance of its transcriptional activity of downstream genes in this process (4). Together these results indicate that transformed cells can be induced to revert to normal growth patterns following the re-expression of Egr1. These studies suggest that the loss of Egr1 may result in the loss of cellular homeostasis because of a deficit in Egr1-responsive genes and that this may play a pivotal role in tumorigenesis. Clearly, the identification of a genetic profile of Egr1-responsive genes would constitute a significant step in understanding the different activities associated with Egr1, including its role in cellular growth control. Over the past several years there have been numerous studies identifying various individual Egr1 target genes in diverse cell and tissue types. Reported Egr1 targets include TGF-β1, platelet-derived growth factors A and B, basic fibroblast growth factor, tissue factor, interleukin 2, and CD44 to mention only a few (reviewed in Ref. 5). These studies have focused on the in vitro analysis of an individual target gene in a specific cell type under a defined set of experimental conditions. As a step toward a more complete understanding of the biological role for a transcription factor, it would be informative to be able to identify in vivo target genes.

Currently, few techniques are available to address this issue. Both differential display and subtractive hybridization analyses are aimed at identifying messages that are up- or down-regulated from pools of RNA isolated from cells or tissues either positive or negative for the gene in question. One clear drawback with both of these techniques is that they select for any RNA message that shows a change in expression pattern. Therefore, when screening for changes in gene expression induced by a transcription factor, these methods do not select purely for direct targets. Recently we and others have described a method for the direct isolation of protein-bound DNA involving in vivo chemical cross-linking using formaldehyde followed by immunoprecipitation from chromatin (ChIP). This method was successfully used in applications ranging from examining chromatin structures surrounding the polycomb group proteins during Drosophila development (6) and the identification of nucleosome attachment sites (7) to the isolation of DNA sequences bound by Egr1 (8). In addition, the same cross-linking method has been used to examine nucleosomal structure, transcription factor occupancy of promoter sites, regions of histone acetylation, and mapping of telomere silencing protein binding, illustrating its broad application utility (9–12). Recently, coupling the ChIP approach with hybridization to genomic or promoter region DNA microarrays has allowed a comprehensive characterization of in vivo transcription factor DNA binding patterns (13–16).

In this report we have extended ChIP technology, allowing gene discovery of Egr1 target genes by multiplex PCR. Moreover, we present the cloning of a newly identified gene, called TOE1, as an Egr1 target gene. We have characterized TOE1 as a cell growth inhibitor by altering the cell cycle through the induction of p21. Furthermore, we show that the increase in the p21 level is consistent with a mechanism involving TGF-β1.

MATERIALS AND METHODS

Cells, Transfection, Antibodies, and Growth Assays—Both the H4 clone derived from the human fibrosarcoma cell line HT1080 and the

Received, October 14, 2002, and in the revised form, January 31, 2003, DOI 10.1074/jbc.M210502200

Ian de Belle and Sabina Sperandio dedicate this manuscript to the memory of Ted and Marilyn Green.

© 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

1 The abbreviations used are: TGF, transforming growth factor; ChIP, chromatin immunoprecipitation; RT, reverse transcriptase.
Cloning of TOE1, a Direct Target of Egr1

Egr1 stably transfected H4 subclone E9 have been previously described (4). 293 cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum. All of the DNA transfections were performed using LipofectAMINE 2000 (Invitrogen), following the manufacturer's instructions. Antibodies against cyclin B1, p21, and p53 were from Santa Cruz Biotechnology. Anti-actinin and the M2 monoclonal anti-FLAG antibody were from Sigma. For cell growth assays 20 x 10^6 control and TOE1 expressing cells were transfected in 12-well plates with a total of 500 ng of DNA using LipofectAMINE 2000 (Invitrogen), following the manufacturer's instructions. The TOE1 specific primer 5'-GTGAGGGGTACAGCTTTGCC-3' following the manufacturer's instructions was used for RT-PCR. In Vitro Kinase Assay—In vitro phosphorylation was performed as described in (18).

RESULTS

Cloning of TOE1—We have previously characterized a clone of HT1080 cells, called H4, as a cell line that does not express either basal or UV-induced Egr-1. We have also described a series of stable transfected Egr1 clones (19). We used the clone with the maximum expression of Egr1, termed E9, to isolate and identify in vivo Egr1 target genes. We performed formaldehyde cross-linking on untreated and UV-stimulated cells and identified cross-linked DNA sequences as 5' multimers.

Egr1 expression following Egr1 transfection, total RNA was harvested from transfected cells using TRI Reagent (Molecular Research Center). Following DNAse I treatment, 2 μg of RNA was used for reverse transcription using Moloney murine leukemia virus reverse transcriptase (New England Biolabs). Egr1 expression was then assessed by PCR using the primers above described for Northern probe preparation, and glyceraldehyde-3-phosphate dehydrogenase expression was determined as a loading control using the primers 5'-AACCATGAGAAGTAGTACCAAC-3' and 5'-GTCTACACAGGAAATGAGGCT-3'. Expression of the p21 gene was determined using the primers 5'-CTCAAATCGTCCAGCGACCTT-3' and 5'-ACAGTCTTAGGTTGAAGAAACGGGA-3'. TGF-β expression was assessed using the primers 5'-GCCCTGGACACCAACTATTGCT-3' and 5'-AGGCTCCAGTGTGAGGGGTACAGCTTTGCC-3'. The PCR conditions were 95 °C for 30 s, 55 °C for 15 s, and 72 °C for 30 cycles.

Cloning of TOE1, a Direct Target of Egr1

Cloning of TOE1 Promoter and Luciferase Assays—The proximal region of the TOE1 cDNA sequence was cloned from human genomic DNA using the Advantage- GC genomic PCR kit (Clontech). Primers used for PCR were 5'-GCGGCGAGGCTGTTATTAGACCACT-3' and 5'-CCGGTTAAGAGCAGCCGTCCGT-3'. The PCR parameters used were 95 °C for 45 s, 60 °C for 30 s, and 72 °C for 2 min. The PCR product was digested with HindIII/EcoRI and cloned into the same sites in pcDNA3. All of the constructs were sequence-confirmed.

Luciferase assays were performed as described (5).

Cloning of TOE1 Promoter and Luciferase Assays—The proximal region of the TOE1 cDNA sequence was cloned from human genomic DNA using the Advantage- GC genomic PCR kit (Clontech). Primers used for PCR were 5'-GCGGCGAGGCTGTTATTAGACCACT-3' and 5'-CCGGTTAAGAGCAGCCGTCCGT-3'. The PCR parameters used were 95 °C for 45 s, 60 °C for 30 s, and 72 °C for 2 min. The PCR product was digested with HindIII/EcoRI and cloned into the same sites in pcDNA3. All of the constructs were sequence-confirmed.

In Vivo Formaldehyde Cross-linking and Chromatin Immunoprecipitation—Cross-linking and chromatin immunoprecipitation were performed as previously described (6, 8). Briefly, the cells were grown in 150-mm plates to 80–90% confluence and then cross-linked by the addition of formaldehyde to a final concentration of 1%. Following exposure to formaldehyde at room temperature for a period of 30 min, the cells were lysed by sonication and chromatin purified by centrifugation through a 5–8 M urea gradient in TE buffer (10 mM Tris, pH 8.0, and 1 mM EDTA). Purified chromatin was digested against 10 mM Tris-HCl, pH 7.5, 25 mM NaCl, 5% glycerol to remove the urea. Samples of 30–60 μg of chromatin were digested with 10 units of EcoRI overnight at 37 °C and then precloned by the addition of nonradioactive rabbit anti-Egr1 antibodies and protein A-Sepharose beads. The precloned beads were immunoprecipitated with affinity purified anti-Egr1 antibodies and protein A-Sepharose beads (17). DNA fragments cross-linked and co-precipitating with Egr1 were purified and ligated to EcoRI linkers consisting of 5'-AATTCGAAGCTTGGATCCGAGCAG-3' and 5'-GTCATACCAGGGTGGAGAAACGGGA-3'. For direct amplification of the ChIP samples, no linker ligation was performed, and direct amplification from the Egr1 immunoprecipitates was done using specific primers for TOE1 (see below), TGF-β, and cyclin B1. The TGF-β primers used were 5'-GGGCTAGAAGGAGCCCTTCC-3' and 5'-GTCATACCAGGGTGGAGAAACGGGA-3'. The primers used were 5'-GCGGCGAGGCTGTTATTAGACCACT-3' and 5'-GACGCTTTATTGAACCTA-3'. A FLAG-tagged TOE1 expression vector was generated using LipofectAMINE 2000 (Invitrogen), following the manufacturer's instructions.

RT-PCR—To detect TOE1 expression following Egr1 transfection, total RNA was harvested from transfected cells using TRI Reagent (Molecular Research Center). Following DNAse I treatment, 2 μg of RNA was used for reverse transcription using Moloney murine leukemia virus reverse transcriptase (New England Biolabs). Egr1 expression was then assessed by PCR using the primers above described for Northern probe preparation, and glyceraldehyde-3-phosphate dehydrogenase expression was determined as a loading control using the primers 5'-AACCATGAGAAGTAGTACCAAC-3' and 5'-GTCTACACAGGAAATGAGGCT-3'. Expression of the p21 gene was determined using the primers 5'-CTCAAATCGTCCAGCGACCTT-3' and 5'-ACAGTCTTAGGTTGAAGAAACGGGA-3'. TGF-β expression was assessed using the primers 5'-GCCCTGGACACCAACTATTGCT-3' and 5'-AGGCTCCAGTGCTGAGGGGTACAGCTTTGCC-3'. The PCR conditions were 95 °C for 30 s, 55 °C for 15 s, and 72 °C for 1 min for 25 cycles.

Northern Blotting—A human Multiple Tissue Northern blot (Clontech) was hybridized with a PCR-generated TOE1-specific 32P-labeled probe using the primers 5'-AAAGGCGGCAGCGGCGACGAG-3' and 5'-GTGAGGGTACACGTTGCC-3' following the manufacturer's instructions.

The gel shift assay was performed as previously described (8) using the 580-bp radiolabeled TOE1 promoter region described above and recombinant Egr1 protein.

Fluorescence Microscopy—Control and TOE1 expressing H4 cells were dual stained with rabbit anti-FLAG (Affinity Bioreagents) and mouse anti-nucleolin (Santa Cruz Biotechnology) antibodies. Secondary labeling was performed using fluorescein isothiocyanate-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology) and Texas Red-conjugated goat anti-mouse IgG (Jackson ImmunoResearch).

Flow Cytometry—The cells were harvested and fixed in 70% methanol and stored at −20 °C until all of the samples were collected. The cells were collected by centrifugation at 2000 x g for 5 min, and the cell pellets were suspended in phosphate-buffered saline, digested with RNase A, and stained with propidium iodide.

Mutation—To generate the TOE1 expression construct without the putative nuclear localization signal, QuikChange mutagenesis (Stratagene) was performed. The primers used were 5'-GGCGGCGAGGCTGTTATTAGACCACT-3' and 5'-TAGTTCAAATAGGGGCTCTGTCGGC-3'. Construction of the correct deletion was confirmed by sequencing.
Western analysis of cells transfected with the FLAG-tagged tense hybridization to a 2-kb mRNA species in six of the 12 revealed no extended homology with any known protein. How-the sequence of this region of chromosome 1 to our cloned cDNA expression vector and transfected the construct into H4 cells. and kidney (Fig. 1B). We cloned the open reading frame of the multiple tissue Northern blot was hybridized and showed in-

ers isolated from E9 cells and migrating with an approximate size of 2 kb (Fig. 1A, lane 2). Cloning and sequencing of this DNA revealed an open reading frame coding for a predicted polypeptide of 510 amino acids and with a predicted molecular mass of ~58 kDa. To confirm that this clone represented a polypeptide of 510 amino acids and with a predicted molecular mass of ~58 kDa. To confirm that this clone represented a bona fide Egrl target gene, we isolated and cloned an individual target gene.

We focused on the distinct DNA band amplified using primers isolated from E9 cells and migrating with an approximate size of 2 kb (Fig. 1A, lane 2). Cloning and sequencing of this DNA revealed an open reading frame coding for a predicted polypeptide of 510 amino acids and with a predicted molecular mass of ~58 kDa. To confirm that this clone represented a full-length cDNA, we performed 5′ rapid amplification of cDNA ends. Sequencing results confirmed that the captured sequence represented a full-length cDNA clone. A data base homology search of the DNA sequence identified the chromosomal map position on human chromosome 1 (1p34.1–35.3). Comparison of the sequence of this region of chromosome 1 to our cloned cDNA identified an 8 exon gene. BLAST homology searches (20) revealed no extended homology with any known protein. However, a potential single zinc finger was noted as well as a possible nuclear localization signal.

To show that the clone represented an expressed gene, a multiple tissue Northern blot was hybridized and showed intense hybridization to a 2-kb mRNA species in six of the 12 tissues with the highest level of expression in placenta, liver, and kidney (Fig. 1B). We cloned the open reading frame of the cDNA, together with a FLAG epitope tag, into a mammalian expression vector and transfected the construct into H4 cells. Western analysis of cells transfected with the FLAG-tagged expression vector and anti-FLAG antibodies showed that the expressed protein migrated on SDS-PAGE with a molecular mass of ~60 kDa, in close agreement with its predicted mass of 58 kDa (data not shown).

Fig. 2. Egrl binds to the 5′ region of TOEl and activates its expression. A, PCR amplification of the TOEl 5′ region from cross-linked chromatin. Either total cross-linked chromatin (input) or Egrl immunoprecipitates (Egrl i.p.) were screened directly for the presence of TOEl 5′ sequences by PCR using primers designed to amplify a 580-bp fragment of the initiation codon. The same samples were also used for amplifications using primers for TGF-β1 and cyclophilin A. The same primers were used to analyze Egrl immunoprecipitates from untreated or 12-O-tetradecanoylphorbol-13-acetate-treated MCF7 cells. B, Egrl expression activates TOEl expression. RT-PCR amplification of TOEl from Egrl transfected H4 cells. Increasing amounts of Egrl (shown above the lane) were transfected into H4 cells, and total RNA was prepared 24 h later to perform RT-PCR for TOEl. Primers within the coding sequence of TOEl were designed to amplify a 454-bp product. An equal RNA loading in the RT-PCR reaction was determined using primers amplifying glyceraldehyde-3-phosphate dehydrogenase (GAPDH). C, Egrl binds directly to the TOEl 5′ region. The 580-bp region upstream of the initiation codon of TOEl was used as a probe in the gel shift assay. Increasing amounts of recombinant Egrl showed the binding to this region. Specific binding was determined by adding either unlabeled homologous probe DNA or nonspecific DNA at a 50-fold molar excess. The positions of the free probe (FP) and Egrl shift (Egrl) are indicated. D, Egrl transactivates expression from the TOEl 5′ region. The same 580-bp 5′ sequence from TOEl was cloned into the pGL3basic luciferase reporter. Empty reporter vector or the TOEl reporter in the presence or absence of co-transfected Egrl expression vector were transfected into 293 cells. 24 h later the cells were harvested and analyzed for luciferase activity. The results have been normalized for transfection efficiency as determined by β-galactosidase measurements. The results are plotted as the average values ± standard deviations. The experiment was repeated three times with similar results.
Cloning of TOE1, a Direct Target of Egr1

DNA included the 5' region of the gene. Because E9 cells constitutively overexpress Egr1, we sought to determine whether TOE1 is an Egr1 target in an alternate cell type upon transient Egr1 induction. MCF7 cells were stimulated to express Egr1 by 12-O-tetradecanoylphorbol-13-acetate treatment, and then the ChIP assay was performed on untreated or 12-O-tetradecanoylphorbol-13-acetate-treated cells. The results shown in Fig. 2A, TOE1 was also an Egr1 target gene in these cells. To determine the role of Egr1 in regulating the transcription of TOE1, we used RT-PCR following transfection with an increasing amount of an Egr1 expression vector and found a proportional increase in TOE1 expression (Fig. 2B).

Direct binding of Egr1 to the TOE1 promoter region was assessed by a gel shift analysis using as a probe a region spanning 580 bp upstream of the translation start. By using recombinant Egr1 we found specific binding to the probe (Fig. 2C). When oligonucleotides representing the consensus Egr1-binding site were used as competitor, effective competition was also observed (data not shown). As a test of the functional properties of the complex we inserted the same 580-bp 5' region upstream of a luciferase reporter. We observed that this region responds to Egr1 expression by activating transcription (Fig. 2D). Together, these results are consistent with in vivo binding of Egr1 to and transactivation of the TOE1 gene.

Subcellular Localization of TOE1—To determine the intracellular localization of TOE1, a FLAG-tagged expression construct was transfected into H4 cells. As shown in Fig. 3, following immunostaining for the FLAG epitope, the subcellular localization of TOE1 was distinctly nuclear. Transfection and staining of H4 and 293 cells (not shown) showed patterns of concentrated localization within the nucleus. These sites of concentration appeared to correspond to nucleoli. Dual staining using anti-FLAG and anti-nucleolin antibodies followed by confocal microscopy (Fig. 3) showed that most of the expressed TOE1 co-localized with nucleolin, indicating a predominant nucleolar localization for TOE1. In addition to its nucleolar localization we observed intense staining for TOE1 as multiple nuclear speckles. As noted above, data base homology searches identified a putative nuclear localization sequence consisting of KRRRRRRREKRKR located at positions 335-347 in the 510-amino acid protein. Deleting the putative nuclear localization basic stretch of amino acids resulted in the cytoplasmic localization of TOE1 (Fig. 4), suggesting that this sequence is responsible for TOE1 nuclear targeting.

TOE1 Expression Affects the Growth of 293 and H4 Cells—To test whether TOE1 might be involved in mediating the growth effects of Egr1, we measured the growth rate of cells stably transfected with a TOE1 expression vector. Fig. 5A shows that the growth rate of TOE1-expressing cells was severely reduced in comparison with empty vector control cells. The doubling time for control cells was ~24 h, whereas a pool of TOE1 expressing clones required 40 h to double in number. Transfection of the same vector expressing the calcium binding protein calbindin had no effect on cell growth (data not shown), suggesting that inhibition by TOE1 was not a nonspecific effect of protein over expression. Similar results were obtained in H4 cells (data not shown).

Cell growth inhibition in TOE1-expressing cells was also examined by performing colony forming assays. Control cells formed numerous rapidly growing colonies, whereas TOE1-expressing cells were only able to form 30% as many colonies (data not shown). To determine whether the decrease in cell growth of TOE1-expressing cells represented a generalization slowing of growth or a cell cycle stage-specific slowing, we performed flow cytometry on log phase cells. We found a significant increase in the fraction of cells present in the G2/M phases of the cell cycle in TOE1-expressing cells (27%), compared with the control cells, with 13% of the cells in this fraction (Fig. 5B). We found no difference between the mitotic index of control and TOE1-expressing cells, suggesting that TOE1 was pausing the cells in the G2 phase (data not shown). In addition, it should be noted that we found TOE1 expression to be highly influenced by the growth state of the cells. Specifically, we have found TOE1 expression to be regulated by cell culture density, possibly indicating a form of activation caused by contact inhibition. The expression of TOE1 in dense cell cultures occurred even in cells that cannot express Egr1, indicating that although Egr1 can activate expression of TOE1, the

2 I. de Belle and J.-X. Wu, unpublished observation.
Cloning of TOE1, a Direct Target of Egr1

Fig. 5. TOE1 expression affects cell growth and the cell cycle. A, TOE1 decreases the growth rate of 293 cells. Pooled clones of empty vector or TOE1-expressing cells were used to determine their growth rate over a period of 5 days. Solid squares, control transfected cells; solid triangle, TOE1-expressing cells. The results are the averages of triplicate readings, and the experiment was repeated three times with similar results. B, TOE1 expression affects the cell cycle. The cell cycle distribution of log phase growing control and TOE1 expressing clones of H4 cells was determined by flow cytometry. The calculated percentages of the cell cycle phases are indicated.

Gene must be subject to additional forms of regulation.

Fig. 6. TOE1 affects growth inhibition through increased p21 expression. A, control, TOE1, and TOE1-NLS cells were probed by Western blotting with the indicated antibodies. B, RNA was extracted from cells, and RT-PCR was performed for the expression of p21 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). C, in vitro phosphorylation assay. Cyclin B1 immunoprecipitates were incubated with histone H1 and radiolabeled ATP. The products were visualized by SDS-PAGE and autoradiography.

Discussion

With these studies we report, for the first time, the application of chromatin immunoprecipitation to cDNA cloning using a form of multiplex PCR. We have demonstrated that this technique was successful not only in cloning transcription factor target genes but also in the identification of a new target for Egr1. Together our results indicated that the multiplex amplification produced a genuine cDNA and that the cloned DNA represented an expressed gene. This newly cloned gene encodes
Cloning of TOEl, a Direct Target of Egr1

TOEl expression affects the levels of TGF-β1 mRNA. A, RT-PCR measurement of TGF-β1 and TOEl from MCF7 and H4 cells transfected with an empty vector control (−) or a TOEl expression vector (+). 24 h after transfection, RNA was harvested from the cells, and RT-PCR was performed using the protocol described under "Materials and Methods" with 25 cycles of amplification. Cyclophilin A amplification was used to demonstrate the equal RNA amounts included in each reaction. B, real time quantitative PCR was performed on MCF7 and H4 cells transfected with either control empty vector or a TOEl expression vector. 24 h following transfection, RNA was collected and subjected to real time PCR for TGF-β1 mRNA quantitation. The open bars represent the relative quantity of TGF-β1 level in control cells, and the closed bars represent that for TOEl transfected cells. mRNA samples were normalized to cyclophilin A levels. The results shown are the averages of four independent experiments showing standard deviations.

Figure 1

Cloning of TOEl, a Direct Target of Egr1

TOEl, a 510-amino acid protein that we have shown to be an authentic Egr1 target gene. To confirm that the gene codes for an endogenously expressed protein, we have recently raised a polyclonal antibody using a synthetic peptide epitope derived from the predicted amino acid sequence. Preliminary testing has shown reactivity against both recombinant and an endogenous protein of identical molecular mass, suggesting that the cDNA is expressed at both the mRNA and protein level.

During the course of these studies an unpublished and unnamed cDNA generated through a library sequencing effort was deposited in the GenBankTM data base that was identical to our cloned cDNA (nucleotide accession number AK024011). Based on the sum of our observations, we have called this cDNA the HUGO approved name and symbol TOEl for target of Egr1. Expression of TOEl was detected in all of the adult human tissues examined but at varying levels, indicating that the regulation of this gene may vary depending on cell or tissue type.

Examination of the sequence of TOEl did not reveal conserved domain structures apart from a single potential zinc finger and a possible nuclear localization signal. Immunostaining confirmed that TOEl was found localized to the nucleoplasm and nucleolus. Despite the absence of a recognized DNA-binding domain, we have examined the possibility that TOEl might participate in transcriptional regulation. However, TOEl cloned as a GAL4 fusion failed to activate a GAL4-binding site reporter, suggesting that TOEl alone is not sufficient for transcriptional regulation. The possibility remains that TOEl can participate in transcriptional regulation through protein interactions and indirect DNA association not recapitulated in the GAL4 fusion experiments. Although no extended homology to any known gene was noted by BLAST searches, a limited region of homology to poly(A)-specific dead-endylation nuclease was revealed. We are currently investigating the possibility that TOEl may function as a nuclease.

To better understand the biological role of TOEl, we examined the effects of its expression and noted a dramatic decrease in both the growth rate and colony growth of H4 cells. We found that this was not the result of a general decrease in growth rate but rather was due to a G2 cell cycle phase delay. Furthermore, the G2-specific cell cycle delay correlated with an increase in the expression of the cyclin-dependent kinase inhibitor p21. Deletion of the nuclear localization signal abrogated this effect, suggesting not only that TOEl could induce cell cycle-specific G2 pausing but also that its nuclear/nucleolar localization was critical for this function. The localization of TOEl in the nucleolus may provide further evidence for a role in cell cycle regulation because it has been found that many important cell cycle proteins can be found in the nucleolus as a means of sequestration, thereby limiting their function until the appropriate time (22–24).

Because p21 is also able to inhibit cyclin-dependent kinase activities controlling passage through the G1 restriction point, it would be predicted that the TOEl-directed increase in p21 levels would also display a G1 phase pausing. Although we did not see this in log phase growing cells, when cells were synchronized in the M phase and then released to pass through G1, we noted a marked delay in the TOEl-expressing cells (data not shown). This suggested that the increase in p21 levels was also active at the G1 check point, but this was only seen if cells had been synchronized outside of the G2 phase. Although p21 is well known for its activity in G1 phase pausing, its role in G2 is being increasingly recognized (25, 26). These results suggest that the mechanism by which TOEl affects cell growth is through transcriptional up-regulation of the p21 gene. We have not, however, formally ruled out the possibility that the increase in p21 levels might be due to an increase in transcript stability rather than increased expression. Also, we have not completely ruled out a contributing role for p53 in the up-regulation of p21 but have demonstrated that p53 levels and serine 15 phosphorylation were not altered. Further, we have provided evidence that TOEl-dependent TGF-β1 activation may participate in the increase in p21. However, it also remains possible that TOEl and p53 cooperate in the transactivation of p21 either directly or indirectly. We have preliminary evidence that TOEl and p33 are able to interact physically, but the significance and specificity of this interaction remain to be analyzed. Although the precise mechanism of action remains to be studied, our results have shown that expression of TOEl

*I. de Belle, unpublished observation.
Cloning of TOE1, a Direct Target of Egr1

leads to growth inhibition as well as a decrease in colony forming ability, likely involving the activation of p21. Given that these same features are seen following expression of Egr1, we expect that the downstream target TOE1 plays an important role in executing this physiological function of Egr1 in its proposed role as a tumor suppressor.

Finally, it is intriguing to note that the chromosomal location of TOE1 maps to 1p34.1–35.3. Deletion of the distal portion of 1p accounts for a significant proportion of chromosome 1 aberrations and has been observed in brain, breast, ovarian, colorectal, and other tumor types (27–29). Combined data suggest that chromosome 1p likely harbors one and possibly multiple tumor suppressor genes, and given the growth inhibitory effect of TOE1, we are currently investigating the possibility that TOE1 may also function in this capacity.

Acknowledgment—We thank Dr. Erkki Ruoslahti for critical reading of the manuscript.

REFERENCES

The Egr-1 transcription factor directly activates \textit{PTEN} during irradiation-induced signalling

\begin{flushright}
T. Virolle, E.D. Adamson, V. Baron, D. Birle, D. Mercola, T. Mustelin, I. de Belle
\end{flushright}

Reprinted from Nature Cell Biology, Vol. 3 No. 12, December 2001
The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling

Thierry Virolle*, Eileen D. Adamson*†, Veronique Baron‡, Diana Birle*, Dan Mercola†, Tomas Mustelin* and Ian de Belle§

*The Burnham Institute, Cancer Research Center, 10011 North Torrey Pines Road, La Jolla, California 92037, USA
†Sidney Kimmel Cancer Center, San Diego, California 92121, USA
‡e-mail: odananao@burnham.org
§e-mail: idebelle@burnham.org

The PTEN tumour suppressor and pro-apoptotic gene is frequently mutated in human cancers. We show that PTEN transcription is upregulated by Egr-1 after irradiation in wild-type, but not egr-1-/-, mice in vivo. We found that Egr-1 specifically binds to the PTEN 5' untranslated region, which contains a functional GCGCGGCC Egr-1-binding site. Inducing Egr-1 by exposing cells to ultraviolet light upregulates expression of PTEN messenger RNA and protein, and leads to apoptosis. egr-1-/- cells, which cannot upregulate PTEN expression after irradiation, are resistant to ultraviolet-light-induced apoptosis. Therefore, Egr-1 can directly regulate PTEN, triggering the initial step in this apoptotic pathway. Loss of Egr-1 expression, which often occurs in human cancers, could deregulate the PTEN gene and contribute to the radiation resistance of some cancer cells.

The PTEN/MMAC1/TEP1 tumour suppressor gene is mutated in a wide range of human cancers and germline mutations of PTEN have been found in three inherited hamartoma tumour syndromes. PTEN encodes a lipid phosphatase that removes the D3 phosphate from phosphatidylinositol-3-phosphate substrates, thereby inhibiting the generation of second messengers. Deleting the PTEN gene in mice leads to embryonic lethality because of hyperproliferation of embryonic cells. In Jurkat T leukaemia, breast and thyroid tumour cell lines, transient and inducible ectopic expression of PTEN induces cell-cycle arrest and cell death. Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumour growth in vivo; PTEN phosphatase activity is essential for this effect. Together, these findings suggest that loss of PTEN activity sensitizes cells to malignant transformation and imply that PTEN is a regulator of an important physiological pathway.

There have been no reports of transcriptional regulation of the PTEN gene to date, but a genomic fragment of DNA containing the full-length PTEN gene has been sequenced (K. Jensen et al., unpublished results; GenBank accession number AF067844). We noticed that a 2-kilobase (kb) fragment upstream of the translation start site is highly GC-rich and contains several potential binding sites for the 'early growth response-1' (Egr-1) transcription factor; we tested these binding sites for activity. The hypothesis that Egr-1 might regulate the transcription of the PTEN gene was attractive because the mutations in the two genes lead to some similar effects in cells, with variations depending on specific cell types. Like PTEN, the Egr-1 gene also has growth-suppressing activities and it was reasonable to think that PTEN could be regulated at least in part by Egr-1. A growing body of evidence indicates that Egr-1 is also required for apoptosis in some cells. The results described here support the hypothesis that Egr-1 transactivates the PTEN gene to induce apoptosis.

Irradiation greatly upregulates production of Egr-1, which encodes a lipid phosphatase that removes the D3 phosphate from phosphatidylinositol-3-phosphate substrates, thereby inhibiting the generation of second messengers. Deleting the PTEN gene in mice leads to embryonic lethality because of hyperproliferation of embryonic cells. In Jurkat T leukaemia, breast and thyroid tumour cell lines, transient and inducible ectopic expression of PTEN induces cell-cycle arrest and cell death. Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumour growth in vivo; PTEN phosphatase activity is essential for this effect. Together, these findings suggest that loss of PTEN activity sensitizes cells to malignant transformation and imply that PTEN is a regulator of an important physiological pathway.

There have been no reports of transcriptional regulation of the PTEN gene to date, but a genomic fragment of DNA containing the full-length PTEN gene has been sequenced (K. Jensen et al., unpublished results; GenBank accession number AF067844). We noticed that a 2-kilobase (kb) fragment upstream of the translation start site is highly GC-rich and contains several potential binding sites for the 'early growth response-1' (Egr-1) transcription factor; we tested these binding sites for activity. The hypothesis that Egr-1 might regulate the transcription of the PTEN gene was attractive because the mutations in the two genes lead to some similar effects in cells, with variations depending on specific cell types. Like PTEN, the Egr-1 gene also has growth-suppressing activities and it was reasonable to think that PTEN could be regulated at least in part by Egr-1. A growing body of evidence indicates that Egr-1 is also required for apoptosis in some cells. The results described here support the hypothesis that Egr-1 transactivates the PTEN gene to induce apoptosis.

Irradiation greatly upregulates production of Egr-1, which encodes a lipid phosphatase that removes the D3 phosphate from phosphatidylinositol-3-phosphate substrates, thereby inhibiting the generation of second messengers. Deleting the PTEN gene in mice leads to embryonic lethality because of hyperproliferation of embryonic cells. In Jurkat T leukaemia, breast and thyroid tumour cell lines, transient and inducible ectopic expression of PTEN induces cell-cycle arrest and cell death. Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumour growth in vivo; PTEN phosphatase activity is essential for this effect. Together, these findings suggest that loss of PTEN activity sensitizes cells to malignant transformation and imply that PTEN is a regulator of an important physiological pathway.

There have been no reports of transcriptional regulation of the PTEN gene to date, but a genomic fragment of DNA containing the full-length PTEN gene has been sequenced (K. Jensen et al., unpublished results; GenBank accession number AF067844). We noticed that a 2-kilobase (kb) fragment upstream of the translation start site is highly GC-rich and contains several potential binding sites for the 'early growth response-1' (Egr-1) transcription factor; we tested these binding sites for activity. The hypothesis that Egr-1 might regulate the transcription of the PTEN gene was attractive because the mutations in the two genes lead to some similar effects in cells, with variations depending on specific cell types. Like PTEN, the Egr-1 gene also has growth-suppressing activities and it was reasonable to think that PTEN could be regulated at least in part by Egr-1. A growing body of evidence indicates that Egr-1 is also required for apoptosis in some cells. The results described here support the hypothesis that Egr-1 transactivates the PTEN gene to induce apoptosis.
PTEN mRNA. Corresponding with the radiation-induced PTEN, the expression of Egr-1 was induced about tenfold in most tissues (Fig. 1f, row 2). In contrast, Egr-1 expression in tissues from Egr-1-deficient mice was undetectable and uninducible (Fig. 1f, row 5) and PTEN expression was detectable but was uninduced by radiation (Fig. 1f, row 4). The analyses were performed with equal amounts of mRNA, as shown in the levels of the control mRNA from the GAPDH gene. These results indicate that Egr-1 is a major inducer of the PTEN gene in vivo.

The full-length PTEN promoter has numerous putative Egr-1-binding sites. To determine which sites might be responsible for Egr-1 stimulation, a series of deletions were made. The translation start site was designated as +1 for this study. The first three 5' or distally truncated PTEN promoter constructs had similar stimulatory activity compared with the full-length promoter (data not shown), as did fragment Δ5', which contained the proximal half of the sequences tested (−1 to −103; Fig. 2a, b). Both transiently transfected Egr-1 and endogenous Egr-1 stimulated by ultraviolet irradiation of the cells produced very similar transactivating activity. Furthermore, the deletion of most of the 3' end of these cloned regulatory sequences from the position −1 to −779 (the Δ3' construct) did not abolish this stimulation. This narrowed the putative active binding sites to the remaining sequences located between nucleotides −779 and −1031, which includes the start of transcription. This fragment (min PTEN-luc) retains full activity (Fig. 2a, b). This fragment contained a 117-base pair (bp) GC-rich region containing three putative Egr-1-binding sites. Deleting this region in the context of the full-length PTEN regulatory sequences eliminated stimulation, narrowing the search to this short piece of DNA (Fig. 2a, b).

The three Egr-1-binding sites (EBSA, EBSB and EBSC) shown in Fig. 2c were individually mutated to give the mut A, mut B and mut C constructs. Mutation of EBSA and EBSC did not affect induction of the PTEN promoter in response to ultraviolet light or exogenous Egr-1 expression, whereas mutation of EBSB abolished the effect of both (Fig. 2d). These results demonstrate that the nine nucleotides GCGGCGGCG located between positions −947 and −939 constitute a functional cis-acting element necessary and sufficient for PTEN promoter stimulation by both transiently transfected Egr-1 and endogenous Egr-1 stimulated by ultraviolet irradiation.

The specificity of Egr-1 binding to the PTEN promoter was confirmed by in vitro gel-mobility shift assays using a 27-bp probe containing the normal or mutated EBsA site. Supershift assays with antibodies to Egr-1 confirmed the identity of Egr-1 binding to the probe (data not shown).

In order to assess whether direct binding of Egr-1 to the 117-bp portion of the endogenous PTEN regulatory sequences occurs in intact cells, we performed chromatin crosslinking studies on liv-
Figure 2 Mapping the Egr-1-responsive element in the PTEN promoter.
a, Full-length and deleted PTEN regulatory sequences are represented on the left. The numbers indicate the position of the deleted fragments relative to the translation start site (+1). An arrow represents the start of transcription. Right, PTEN-luc and the deleted constructs were transiently transfected into 293T cells stimulated or not with ultraviolet irradiation or ectopic Egr-1 expression. Luciferase activities were assayed as described in the Methods and are shown as absolute values of relative luciferase units (RLU). b, Ultraviolet and Egr-1-stimulated activity. The values (x-fold stimulation) are derived from the ratio between the basal and the Egr-1-induced promoter activities shown in a. c, A GC-rich region in the PTEN 117-bp fragment corresponding to the three putative Egr-1-binding sites (EBSA, EBSB and EBSC). Left, unmutated EBSA, EBSB and EBSC are represented in the context of the full-length promoter by open boxes and mutated versions by black boxes. Right, the wild-type and mutated constructs were transfected into 293T cells stimulated or not by ultraviolet or exogenous Egr-1, and assayed as described in the Methods.
d, Ultraviolet- and Egr-1-stimulated activity represented as the ratio (x-fold stimulation) between the basal and the Egr-1-induced absolute values of the promoter activities assessed in Fig. 2c.

Figure 3 Egr-1 binds directly to PTEN regulatory sequences in vivo. Nonstimulated 293T cells (NS, lanes 1 and 4), 293T cells stimulated by Egr-1 (lanes 2 and 5) or ultraviolet light (lanes 3 and 6) were chromatin crosslinked and then immunoprecipitated with a specific Egr-1 antibody or a nonimmune control antibody. The detection of the PTEN GC-rich 117-bp captured fragment was performed by PCR as described in Methods. Lane 7 corresponds to the control nonimmune immunoprecipitation and lanes 4, 5 and 6 correspond to the PTEN 117-bp captured fragment amplified from the Egr-1-specific immunoprecipitation. M, marker.
Egr-1 is required for PTEN-dependent ultraviolet-induced apoptosis. a, Monolayers of wild-type and Egr-1-null mouse embryo fibroblasts (MEFs) were exposed to ultraviolet-C radiation as described, and 24 h later the ratios of fragmented nuclei were compared (means of two experiments). b, MEFs collected were exposed to ultraviolet-C radiation as described, and 24 h later the ratios of fragmented nuclei were compared (means of two experiments). c, Dishes (60 mm) containing egr-1-/- MEFs were transfected with or without overexpression of the catalytically inactive form of the PTEN protein (Cys 124->Gly). Empty vector was transfected as a negative control. Dead cells were determined 24 h later by trypan blue staining. Detached and trypsinized cells were pooled and incubated with 0.2% trypan blue. Cell death is shown as percentage of blue cells. e, The signalling events leading to apoptosis in 293T and MUMG cells. The red circle represents the Egr-1 binding site; GF-R, growth factor receptor; P3K, phosphoinositide 3-kinase; Akt/PKB, Protein kinase B.

Methods

Transfection, ultraviolet-C irradiation and etoposide treatment

Cells were seeded into 48-well plates at the density of 12,000 cells per well one day before transfection. The transfection was performed with the FuGENE 6 reagent (Boehringer Braunmühlen, Mannheim, Germany) and an ECOG Berthold LSDP luminometer (EBC Biosystems, Wallac, MA). Cells were ultraviolet-C irradiated (40 mJ cm⁻²) in a Stratagene (Stratagene, La Jolla, CA), Y irradiated (4 Gy) or treated with 20 μg/ml etoposide (both high and transient induction of Egr-1 [ref. 29]) after treatment. The cells were incubated 6 h before transfection. To block Egr-1 expression we used a 20 mer phosphorothioate analogue antisense oligonucleotide highly specific to Egr-1 (sequence available upon request).

MEFs derived from egr-1-null mice

Dermal fibroblasts from skin explants from egr-1-/- and egr-1+/- mouse embryos were cultured as described previously to derive J3T-type cells. MEFs (36 population doublings) were seeded at 1 x 10⁴ per 40 mm dish overnight, irradiated with ultraviolet C light at 40 mJ cm⁻² and harvested at 2, 4 and 6 h for RT-PCR analysis of Egr-1 and PTEN (see below). Duplicate dishes containing 5 x 10⁵ cells were cultured for 24 h after irradiation and apoptosis was estimated by staining with propidium iodide and counting the proportion of cells with fragmented nuclei.

Plasmid construction

We amplified 5' PTEN regulatory sequences by PCR from genomic DNA using a pair of appropriate primers (5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3') located respectively at the position -1 and -1,978 from the ATG. The amplified product was purified and cloned into the KpnI/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene. The 5' construct was amplified by PCR from PTEN-/- lac using the primers 5'-KpdC-GGCGCTTCAGCGGCGG-GG-3' and 5'-HindIII-GTCCGACCTTCCGAATTC-G-3'. The amplified product was purified and cloned into the KpdC/HindIII-digested pGL3 basic reporter gene.
Following cloning and sequencing of the PCR products, the DNA was purified using the GenElute Genomic DNA Purification Kit (Sigma, St. Louis, MO). The purified DNA was used as template for PCR amplification, which was performed in a MJ Research PTC-200 thermal cycler (Watertown, MA) with the primers 5'-GAGGGAGAGTGTCATCAAGAATTTG-3' and 5'-GTGAGGGCTCCTGTGGGTG-3'. Two consecutive rounds of 30 cycles each of PCR were performed, using 10× PCR buffer and 1.5 mM MgCl2. The amplified products were resolved on a 7% polyacrylamide gel, transferred to Immobilon PVDF membranes (Millipore, Bedford, MA), and reacted with primary antibodies. The membranes were then incubated with secondary antibodies and detected using chemiluminescence (Amersham, Arlington Heights, IL).

Crosslinking and identification of Egr-1 binding to DNA

Live cells were treated with formaldehyde to crosslink chromatin complexes and Egr-1 containing fragments were recovered by immunoprecipitation as described elsewhere. Identification of the captured DNA was performed by PCR analysis using the primers 5'-CGAGGCATCATCAAAGAGA-3' and 5'-TGAGGGCTCCTGTTGGGGT-3'. Two consecutive rounds of 30 cycles each of PCR were performed, using 10× PCR buffer and 1.5 mM MgCl2. The amplified products were resolved on a 7% polyacrylamide gel, transferred to Immobilon PVDF membranes (Millipore, Bedford, MA), and reacted with primary antibodies. The membranes were then incubated with secondary antibodies and detected using chemiluminescence (Amersham, Arlington Heights, IL).
Research Report

Method for Cloning In Vivo Targets of the Egr-1 Transcription Factor

BioTechniques 29:162-169 (July 2000)

Ian de Belle, Dan Mercola^ and Eileen D. Adamson
The Burnham Institute, La Jolla, 1Sidney Kimmel Cancer Center, San Diego, CA, USA

INTRODUCTION

Egr-1 is an immediate early growth response gene induced in response to serum stimulation of quiescent or growing cells. The alternate names for Egr-1 reflect the mode of its discovery. We first reported the cloning of the Egr-1 gene in fibroblasts and its role in development and in neuronal activity and differentiation (16). Other names are Zif268 (2), indicating its zinc finger DNA binding motif; Krox24 (1), showing its relation to the Krüppel family of homeobox transcription factors; NG-FIA (14), because of its induction in PC12 cells by nerve growth factor; and TIS8 (12), because it is a gene induced by phorbol ester tumor promoters. Egr-1 is also the most responsive (mRNA induced within 5 min, protein level maximal at 60 min) of the stress-activated genes. Egr-1 is induced by radiation at all wavelengths, all tested growth factors, calcium ions, reactive oxygen species, heavy metals, depolarization and stretch among other stimuli. Its actions are partly governed by the levels achieved, stability and state of phosphorylation. Egr-1 protein is generally short-lived with a half-life of 90 min, but its expression can be much extended after stress and certain other stimuli that lead to its phosphorylation (6).

The Egr-1 gene family codes for transcription factors that bind to GC-rich regions in gene promoters. There are several members with similar structural features, but only the zinc finger domain has high homology among family members. The DNA consensus binding sequence is GCGG/TGGGCG, and it occurs in the promoters of several growth-related genes including Egr-1 itself, WT1 (related to Egr-1), EGF receptor, PDGF-A, PDGF-B, FGF-2, Bcl-2, p53, TGFβ1, IGF-II, IGF-IR and a number of extracellular matrix genes. A notable feature of the GC-rich binding site for Egr-1 is that it occurs most frequently in the proximal promoter regions of many growth-related genes, especially those that do not have TATA or CAAT boxes.

One set of genes regulated by Egr-1 endows a tumor suppressor function, and another set endows a survival response to damaging irradiation. Another important function of Egr-1 concerns the differentiation of many cell types. The mechanism for a change in cellular responses caused by Egr-1 would be clarified if we knew what new promoters Egr-1 protein binds to affect the activities. This paper describes and tests such a method by applying a stimulus of UV-C irradiation to determine what new Egr-1 target genes are bound by Egr-1 in HT1080 human fibrosarcoma cells. The cross-linking of proteins to
DNA was achieved with formaldehyde and was based on a method described previously (5,15). The method is termed direct in vivo Egr-1 target (DIVET) cloning. The method may be applied to capture the target genes of any transcription factor for which there is a specific immunoprecipitating antibody.

MATERIALS AND METHODS

Cells and Culture Conditions

The human fibrosarcoma HT1080 cell clone, H4, was kindly provided by Dr. S. Frisch (The Burnham Institute). H4 cells stably expressing Egr-1, E9 cells, have been previously described (9). Cells were cultured in DMEM containing 10% PBS and maintained in a 5%-CO₂ atmosphere at 37°C.

Chemical Cross-Linking and Chromatin Isolation

Formaldehyde-induced cross-linking and chromatin isolation was performed as previously described (3,11). An outline of the procedure is shown as a flow diagram in Figure 1. The optimal time of exposure of H4 and E9 cells to formaldehyde was determined by pilot experiments to be 1-2 h. This length of exposure was found to give the best yield of Egr-1 capture from the cross-linked chromatin. Cross-linking was performed on approximately 1 x 10⁷ attached cells in 15-cm dishes. Chromatin, purified by urea gradient centrifugation at 50,000 x g for 16 h, was stored at -80°C. Before immunoprecipitation, 30-60 μg DNA in chromatin were digested overnight at 37°C with 60 U EcoRI.

Antibodies and Immunoprecipitation

An affinity-purified rabbit polyclonal antibody (8) raised against amino acids 27-318 was used for both immunoprecipitation and Western analysis for Egr-1. The antiserum was affinity-purified over a column of recombinant Egr-1 coupled to CNBr-activated Sepharose® beads (Sigma, St. Louis, MO, USA).

For immunoprecipitation, 30-60 μg cross-linked and EcoRI-digested chromatin were brought to a volume of 1 mL in RIPA buffer to which 1 μg affinity-purified anti-Egr-1 antibody was added together with 40 μL 50% suspension of protein A-Sepharose beads. Samples were rotated overnight at 4°C, and the bead-captured immune complexes were washed four times with RIPA buffer. Samples were then washed with TE buffer [10 mM Tris (pH 8.0) and 1 mM EDTA] and divided into two equal aliquots.

For Western analysis, one aliquot was washed with 10 mM Tris (pH 7.5), 2 mM MgCl₂, then resuspended in 100 μL of the same buffer with 10 U DNase I (Promega, Madison, WI, USA) and incubated at 37°C for 10 min. The samples were then boiled in SDS sample buffer for 10 min and analyzed by 7.5% SDS-PAGE. Western analysis was performed using the same anti-Egr-1 affinity-purified antibody at a 1:1000 dilution.

For DNA recovery from the second aliquot, cross-links were reversed with heat and proteinase K (Promega) digestion and DNA purified as previously described (3). Using both proteinase K digestion and heat treatment has been shown to achieve total reversal of cross-linking, which yields completely protein-free DNA (15).

Linker Ligation and PCR Amplification of Captured DNA

The purified DNA following cross-link reversal was redigested with 20 U EcoRI at 37°C for 2 h to ensure all ends were compatible with the linkers. The digested DNA was ligated to EcoRI linkers consisting of the following oligonucleotides: 5'-AAATTCCGAAAGCTTGATCCGACAG-3' and 5'-CTGCAGATCGAG-3'. Following linker ligation at 16°C overnight, the ligated DNA was subjected to PCR amplification.

PCR amplification of the linker-ligated DNA was performed using the 20-mer oligonucleotide from the linker ligation as the PCR primer and Pfu DNA polymerase (Stratagene, La Jolla, CA, USA), using buffer conditions supplied by the manufacturer. PCR cycling parameters were as follows: 95°C for 45 s, 65°C for 30 s and 72°C for 5 min. The number of cycles was determined empirically so that few or no PCR products were visible in the control samples consisting of Egr immunoprecipitates from H4 cells (Figure 3, lanes 1 and 2). The number of cycles performed was typically 20-30. PCR products were purified by agarose gel electrophoresis and QIAquick™ gel extraction (Qiagen, Valencia, CA, USA). Linkers were removed by EcoRI digestion, and products were ligated in EcoRI-digested...
The Bumham Institute), which contains MD, USA). Forty-eight hours after topical infection of H4 cells in the presence or absence of a cytomegalovirus (CMV)-Egr-l expression vector was transfected into H4 cells. The constructed DNA sequences were inserted into pA56fos-Luciferase (a kind gift from Dr. C. Hauser, Tübingen, Germany). The gel shift assay was performed as previously described (7), using recombinant glutathione-S-transferase (GST)-Egr-1.

For gel shift competition, Egr-1 was allowed to bind to the probe for 15 min at room temperature, and then a 50-fold molar excess of unlabeled competitor oligonucleotide was added and incubated for a further 15 min. The wild-type Egr-1 binding sequence used as a specific competitor consisted of the following oligonucleotides: 5'-GATCACCTGGGCGAGGA-3' and 5'-TGACCGCCTCCCTCTTCG-3'. For a mutant Egr-1 binding site in the TGFP promoter, the primers used for amplification were: 5'-GGGCTGAAGGGACCCCCCTC-3' and 5'-TCTCTCGGGACTCTTGCTC-3'. These results indicate that at least some of the Egr-1 expressed in E9 cells is bound to DNA in vivo and therefore has the potential to be functional. Furthermore, we observed that compared to untreated E9 cells, our immunoprecipitates contained considerably more Egr-1 following UV-C irradiation, which suggested that this stimulus promoted an increase in the binding of Egr-1 to its target sequences (Figure 2, compare lanes 3 and 4).

RESULTS

Immunoprecipitate of Egr-1 from Cross-Linked Chromatin

An outline of the DIVET method to clone Egr-1 binding sites is presented as a flow diagram in Figure 1. Previously, we have shown that H4 cells do not express Egr-1, even following a stimulus known to induce Egr-1 expression. Importantly, we have found that H4 cells do not express Egr-1 following UV irradiation, normally a strong inducer of Egr-1. However, when H4 cells were stably transfected with Egr-1, several clones expressing Egr-1 robustly in a constitutive manner were isolated and one of these was named E9 (9). Since these cells provide an ideal comparison for the effects of Egr-1 expression, we chose for the present study to characterize the binding of Egr-1 to its in vivo sites in E9 cells. To assess the immunoprecipitation of Egr-1 to its binding sites, we performed Western analysis of Egr-1 following immunoprecipitation of cross-linked and digested chromatin from both H4 and E9 cells. Because Egr-1 is bound to DNA in vivo and therefore has the potential to be functional, we also examined Egr-1 immunoprecipitates from cells treated with 40 J/m² UV-C (254 nm) and incubated for 2 h following irradiation. Figure 2 shows the results of Egr-1 immunoprecipitation from samples of cross-linked chromatin. In H4 cells, there was little or no Egr-1 present in the immunoprecipitates, as we expected. In the Egr-1 constitutively expressing E9 cells, however, we successfully immunoprecipitated Egr-1 from both untreated and UV-C-treated cells. These results indicate that at least some of the Egr-1 expressed in E9 cells is bound to DNA in vivo and therefore has the potential to be functional. Furthermore, we observed that compared to untreated E9 cells, our immunoprecipitates contained considerably more Egr-1 following UV-C irradiation, which suggested that this stimulus promoted an increase in the binding of Egr-1 to its target sequences (Figure 2, compare lanes 3 and 4).
Amplification of Egr-1-Bound DNA

To assess the capture of Egr-1-bound DNA sequences, we performed linker ligation followed by PCR amplification on samples of Egr-1 immunoprecipitates from H4 and E9 cells. Figure 3 shows that after 20 cycles, DNA was amplified from E9 but not from H4 immunoprecipitates. DNA fragments ranging in size from 0.5-3 kb were detected. This result is consistent with the presence shown by Western analysis of Egr-1 in E9 but not in H4 chromatin immunoprecipitates (Figure 2) and is a direct demonstration that Egr-1 is bound to DNA in these cells. Our results also suggest that following UV irradiation there may be additional sites to which Egr-1 binds, as evidenced by a different amplification profile seen in irradiated E9 cell (compare Figure 3, lanes 3 and 4).

The expression of Egr-1 in E9 cells is constitutive, and it is possible that the level is higher than one would expect after the normal induction of Egr-1. Therefore, we also tested physiologically induced Egr-1 expression in MCF7 human mammary carcinoma cells, using a two-hour exposure to tetradecanoylphorbol acetate (TPA). On a Western blot, the level of Egr-1 protein was twofold higher than that expressed in E9 cells, indicating that the method does not require high constitutive Egr-1 expression (data not shown). Also, multiple DNA fragments were captured using cross-linking of the Egr-1 to its target genes in MCF7 cells following our method. The sensitivity of the method is likely determined by the avidity of the antibody. To test the generality of the method, we also applied antibodies to c-Jun, with appropriate controls, with the result that presumptive c-Jun target genes were also captured after cross-linking (data not shown).

Specific Binding of Egr-1 to Captured and Cloned Binding Sites

To demonstrate that the DNA sequences that were amplified from E9 cells represent specific target binding sites for Egr-1, we performed gel shift assays on individual captured binding sites. Individual DNA sequences were isolated by ligating PCR products into a cloning vector and selecting single bacterial colonies after transformation, as described in the Materials and Methods section. Figure 4A presents gel shift results from three individually cloned and isolated Egr-1 binding sites from E9 cells. Purified recombinant Egr-1 bound to each of these Egr-1 binding sites. Egr-1 binding was abolished by competition using unlabeled wild-type consensus oligonucleotides but was unaffected by the mutant oligonucleotides, indicating that the binding was specific. The specific binding of Egr-1

demonstrated here confirms that our method is effective in selecting for DNA sequences to which a transcription factor, in this case Egr-1, is directly and specifically bound in the cell.

Captured Egr-1 Binding Sites Display Transcriptional Activity

An important criterion in the characterization of in vivo Egr-1 binding sites is to determine not only the specificity of Egr-1 binding but also that the functional consequence of binding. Because Egr-1 is an immediate early transcription factor, we examined whether or not the Egr-1 binding sites that we had captured and cloned were capable of influencing the transcription of a linked reporter gene. Individual Egr-1 binding sites derived from UV-treated E9 cells were cloned into a luciferase reporter vector and transfected into H4 cells alone or co-transfected with an Egr-1 expression construct. Figure 4B shows

Figure 3. DNA fragments captured from HT1080 cells analyzed on an agarose gel. DNA fragments were amplified by PCR after reversal of cross-links between Egr-1 and its target DNA (see Materials and Methods for details). The lanes refer to the same cell extracts as in Figure 2.

Figure 4. Egr-1 binding to and transactivation of captured DNA. (A) Gel Shift assays to show the binding specificity of captured DNA fragments. Three different DNA fragments were labeled and tested for putative Egr-1 binding sites (EBS). Recombinant GST-Egr-1 was allowed to bind as described in the Materials and Methods section. Unlabeled wild-type Egr-1 binding site oligonucleotides and mutated oligonucleotides were added to the indicated samples following Egr-1 binding as described in the Materials and Methods section. In all three cases, only the wild-type Egr-1 binding site oligonucleotides competed for the putative EBS. The concentration of Egr-1 used in gel shift studies, shown as 1, 2 and 3, corresponds to 50, 100 and 200 ng protein, respectively. (B) Transactivation assays with a luciferase reporter gene. The same captured DNAs as in A were ligated to a minimal promoter-luciferase gene. After transient transfection into H4 cells, the luciferase activity of cells co-transfected with Egr-1 (black bars) was induced compared to the "empty vector" control (white bars). Only EBS3 DNA contained a UV-activated target promoter.
the results from three Egr-1 binding sites and demonstrates that all binding sites were transcriptionally activated in the presence of Egr-1.

For Egr-1 binding sites 1 and 2, the transcriptional activation was modest and may reflect a requirement for additional cis and/or trans-acting factors for maximal activity. The transcriptional activity induced by binding sites 1 and 2 was not influenced by UV activation of Egr-1. In contrast, Egr-1 binding site 3 produced a significant trans-activation in the presence of Egr-1. Furthermore, following UV irradiation, we observed a further increase in transcriptional activity that was attributable to this binding site. This result provides a good example of the cloning of an Egr-1 binding site from irradiated cells that displays Egr-1-dependent and UV-activated transcriptional activity. From these results, it is clear that the Egr-1 binding sites captured by our method display both specificity of Egr-1 binding as well as Egr-1-dependent transcriptional activity. The method described here represents a useful means by which the direct binding targets of transcription factors can be cloned, identified and characterized.

Cross-Linking and Capture of Known Egr-1 Target Sites

Twelve DNA fragments were sequenced, and searches of GenBank® and other databanks indicated that none of the sequences matched known genes, expressed sequence tags or other DNA sequences. Of the 12 sequences, three were repeats and nine were unique. To confirm that our method of isolating Egr-1 target site sequences is working effectively, we set out to determine whether or not we were able to capture a known target of Egr-1. We have reported recently that, in E9 cells, Egr-1 is a direct transactivator of the TGFβ1 gene and contributes to the growth inhibition of these cells (13). We therefore tested for the presence of the TGFβ1 promoter sequence, containing the Egr-1 binding sites, in the DNA captured from E9 cells before and after UV irradiation. Figure 5 shows the amplification of the 338-bp sequence of the TGFβ1 promoter sequence. Interestingly, we found the TGFβ1 promoter sequence bound by Egr-1 in E9 cells before but not after UV irradiation. Therefore, Egr-1 may no longer transactivate the promoter fragment 2 h after irradiation of the cells, indicating a change in function. These results validate our method of target site cloning and demonstrate the capability of cloning Egr-1 target sequences regulating a single-copy gene.
DISCUSSION

Egr-1 is an immediate early gene elicited by a large range of extracellular stimuli such as growth factors. Egr-1 has multiple activities in the cell by regulating the transcription of coordinated sets of genes. One of the central themes increasingly studied with transcription factor function is the search for sites within the genome that bind these proteins to endow their regulatory function. In the case of the immediate early transcription factors, it is also fundamental to understand the mechanism of binding site selection that allows the characteristic diversity of response. To identify the complement of sites to which a transcription factor binds in vivo at any moment and under a specific set of conditions would represent a significant step toward the understanding of the activities directed by that transcription factor.

We have described here our method for cloning, which was designed to allow these questions to be answered directly. Our results have demonstrated that Egr-1 is bound to numerous sites within the genome and has the potential to influence the transcriptional activity at these sites simultaneously. We have presented results on three cloned DNA sequences. Using this method, we have generated an Egr-1 binding site library that is being studied further.

It is possible that formaldehyde could cross-link protein to DNA nonspecifically, and it is likely that not all of the genuine binding sites are active in regulating transcription under all conditions. The cloning of transcription factor binding sites by this method must therefore include characterization for specificity of binding and a demonstration of functional activity associated with the binding of the transcription factor to the DNA. During the characterization of binding sites, some obvious considerations include the requirement for heterodimerization or cofactors. Dimerization has not been observed in the case of Egr-1, however. In many cases, a single transcription factor does not trans-regulate alone, but rather contributes to gene regulation as part of a complex set of protein-DNA and protein-protein interactions.

Despite these considerations, we have for the first time successfully cloned DNA sequences that both bind Egr-1 directly and influence transcription. In one case presented here, we have cloned a sequence that not only binds Egr-1 but is also UV responsive (Figure 4B, pEBS-3). This demonstrates the possibility of identifying specific targets of transcription factors in response to a specific stimulus. In another example, we showed that TGFB1 gene promoter sequences were captured by cross-linking to Egr-1 in E9 cells (Figure 5). This not only proves the principle of the method (because TGFB1 is a known target of Egr-1 induction) but also is the first demonstration that Egr-1 functions in vivo by its direct binding to the TGFB1 promoter.

Our observation that Egr-1 was not bound to the TGFB1 promoter following UV irradiation may indicate that, following this stimulus, there is a decrease in the Egr-1-induced growth suppression in these cells. This would be consistent with our recently published results showing that following UV treatment, the expression of Egr-1 is associated with an increase in cell survival that correlates with a transient increase in the rate of cell cycle progression (4).

Moreover, we are developing a further step in this cloning method by using the longest captured DNA frag-
ments as labeled probes to hybridize to multiplex arrays of cDNAs. Clearly, this technique has the potential for dissecting the diverse activities of transcription factors responding to a variety of signals and may reveal novel genetic targets of these factors. Moreover, the elucidation of gene clusters that are co-regulated by a stimulus is a major advantage of this method.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of grants from the Public Health Services, CA 67888 (E.D.A.) and CA 63783 and CA76173 (D.M.) from the National Cancer Institute and DAMD 17-99-9092 (I. de B.) from the Department of Defense.

Captured DNA sequences will be made available upon request.

REFERENCES

9. Huang, R.-P., C.-T. Liu, Y. Fan, D.A. Merco-

12. Lim, R.W., B.C. Varnum and H.R. Her-

schman. 1987. Cloning of tetradecanoyl phor-
bol ester-induced primary response sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene 2:263-270.

linking: a probe for in vivo chromatin struc-
16. Sukhatme, V.P., X. Cao, L.C. Chang, C.H. Tsai-Morris, D. Stamenkovitch, P.C.P. Fer-

Received 10 December 1999; accepted 27 March 2000.

Address correspondence to:
Dr. Ian de Belle
The Burnham Institute
10901 N. Torrey Pines Rd.
La Jolla, CA 92037, USA
e-mail: idebelle@burnham-inst.org