Progress Report on Comparisons of East China Sea Bottom Scattering Strengths at Low Frequency

P.G. Cable, Y. Dorfman, R. Gibson (BBN Technologies)
T.W. Yudichak, D.P. Knobles (ARL:UT)

ASIAEX Collaborators:
R. Zhang, Z. Peng, F. Li, Z. Li (IOA, Chinese Academy of Sciences)
Ji-Xun Zhou (GT)
P.H. Dahl (APL-UW)
J.H. Miller, G.R. Potty (URI)
Progress Report on Comparisons of East China Sea Bottom Scattering Strengths at Low Frequency

Authors
BBN Technologies, ARL:UT and ASIAEC Collaborators: IOA, Chinese Academy of Sciences, (GT), (APL-UW), (URI)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplemental Notes
Also See: M001452, The original document contains color images.

Abstract

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Report unclassified</td>
<td>UU</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>b. Abstract unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. This Page unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ECS Bottom Scattering Strength Determinations

- **ASIAEX**
 - *Date*: August 2001
 - *Location*: 29°39'N 126°49'E
 - *Source Weight/Depth*: 1 kg/50 m
 - *Receiver Depth*: 5-90 m (30 element VLA)
 - *Geometry*: Monostatic reverberation

- **Navy Test #1**
 - *Date*: September 1998
 - *Location*: 28°30'N 126°00'E
 - *Source Weight/Depth*: 2 kg/50 m
 - *Receiver Depth*: 45 m (nominal) (64 element HLA)
 - *Geometry*: Bistatic reverberation

- **Navy Test #2**
 - *Date*: 1998
 - *Location*: 29°05'N 126°43'E
 - *Source Weight/Depth*: 0.8 kg/18 m
 - *Receiver Depth*: 27 m
 - *Geometry*: Monostatic reverberation
Bottom Scattering Strength Measurement Sites

- ASIAEX
- Navy #1
- Navy #2

East China Sea

Longitude (Deg E)

Latitude (Deg N)

-1800
-1600
-1400
-1200
-1000
-800
-600
-400
-200
0
Bottom Scattering Strength Estimation

- **Method 1 (ASIAEX, Navy Test #2):** Extract scattering strength from reverberation intensity
 - Scale reverberation level for source energy and 2-way transmission
 - Adjust for area contributing to instantaneous reverberation level

 Issues/Assumptions:
 - Source level known vs frequency & measurement range
 - Transmission known vs frequency & range

- **Method 2 (Navy Test #1):** Compare bottom target strength & target strength of reference target
 - Compare energy scattered from near-bottom known target with energy scattered from bottom near target
 - Adjust bottom target strength for contributing area

 Issues/Assumptions:
 - Same transmission to target & bottom
 - Reference target strength known vs frequency

- Both methods typically assume scattering region homogeneity & isotropy
Passive Reflector Schematic

Subsurface Flotation
(28" Dia.)

3" Dia. X 100' (30.5 m)
Reinforced PVC Tube
w/ Internal Wire Rope
Strength Member

- Mid-Water Depth

Scuba Tank
w/ Regulator

Glass Balls
(17" Dia.)

Single Acoustic Release

1000 lb Anchor
Passive Reflector Target Strength

Theoretical Air Column Target Strength @ 150'

Newport ATD Measured Data (Scaled)
Summary & Conclusions

- Three separate estimates of East China Sea low frequency integrated bottom scattering strength have been compared
 - Two measurements - ASIAEX & Navy test#2 - were made at closely spaced sites (56 km separation) using same method
 - estimates agree closely
 - One measurement - Navy test#1 - was made at a removed site (140 km separation from ASIAEX) using different method
 - estimates differ from ASIAEX & Navy test#2 results

- Several questions of physics are being probed, the interaction of which affect the interpretation of the scattering strength determinations
 - Source level range dependence expected
 - Consequence of explosive source & nonlinear propagation characteristics
 - Monotonic decrease of scattering strength with range expected
 - Consequence of high angle stripping & scattering strength grazing angle dependence
 - Maximum f^3 dependence of scattering strength expected
 - Consequence of Born approximation scattering applied to sub-bottom scatterers
Plans

• Complete analysis of bottom scattering strength
 – Refine frequency dependency arguments
• Research sub-bottom characterizations for ASIAEX/Navy test#2 sites and for Navy test#1 site
• Undertake construction of scattering strength model