
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-04-
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the tin-
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comnvints rega
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters £
10704-01881, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents sl^ould be aware that
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 0MB control i
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

d/0^
1. REPORT DATE rOD-yW/W-WyW 2. REPORT TYPE

Final Report
DATES COVERED {from - To)

Jan 1,02-Dec 31, 02

4. TITLE AND SUBTITLE
Dynamic Spectrum Allocation Algorithms.

5a. CONTRACT NUMBER

5b. GRANT NUMBER
F49620-02-1-0103

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Dr. Kirk Pruhs
Bala Kalyanasundaram

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES)
University of Pittsburgh
350 Thackeray Hall
Pittsburgh, PA 15260

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Department of the Air Force 4015 Wilson Blvd.
Air Force Office of Scientific Research Arlington, VA 22203-1954

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Statement A: Approved for public release. Distribution unlimited

13. SUPPLEMENTARY NOTES
DODAAD CODE: 1DQV3
AFOSR Program Manager: Dr. Neal Glassman

20040225 166
14. ABSTRACT
In our previous funding, we reported the following. The standard online scheduling method to avoid fragmentation is called First

Fit, which roughly speaking tries to schedule every task as early in time and as low in the spectrum as possible. We find that for the
input distributions that we tested, First Fit does not perform appreciably bettor than random placement, We then considered offline
algorithms that con < dor the jobs in some predefined order. We also give some theoretical evidence of the difficulty of producing
good schedules in the onlme setting [2]. More precisely, we showed that if one is given a sequence of tasks that can be fit into a
spectrum of size B, there is no online algorithm that can fit these tasks into spectrum of size c*B, for any constant c. In the offline
setting, we have found that, among the simple heuristic algorithms, the best are those that in some sense try to schedule the jobs
from earliest in time to latest in time. We call it Timeline. On the inputs we tested these algorithms were consistently able to
scheduKr 5% to 10% more jobs than Random. While a 5% to 10% improvement may seem modest, one needs to ask oneself about
the benefit of being able to schedule a few more tests per day relative to the cost of the system required to produce such a schedule.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Kirk Pruhs
19b. TELEPHONE NUMBER (Include area code)

412-624-8854

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Dynamic Spectrum Allocation Algorithms:
Final Report for AFOSR grant F49620-02-1-0103

Bala Kalyanasundaram
Georgetown University

Introduction

The fundamental problem that we considered in this research is the management
of frequency assignment to tasks involving flight-testing and training.
Combinatorially, this problem can be stated easily. Each task has a bandwidth
requirement for specific a duration called length. Thus each task can be thought
of as a rectangle, with the vertical height of the rectangle being the bandwidth
requirement. The scheduling space is a larger rectangle space, with height equal
to the total frequency spectrum available and length equal to the time period to
be scheduled (e.g. a day). In order to avoid interference, two tasks must be
placed in such a way that they do not overlap in this space.

In the offline setting, the scheduler is given all the tasks at one time. For
example, the scheduler is given all the requests for tests on a particular day a
week away and must produce a schedule for that day. In the online setting, the
scheduler is given tasks one by one, and must either schedule, or reject the
tasks, as they arrive. The online setting models the case that some requests
arrive a 2 weeks ahead of time, and some arrive 1 week ahead of time, etc.
Depending upon the model, we have to notify each request, either at the time of
arrival or at a later deadline, whether we can accommodate it or not. ^

One can evaluate the performance of the scheduler in a number of different
ways. For instance, we can maximize the number of scheduled tasks. In the
case of tasks with assigned priorities, we can maximize the sum of the priorities
of scheduled tasks. In our tests to date, we have assumed that the scheduler's
goal is to maximize the number of scheduled tasks.

Finding the optimal frequency schedule is a known computationally infeasible
problem. Thus for instances of even moderate size, one needs to fall back to
computing near optimal schedules.

The general goal of any good scheduling strategy is to avoid fragmentation of the
scheduling space. Roughly speaking, fragmentation happens when the unused
space is divided into lots of small regions (as opposed to a few larger regions).

Fragmented space is less useful since future moderate sized requests cannot fit
into the small regions, and thus may be rejected.

In our previous funding, we reported the following. The standard online
scheduling method to avoid fragmentation is called First Fit, which roughly
speaking tries to schedule every task as early in time and as low in the spectrum
as possible. We find that for the input distributions that we tested. First Fit does
not perform appreciably better than random placement. We then considered
offline algorithms that consider the jobs in some predefined order. We also give
some theoretical evidence of the difficulty of producing good schedules in the
online setting [2]. More precisely, we showed that if one is given a sequence of
tasks that can be fit into a spectrum of size B, there is no online algorithm that
can fit these tasks into spectrum of size c*B, for any constant c. In the offline
setting, we have found that, among the simple heuristic algorithms, the best are
those that in some sense try to schedule the jobs from earliest in time to latest in
time. We call it Timeline. On the inputs we tested these algorithms were
consistently able to schedule 5% to 10% more jobs than Random. While a 5% to
10% improvement may seem modest, one needs to ask oneself about the benefit
of being able to schedule a few more tests per day relative to the cost of the
system required to produce such a schedule.

During the current grant period, we considered two things. Our first goal was to
provide a simple algorithm for integration into IFDS 2 software that was
scheduled to replace IFDS 1. The main purpose of this algorithm is to provide
immediate relief. After accomplishing this, we undertook the task of finding
techniques to significantly improve effect usage of frequency spectrum.
What follows is our preliminary report on our ongoing investigation.

Let us consider a simple task. Suppose, the task arrives on 1^' August 2003 and
requests a bandwidth of 25 KHz centered around 125 MHz for duration of 3
hours starting from 9am on 20'^ August 2003. Without any additional
information, we consider this task to be rigid. What does it mean to be rigid?
The frequency assignment algorithm must either reserve (without future
modification) a bandwidth of 25Khz centered around 125 MHz from 9am to 12
noon on 20'^ August 2003 or reject the task on 1^' August 2003. After having
assigned bandwidth for a collection of rigid tasks , an algorithm has no means to
alter the schedule for future tasks to improve the overall efficiency. So, when
future is tasks are unpredictable and all tasks are rigid, the problem of managing
frequency assignment is {\em easy}, and the resulting solution is not efficient.
This is not acceptable.

The goal of our research is to consider various relaxation of the rigidity of tasks
and suggest efficient management algorithm for frequency assignment. There
are many ways to relax the rigidity of a task. Observe that there are six
numerical information that user provides with each task. We can relax a task by
taking any one of this numerical value and change it to an interval where any

value in the interval is acceptable to the user. The length of each interval
provides a measure of relaxation for the rigidity. Based on this approach, there
are many different ways to relax the rigidity of tasks. The two fundamental
questions are:

1. Which combination provides a good solution for the problem at hand?
2. How much should we relax based on our measure?

64 Schemes

Since there are six data that a user provides for a task, there are 64 possible
ways to relax the rigidity of the task. Ideally, we can allow each task to specify
any one of the 64 possible ways to relax the rigidity. Can we expect to find a
good solution for this case?

We suspect that the answer is probably no. In order to minimize the effect of
fragmentation, a good scheduler tries to maintain some structural property. But
when inputs arrive with different relaxation, the structural property collapses.
However, if every input maintains the same type of relaxation, the scheduler can
maintain some structural property.

Even though our problem is two dimensional in nature (time and bandwidth), it
bears some similarity to real-time scheduling problems where tasks have
arrival-time, length and deadline. In those cases, grouping similar sized jobs
together minimizes the effect of fragmentation. This is true for our problem too.
But when different tasks specify different relaxation, it is hard for a scheduler to
maintain grouping. In such situation, the scheduler can only provide means to
find a possible schedule for the given task. However, this will not optimize the
use of the frequency spectrum. What can a scheduler do if it cannot maintain
grouping of similar sized tasks? The answer lies not only in choice of
combination of relaxation but also how much we relax a task.

Proportional Relaxation ,

In traditional real-time scheduling literature, laxity of a job is defined to be the
length of the interval in which the job can be started so that it can be completed
before its deadline. Many results [4,5] in the literature of real-time scheduling
showed time and again that good scheduling strategy exists if laxity of a job is
proportional to its length. For a 10 second job the scheduler expects a laxity of 1
second while for a 10 hour job the sch^eduler expects a laxity of 1 hour.

We extend this to our two-dimensional problem in the following way. A typical
rigid task is a rectangle in the two dimensional space where x-axis is time and y-
axis is frequency. The two important relaxation are laxity in time (i.e., interval in
starting time) and analogous laxity in frequency (i.e., interval in the central
frequency). These two intervals along with the duration and requested
bandwidth define bigger rectangle within which the rigid task rectangle must fit.

How big should the outer rectangle be?

Applying the Insight from the one-dimensional case, it appears that the right
relaxation is to define the outer rectangle to be a fixed percentage larger in both x
and y-axis. Laxity alone is of no use provided we allow the algorithm to
rearrange already committed requests within their tolerance.

With this proposition in mind, we considered the online version of our problem
where we are presented with one task at a time. We are currently evaluating a
class of algorithms called Bookshelf Algorithm. We describe below one instance
of the algorithm.

Figure 1. The force vector.

Bookshelf Algorithm: We now describe what the algorithm does when a new
request consisting of a pair of rectangles (outer and inner) arrives. The
algorithm assumes that there already exists a schedule of previously accepted
requests. We use the notation (ri,Ri) to denote the centers of inner and outer-
rectangles of the ith scheduled request.

1.

2.

For each legal placement of the inner-rectangle within the boundary of the
outer-rectangle do the following steps 2-5 until the request is accepted.
Let r be the center of the placement.
For each accepted requests (ri, Ri), construct the force vector rr_i. The
force vector has both amplitude and direction. (See figure 1.)

Sort the accepted requests according to the amplitude and perform step 4
for all accepted requests starting from the request with the largest
amplitude.
Move the inner rectangle in the direction the force vector until it cannot be
moved due to either reaching the outer-rectangle or overlaps another.
After moving every accepted request, check if the given request can be
placed with r as the center of the Inner-rectangle. If the request can be
placed, then accept the request. Otherwise, repeat 2 - 5 for other
placement of the inner-rectangle of the request.

Variants of this algorithm differ from this version in how we construct the force
vector (step 2), and in what order the requests are moved (step 3). We are
currently in the process of testing which variant works the best.

Below, we present our experimental result on the one variant of the algorithm
where step 3 orders requests randomly and evaluates the effect of laxity. Each
row corresponds to laxity with fixed percentage and each column corresponds to
a fixed number of requests. Given a fixed number n, we randomly create
exactly n schedulable inner-rectangles and then randomly create outer-
rectangles to each inner-rectangle with given percentage of laxity. We then ran
the algorithm and reported percentage of input rejected by the algorithm. The
result shows that random ordering in step 3 is not performing well.

^^ 100 200 300 400 500 600 700 800 900 1000

0% 0 0 0 0 0 0 0 0 0 0

10% 5.8 11.3 15.8 19.4 22.7 27.4 28.6 30.3 32.4 34.0

20% 9.1 20.0 25.2 33.2 36.9 40.9 42.5 42.9 44.2 45.0

30% 16.5 30.5 36.8 41.7 46.8 49.5 50.1 51.3 53.4 53.8

40% 21.2 39.2 44.1 47.1 53.7 54.5 55.6 56.9 58.1 58.2

50% 29.4 42.4 49.7 52.1 55.9 57.1 58.6 59.8 60.6 60.8

60% 36.7 45.8 53.0 54.7 59.2 60.3 60.4 62.6 62.7 63.4

70% 42.2 50.6 54.3 58.1 60.6 61.5 64.4 64.1 65.5 65.7

80% 53.5 57.9 58.8 62.9 62.9 64.7 65.3 65.7 66.8 67.0

90% 59.8 63.1 66.0 66.8 68.4 66.7 68.5 68.7 71.3 71.5

We are hoping to complete the experijTiental analysis of other variants of
Bookshelf algorithm and present it in the annual ITEA conference in 2004.
Requests with multiple options

We also considered the problem where a request has many different options
represented as ands of ors. We extended the Bookshelf algorithm for this case
and here is the experimental analysis of one version of the algorithm.

100 200 300 400 500 600 700 800 900 1000

0% 2.9 6.95 8.79 11.05 12.38 15.30 16.00 16.90 18.10 18.90

10% 1.3 4.15 8.32 10.79 12.70 14.80 16.90 18.60 19.50 21.30

20% 1.9 6.6 10.35 13.05 15.30 16.80 18.90 20.60 22.40 23.00

30% 2.1 7.75 11.05 13.00 16.30 18.60 19.60 21.60 23.30 23.90

40% 3.2 7.15 10.59 15.60 15.90 19.10 21.90 22.00 23.90 25.10

50% 2.8 6.45 12.21 14.70 17.30 19.30 21.10 22.00 25.10 25.60

60% 2.6 8.4 11.43 14.00 17.90 19.00 21.50 22.20 24.60 24.60

70% 2.4 8.5 11.26 15.30 17.40 19.80 21.10 23.10 24.60 24.90

80% 2.4 9.15 10.89 15.50 18.30 18.90 21.60 24.10 24.2 25.50

90% 2.9 7.95 11.56 16.10 18.40 18.70 22.30 24.40 25.30 25.90

Table 2. Effect of Laxity when multiple options are available.

References:

1.A. Barnoy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, "A unified
approach to approximating resource allocation and scheduling", ACM
Symposium on Theory of Computing, 2000.

2.B. Kalyanasundaram, and K. Pruhs, "Dynamic spectrum allocation: the
impotency of duration notification", special issue of Journal of Scheduling
devoted to approximation algorithms, 3(5), 289 - 296, 2000.

3.S. Leonardi, A. Marchetti-Spaccamela and A. Vitaletti, "Approximation
algorithms for bandwidth and storage allocation problems under real time
constraints", Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 2000.

