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ABSTRACT: The U.S. Army Corps of Engineers is planning navigation improvements for many projects
to meet predicted increases in tow traffic. Some of these improvements include the addition or replace-
ment of the navigation lock. Innovative design and construction techniques are being investigated for
reducing construction costs, as well as operation and maintenance costs. The Corps identified that a
savings in lock construction could be achieved if the conventional concrete gravity lock walls with cul-
verts inside them could be replaced with thin walls and longitudinal culverts located inside the chamber.
This culvert design was designated the In-chamber Longitudinal Culvert System (ILCS).

This report provides the results of research conducted under Work Unit 33140, “In-Chamber Longi-
tudinal Culvert Design for Lock Filling and Emptying Systems,” of the Innovations for Navigation
Projects Research Program. Design guidance for the ILCS is provided for low- to medium-lift locks. The
guidance includes culvert location; port size, location, and spacing; port extensions; roof overhang; and
wall baffles. Guidance is also provided for modified ILCS designs and single-culvert designs. Lock
chamber performance guidance, based on acceptable filling and emptying operations, is also included.
The results show that the ILCS is a feasible design based on the hydraulic performance determined from
the investigation.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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Chapter 1

1 Introduction

Background

Many U.S. Army Corps of Engineers lock projects on the Upper Mississippi
River and Ohio River systems are planning additional locks, enlargements to
existing locks, or repairs to existing locks. These projects are necessary to meet
the predicted increases in tow traffic. Innovative designs are being considered on
many of the project components to save construction costs as well as operation
and maintenance (O&M) costs.

A Regional Navigation Design Team composed of Corps personnel identified
that a large savings in lock wall construction costs could be realized if the lock
filling and emptying culverts were located inside the lock chamber rather than
within the lock walls (Figure 1) and if new and innovative construction techniques
were employed.

The filling and emptying system is the primary component of a lock and must
be hydraulically efficient and safe. Detailed design guidance is not available for
longitudinal culverts placed inside the chamber. The guidance presented herein is
needed to help develop these innovative designs for navigation project improve-
ments. This design (longitudinal culverts placed in the chamber) was designated
the In-chamber Longitudinal Culvert Filling and Emptying System and is referred
to as “the ILCS” throughout this report.

Results from a physical model study performed for the proposed 1,200-ft"
lock addition at the McAlpine Project on the Ohio River (Stockstill 1998) showed
that the ILCS design was feasible. However, additional research was needed to
further develop the design guidance over a wider range of hydraulic conditions.

Longitudinal culverts located inside the lock chamber are not a new concept.
The Davis and Sabin Locks, which are part of the Soo Lock System at the
St. Mary’s Falls Canal, were constructed in the early 1900s and contain culverts
inside the lock chamber. The locks were originally constructed with six culverts
underneath the lock floor, but two of the six culverts were blocked off due to
“excessive lock filling and emptying currents.” During conversations with field
personnel at Davis Lock, it was stated that the two outside culverts were blocked
off probably because of turbulence within the lock chamber. Also, field

! A table of factors for converting non-SI units of measurement to SI units is presented on page vii.
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personnel indicated that, with a 21-ft lift and 3-min valve operation, Davis Lock
filled in 13 min and emptied in 11 min. The intakes for these two locks also
contain horizontally mounted butterfly valves, which allowed water into culverts
located under the upper miter sill. The discharge outlets are also located in the
lower approach at Davis Lock.

Objective

The objective of this work unit was to provide design information necessary
to develop an ILCS for low- and medium-lift locks (10 to 40 ft). A physical lock
model was used to perform a thorough evaluation of the ILCS to cover the range
of design conditions typical for Corps of Engineers low- to medium-lift locks. The
evaluation provided lock filling times, valve operation times, and performance
guidance for the ILCS. This design guidance will be beneficial for Corps
Divisions/Districts and for private industries responsible for developing the filling
and emptying systems for the innovative locks. Specific guidance needed to help
design the ILCS includes culvert location, port spacing, port size, port shape, and
chamber baffles.

Through-the-sill filling and emptying systems have the potential for signifi-
cant savings. The overall savings estimated from the use of innovative construc-
tion concepts for the Corps’ top 11 high-priority navigation projects (lock
replacements) is between $1.4 and $1.8 billion.

Introduction




2 Previous Investigations

In 1994, several Corps Districts began to investigate the feasibility of innova-
tive designs for lock intakes and lock filling and emptying systems. Physical
model experiments were considered necessary to determine the hydraulic perfor-
mance of the proposed designs and to make modifications if needed or applicable
to achieve an acceptable design. The initial modeling program involved four sites
where new locks are proposed for construction: McAlpine Lock and Dam (L&D),
Louisville District; Marmet L&D, Huntington District; Monongahela River No. 4
L&D, Pittsburgh District; and a representative lock from the Upper Mississippi
Lock Replacement Study, St. Louis District.

Memorandum reports were published for the through-the-sill intake studies
for McAlpine, Marmet, and Monongahela River No. 4, and a lock study (Stock-
still 1998) was published for the McAlpine Lock. These studies showed that
acceptable hydraulic conditions could be achieved in the lock approaches for the
through-the-sill intakes and that the longitudinal culverts could produce accept-
able chamber performance.

Initial ILCS Design for 1,200-ft-Long Lock
Addition at McAlpine Project

The navigation improvements planned for the McAlpine Project provided a
desirable site to investigate this ILCS design. The filling and emptying system
originally proposed also included a through-the-sill intake and discharge outlet
with the ILCS.

A 1:25-scale laboratory model was used for the study. The model reproduced
portions of the upper and lower approaches, the entire filling and emptying system
(including portions of the upper and lower guide and guard walls), intakes, valves,
culverts, lock chamber, and outlets. Details of the initial ILCS design for the
McAlpine Project are shown in Figure 2.

Stockstill (1998) provides details regarding the results of this investigation.
Numerous culvert designs with various port arrangements were evaluated. Evalu-
ation of the lock system was based on performance data obtained during typical
filling and emptying operations. Performance was based primarily on hawser
forces on tows in lockage, movement of unmoored (free) tows in the lock

Chapter2  Previous Investigations
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chamber, the roughness of the water surface, pressures, and lock filling and
emptying times. The design recommended from the study (Type 17 design) con-
sisted of 16 pairs of ports in each culvert in both halves of the lock chamber. The
upstream and downstream ports were centered in the vicinity of the lock third
points. Wall baffles were placed on the lock walls adjacent to the ported sections
of the manifolds, and port extensions were installed on the upstream ports.

Acceptable and safe performance of a Corps filling and emptying system is
considered to be no hawser forces higher than 5 tons, with acceptable valve opera-
tions and filling and emptying times for the design lift condition. Stockstill’s study
showed that a 5-min filling valve resulted in maximum hawser forces of 4.5 tons
and a lock filling time of about 10.7 min with a 37-ft lift. Flow conditions in the
lock chamber with the recommended design during filling were acceptable, and an
unmoored tow rose almost vertically. Unmoored tows during lock filling and
emptying should not occur in locks, but this performance provided a good indica-
tion of how uniform the flow distribution was in the lock chamber during a filling
operation.

A series of experiments not reported in Stockstill (1998) were performed to
determine the performance of the recommended design with a 10-ft higher lift
than the design lift of 37 ft. Hawser force measurements were obtained with a
47-ft lift for filling valve operations of 4 and 10 min. The hawser forces obtained
with the Type 17 design and 47-ft lift are shown in Figure 3.

The technique used to determine the hawser forces in model studies will be
discussed in a subsequent section. The results with the higher lift indicated that
the Type 17 design would need to be modified significantly to achieve the same
filling and emptying performance as determined with the 37-ft lift. Corps design
guidance given in Engineer Manual (EM) 1110-2-1604 (Headquarters, Depart-
ment of the Army (HQDA) 1995a) suggests that the side-port filling and emptying
system design is best suited for lifts below 30 ft, and these results suggest this may
also be the case for the ILCS design. This laboratory investigation of the initial
McAlpine ILCS lock demonstrated that filling and emptying culverts located on
the lock floor between the lock walls could produce acceptable hydraulic condi-
tions in the lock chamber during lock operations.

The following general conclusions drawn from this study served as the basis
for the initial design guidance for the ILCS:
a. The port-to-culvert area ratio should be about 0.97.
The port spacing in each manifold should be staggered.

c.  Two groups of ports should be centered about the one-third points of the
lock length.

d. Port extensions on the upstream group improved the longitudinal
distribution of flow along the length of the chamber more uniformly.

Chapter2  Previous Investigations
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e. Port extensions also train the jets issuing from these ports in a direction
normal to the longitudinal culvert.

J Wall baffles are beneficial because they diffuse the port jets at the lock
chamber floor.

Marmet ILCS Model

A second ILCS model investigation was performed for a new lock proposed
for construction at the Marmet Navigation Project in the Corps’ Huntington Dis-
trict. Improvements to the project to enhance navigation include construction of
an additional lock (870 ft from pintle to pintle and 110.08 ft wide) that will be
located on the east side of the existing locks. The design lift was 24.0 ft, which
occurs with the normal upper pool elevation of 590 and a normal lower pool ele-
vation of 566. The new lock design featured a through-the-sill intake, a longitudi-
nal in-chamber filling and emptying system, and a conventional sidewall
discharge outlet.

The purpose of the model study was to evaluate and make modifications to
the filling and emptying system if necessary to provide a design acceptable to the
Huntington District and the towing industry. Since the length of the Marmet ILCS
Lock was less than the McAlpine ILCS design, model experiments were necessary
to check the adequacy of this design with a shorter length and to determine the
operational characteristics. The results from this model investigation are provided
in Hite (1999).

A 1:25-scale laboratory model was also used for this investigation. The filling
and emptying system for the Marmet replacement lock is shown in Figure 4.
Model experiments showed the chamber performance was acceptable for the
4-min valve operation (for which the system was designed) and a 24-ft lift. Minor
modifications to the baffling arrangement and the port extensions inside the lock
chamber were made in an attempt to reduce longitudinal hawsers during filling
operations with the 2-min valve operation. No significant reductions were
observed, and since the performance was satisfactory with the 4-min valve, the
original design filling and emptying was considered acceptable.

The Huntington District requested that experiments be performed with the
floor of the lock chamber raised by 3.27 ft to reduce construction costs. The ports
were moved to the top of the culvert to accommodate this modification. This
design was designated the Type 5 chamber design, and hawser forces measured
with this design were similar to those measured with the Type 1 design. A com-
parison of the hawser forces measured with the Types 1 and 5 designs is shown in
Figure 5. The performance of the Type S design chamber was considered accept-
able with 4-min normal valve operations and 24-ft lift.

Chapter2  Previous Investigations
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Second McAlpine ILCS Model Study

Another laboratory investigation was conducted for the 1,200-ft lock addition
planned at the McAlpine Navigation Project. In the previous model study for the
new McAlpine Project, the intakes and outlets were located in the upper and
lower miter gate sills, respectively. The Louisville District conducted further
evaluation of the valve maintenance requirements, since they would have to be
located underwater. As a result, the design for the intakes and discharge outlets
was changed. A second model study was necessary to verify the performance of
the filling and emptying system with the new intakes and outlets. The results of
this study are presented in Hite (2000), and the initial ILCS design is shown in
Figure 6.

The model results from this study indicated that a variable-speed valve opera-
tion provided faster filling times and lower hawser forces than the operations with
a constant speed valve. Additional port extensions were also necessary on some of
the downstream ports to prevent excessive water-surface turbulence during filling.
The width of the wall baffles was increased to provide additional energy dissipa-
tion and help distribute the flow more evenly in the chamber. The hawser forces
measured during filling with a 37-ft lift and the original and recommended cham-
ber designs are shown in Figure 7. The two-speed valve operation allowed the
lock to fill in 11.3 min and maintain longitudinal hawsers less than 5 tons for the
37-ft lift design condition. These changes were minimal compared with the first
McAlpine ILCS study, but they do demonstrate the need for additional research to
better understand the ILCS design.

The through-the-sill intake and the ILCS lock model studies showed that the
ILCS was a feasible design. The research reported herein was performed to
develop generalized design guidance for the ILCS for use in developing design
alternatives. The recommended chamber design from Hite (2000) was used for
some of the initial ILCS research. This design was chosen for additional research
since it performed satisfactorily for the highest lift project on the Ohio River.

Chapter2  Previous Investigations

11




(1002) 81H wouy %207 auidiyo Joj pasodoud ubisep SO7) [enu] °g ainbig

Ny

mON s —SId 0 W ND AL
i D\ TA001 SUVd 9L 1y mhm&m VM -—Cavd & / .

8¢ m m 8 /0 AASRSARARRAARARE
00% .26k & _\ T R A A 0% R 3 |29 A
1
00% 7 \\\ a_._<3 V_BJ ll.:ul.:ilall-l-/ @F
X ~ % STUvE VA = .
W . 14 02 Qv 3N 14 8€ TV
00Y » W ;K - -
NYd SIAUND TVINOZRIOH S/N
¢
e | 2
DIVIN L0 =, (42
WOMd S/0 g
IAMD) VANOZRIOH . 3 4 w
] g #h NS |y o
9 V R s s 4
> 9 VILYA
% % 2 3
2 3 g e &
FN R /M =4 ﬂ %) *
= % N w
3 : > X0 2 & S
2 9 &
o~

Chapter2  Previous Investigations

12



20
5 G\
E 0 \\ :
t_:»\\
g R \\A
g e )
E 0
=
E L A A
T S I R ——
g ——’,_E"/
: 3 & ]
k"
:
T
2(,llllllllllllllllllll
8 ° 1 /) B8
FILNS TME, MN
9 [y
E B 5 C— LB
i 0
z
] S ———A"—’A
g oLttt Pyl
= 8 0 1 /] 3
LEGEND FLLNG TME, MN
SYMBOL VALVE SCHEDULE, MN
@] 4
LJ 5
A 8
® VARIABLE VALVE
LNE TYPE OESIGN TYPE
Original
------- Recommended

Figure 7. Comparison of hawser forces measured during filling with a 37-ft lift from Hite (2001)

Chapter 2  Previous Investigations

13




14

3 Lock Filling and Emptying
Design Considerations

Background

The filling and emptying system for a lock project has historically been
designed based on the chamber performance necessary to meet the transit time
requirement. The time required to raise or lower (fill or empty) the lock water
surface is one time component included in the determination of the total transit
time. The total transit as defined in EM 1110-2-1604 (HQDA 1995a) is the total
time required for a tow to move into a lock from a waiting point (arrival point), be
raised or lowered, and then proceed out of the lock to a position where it will not
interfere with any other tow that needs to transit the lock. The transit time is
derived from capacity/economic studies and is a specific design objective for a
navigation project.

Chamber performance, which is also referred to as the “within-chamber navi-
gation constraint on rapid filling,” is normally evaluated using physical hydraulic
models. Performance indicators include

a. Surface currents and turbulence.
b. Drift of free tows.

¢. Hawser forces.

Guidance for these indicators is found in EM 1110-2-1604. The accepted
guidance for hawser forces is no forces greater than 5 tons, as extrapolated from a
physical hydraulic model for barge tows of various sizes and numbers in any loca-
tion in the lock chamber. Previous model studies of lock filling and emptying sys-
tems designed for barge traffic have targeted maximum hawser forces of 5 tons as
a design objective. System design and operation are optimized such that a full tow
at design draft produces hawser forces of 5 tons or less during lock operations at
the design pool conditions. This limiting maximum hawser force guidance is pro-
vided in paragraph 8-6 of EM 1110-2-2602 (HQDA 1995b), in paragraph E-2 of
EM 1110-2-1604 (HQDA 1995a), and also in the discussion of permissible filling
times in paragraph D-15 of EM 1110-2-1604.
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Davis (1989) summarizes the findings of physical model studies in this way:

In working with models to determine hawser stresses, it must
be noted that when a hawser stress of only S tons is achieved in a
model it does not necessarily follow that the hawser stress on the
prototype lock will be no greater than the value measured in the
model. On a performance basis it has been found that when the
model hawser stress is no greater than 5 tons, the prototype lock
will perform very well and no surging or severe turbulence will
occur.

For projects with two culverts, the choice of lateral culverts as compared with
side ports has been an economic consideration. Structural costs, chamber mainte-
nance, and excavation costs are major factors. The side-port filling and emptying
system has been found to be generally best suited for lifts below 30 ft. The design
philosophy of the ILCS is to try and produce chamber performance similar to the
side-port filling and emptying system. Operation times near 8 min have been the
target for many of the filling and emptying systems developed from model and
prototype tests and design studies. This report focuses on chamber performance
during filling operations since these conditions are generally more severe than
those experienced during emptying.

Lock Coefficient

An indicator of the performance of a filling and emptying system is the lock
coefficient. An equation typically used to compute the overall lock coefficient is

c - 24,VH+d -d
: Ac(T—ktv)“/—iE

where

A; = area of lock chamber, fi?
H = initial head, ft
d = overtravel, ft
A, = area of culverts, ft?
T = filling time, sec
k = aconstant
t, = valve opening time, sec
g = acceleration due to gravity, ft/sec’

For more information on the development of this equation, refer to Davis
(1989). The term T - k ¢, is the lock filling or emptying time for the hypothetical

Chapter 3  Lock Filling and Emptying Design Considerations

15




case of instantaneous valve operation and can be determined from laboratory or
field data. Lock coefficients have been determined for several filling and empty-
ing system models tested in previous years. Table 1 provides these coefficients for
typical side-port systems and the values determined from the ILCS models for
comparison. The side-port systems are slightly more efficient than the ILCS. The
computed coefficients for the ILCS Type 11 chamber design (Hite 2000) from the
equation above are Cy. = 0.65 for filling and C;, = 0.57 for emptying with a lift of

37 fi.
Table 1
Lock Coefficients from Previous Mode! Studies
Filling and Lock
Emptying |Initial Coefficient

Project System Head, ft Filling Emptyin Reference
Cannelton Model | Side Port 20 0.74 0.57 Ables and Boyd
Type 45 Port 26 0.74 0.60 (1966a)
Arrangement 30 0.73 0.61

40 0.74 0.60
Cannelton Model | Side Port 20 0.71 0.56 Ables and Boyd
Type 100 Port 30 0.73 0.56 (1966a)
Arrangement 40 0.74 0.56
Arkansas River Side Port 10-50 0.73 0.67 Ables and Boyd
Model (1966b)
Marmet Mode! ILCS 14 0.63 Hite (1999)
Type 5 Chamber 24 0.63
Design 34 0.63
McAlpine Model }ILCS 37 0.63 0.56 Hite (2000)
Type 1 Chamber
Design
McAlpine Model | ILCS 37 0.65 0.57 Hite (2000)
Type 11 Chamber
Design

Laboratory modeling of lock filling and emptying systems is not entirely
quantitative since the flow is unsteady and the system consists of pressure flow
conduits and open-channel components. Fortunately, engineers have been con-
ducting large-scale physical model studies of filling and emptying systems for
around 50 years and have had opportunities to compare these laboratory results
with prototype performance. The knowledge and experience gained from these
previous laboratory and field studies provide the basis for designing filling and
emptying systems using laboratory models. Table 2 provides a comparison of the
lock coefficients determined from laboratory and field studies for several Corps
projects. The prototype values are higher and illustrate the unsteady-flow effects
and frictional differences encountered in a laboratory investigation.

The permissible filling time determined from model studies for filling and
emptying systems is the fastest the lock can be filled without exceeding the 5-ton
hawser force criteria in EM 1110-2-1604 (HQDA 1995a). Figure 8 shows these
filling times for lifts between 10 and 40 ft determined for side-port systems. Per-
missible fill times for the ILCS with lifts over 40 fi start to increase significantly,
indicating the practical upper limit of lift based on chamber performance for the
ILCS is around 40 ft.

Chapter 3  Lock Filling and Emptying Design Considerations
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Table 2

Comparison of Model and Prototype Lock Coefficients

Lock Filling Operation Emptying Operations
Project Mode! | Prototype | % Difference |Mode! | Prototype % Difference
Bankhead 0.66 0.78 15 0.56 0.69 19
Lower Granite 0.77 0.93 17 0.66 0.78 15
Bay Springs 063 0.75 16 0.52 0.59 12
New Bonneville |0.61 0.72 15 0.47 0.56 16
Barkley' 0.75 0.84 1 NA 0.62 NA
Greenup' 0.57 0.62 8 0.51 0.59 14

! Barkley and Greenup locks were tested in 3;100-scale models; all others were 1:25-scale.
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4 Laboratory Model

Description of Research Model

The ILCS laboratory model was designated as a 1:25-scale model for conven-
ience in discussing lock dimensions and hydraulic parameters. Most previous
filling and emptying model studies have been performed at this scale. All dimen-
sions in this report are also reported at prototype for convenience, unless other-
wise stated. A schematic of the initial design ILCS model used in this study is
shown as Figure 9, and a view of the laboratory model looking downstream is
shown as Figure 10. For the ILCS model, the upper and lower lock approaches,
lock chamber floor and walls, and the miter gates were constructed of plastic-
coated plywood. The filling and emptying system, including the intakes, filling
and emptying culverts, and the discharge outlet manifolds, were constructed of
plastic, and the filling and emptying valves were built from brass.

The model filling and emptying system reproduced a lock chamber 1,270 ft
(387.1 m) long from pintle to pintle and 110 ft (33.53 m) wide. The model con-
tained two intakes and two outlets. The left intake (looking downstream) was
located on the left guide wall, approximately 327.5 ft (99.82 m) from the upstream
pintle and consisted of eight ports 16 ft (4.88 m) high with the top of the intake at
el 14.1 The right intake was located approximately 189 ft (57.61 m) upstream
from the pintle at the end of the right wall with the top of the intake also at el 14.
The right intake was semicircular shaped and contained six ports, 16 ft (4.88 m)
high. The port-to-culvert area ratio for the right intake was 2.7 (port intake area
= 6 ports x 8 ft x 16 ft =768 ft%) (71.35 m®). The port-to-culvert area ratio for the
left intake was 2.9 (port intake area = 8 ports x 6.5 ft x 16 ft = 832 %) (77.30 m?).
Both intakes transitioned to 16-fi-high by 18-ft-wide (4.88-m by 5.49-m) culverts
located in the lock walls.

The culverts contained a vertical transition between 185 and 124 ft (56.38 and
37.79 m) upstream from the upper pintle. The floor elevation drops from -2 to -18
at this transition. Another vertical transition is located between the upper pintle
(Sta 0+00)" and 64 ft (19.51 m) upstream from the upper pintle where the invert
lowers to el -35. The filling valve wells and bulkhead slots were located between
124 and 68 ft (37.79 and 20.73 m). Both culverts contain horizontal curves
between Sta 0+64 and Sta 1+30, where the culverts turned into the lock chamber.

1 All elevations and stations are in feet unless stated otherwise.
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Figure 10. View of ILCS modeling looking downstream
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Lock stations are referenced to the upper pintle, which was designated Sta 0+00.
Both chamber culverts begin at Sta 1+30.04. The left culvert extended to

Sta 11+01 and the right culvert to Sta 10+51, where they turned outside the right
lock wall. The filling and emptying manifold port-to-culvert area ratio was 0.97.
The discharge outlets were the manifold type with an outlet manifold port-to-
culvert area ratio of 1.8 (16 ports x 8 ft x 4 ft = 512 %) (47.57 m?).

Appurtenances and Instrumentation

Water was supplied to the model through a circulating system. The upper and
lower pools were maintained at near-constant elevations during the filling and
emptying operations using constant head skimming weirs in the model headbay
and tailbay. During a typical filling operation, excess flow was allowed to drain
over the weirs at the beginning of the fill operation and minimal flow over the
weir was maintained at the peak discharge, thereby minimizing the drawdown in
the upper reservoir. This operation was reversed during lock emptying.

Upper and lower pool elevations were set to the desired level by adjusting the
skimming weirs and reading piezometers placed in calm areas of the upper and
lower pools. Water-surface elevations inside the chamber were determined from
electronic pressure cells located in the middle and on each end of the lock cham-
ber. Pressure cells were also used to measure instantaneous pressures in the
culvert just downstream of the filling and emptying valves. Histories of the end-
to-end water-surface differential were also recorded during filling and emptying
operations. Dye and confetti were used to study subsurface and surface current
directions. Pressures throughout the systems were measured with piezometers
(open-air manometers). Pressures obtained in this manner are considered average
pressures because of the reduction in frequency response resulting from the use of
nylon tubing.

An automated data acquisition and control program was used to control valve
operations and collect pressure and strain gauge data. Thirteen data channels were
used: four for control of the filling and emptying valves, six for pressure data, and
three for collecting strain gauge information. Generally, the data were collected at
a sampling rate of 50 Hz. However, some of the hawser force and lock filling and
emptying data were collected at 10 Hz. These data were then processed to deter-
mine lock filling and emptying times, longitudinal and transverse hawser forces,
and pressures downstream from the filling and emptying valves.

A hawser-pull (force links) device used for measuring the longitudinal and
transverse forces acting on a tow in the lock chamber during filling and emptying
operations is shown in Figure 11. Three such devices were used: one measured
longitudinal forces, and the other two measured transverse forces on the down-
stream and upstream ends of the tow, respectively. These links were machined
from aluminum and had SR-4 strain gauges cemented to the inner and outer
edges. When the device was mounted on the tow, one end of the link was pin-
connected to the tow while the other end was engaged to a fixed vertical rod.
While connected to the tow, the link was free to move up and down with changes
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! Figure 11. Hawser-pull (force links) measuring device

in the water surface in the lock. Any horizontal motion of the tow caused the links
| to deform and vary the signal, which was recorded with a personal computer using
| an analog-to-digital converter. The links were calibrated by inducing deflection
| with known weights. Instantaneous pressure and strain gauge data were recorded
digitally with a personal computer.
|
\

Similitude Considerations

Kinematic similitude

Kinematic similarity is an appropriate method for modeling free-surface flows
when the viscous stresses are negligible. Kinematic similitude requires that the
ratio of inertial forces (?V°L?) to gravitational forces (?gL?) in the model is equal
to those of the prototype. Here, ? is the fluid density, V is the fluid velocity, L is a
characteristic length, and g is the acceleration due to gravity. This ratio is gener-
ally expressed as the Froude number (Np):
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V

T

where L, the characteristic length, is usually taken as the flow depth in open-
channel flow. :

NF=

The Froude number can be viewed in terms of the flow characteristics.
Because a surface disturbance travels at celerity of a gravity wave, (gh)"?, where
h is the flow depth, it is seen that the Froude number describes the ratio of advec-
tion speed to the gravity wave celerity. Evaluation of the lock chamber perfor-
mance primarily concerns modeling of hawser forces on moored barges during
filling and emptying operations. The tow’s bow-to-stern water-surface differen-
tials are the result of long period seiches or oscillations in the lock chamber.
Seiching is gravity waves traveling in the longitudinal direction from the upper
miter gates to the lower miter gates. Equating Froude numbers in the model and
prototype is an appropriate means of modeling the lock chamber.

Dynamic similitude

Modeling of forces is a significant purpose of the laboratory investigation.
Appropriate scaling of viscous forces requires that the model be dynamically simi-
lar to the prototype. Dynamic similarity is accomplished when the ratios of the
inertia forces to viscous forces (4VL) of the model and prototype are equal. Here,
u is the fluid viscosity.

This ratio of inertia to viscous forces is usually expressed as the Reynolds
number (Ng):

where ? is the kinematic viscosity of the fluid (? = 2/?), and the pipe diameter is
usually chosen as the characteristic length, L, in pressure flow analysis.

Similitude for lock models

Comoplete similitude in a laboratory model is attained when geometric, kine-
matic, and dynamic similitudes are satisfied. Physical models of hydraulic struc-
tures with both internal flow (pressure flow) and external flow (free surface)
typically are scaled using kinematic (Froudian) similitude at a large enough scale
so that the viscous effects in the scaled model can be neglected. More than
50 model and 10 prototype studies of lock filling and emptying systems have been
investigated (Pickett and Neilson 1988). The majority of these physical model
studies used a scale of 1 to 25 (model to prototype). Lock model velocities scaled
using kinematic similitude (model Froude number equal to prototype Froude
number) in a 1:25-scale model have maximum Reynolds numbers at peak
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discharges on the order of 10’ yet the corresponding prototype values are on the
order of 10, indicating there are some Reynolds effects in this type of model.

Boundary friction losses in lock culverts are empirically described using the
“smooth- pipe” curve of the Darcy-Weisbach friction factor where the head loss is

expressed as

LY?
H,= f—
D2g
where
H; = head loss due to boundary friction
f = Darcy-Weisbach friction factor
L = culvert length

D = culvert diameter

The Darcy-Weisbach friction factor for turbulent flow in smooth pipes is
given in an implicit form (Vennard and Street 1982)

1

T7=20 log(Nz+/7)-0.8

given in an implicit form (Vennard and Street 1982).

Because f decreases with increasing Ng, the model is hydraulically “too
rough.” The scaled friction losses in the model will be larger than those experi-
enced by the prototype structure. Consequently, the scaled velocities (and dis-
charges) in the model will be less, and the scaled pressures within the culverts will
be higher than those of the prototype. Prototype filling and emptying times for
similar designs will be less than those measured in a 1:25-scale lock model.

Modeling of lock filling and emptying systems is not entirely quantitative.
The system is composed of pressure flow conduits and open-channel components.
Further complicating matters, the flow is unsteady. Discharges (therefore, N and
Np) vary from no flow at the beginning of an operation to peak flows within a few
minutes, and then return to no flow at the end of the cycle. Fortunately, though,
engineers now have about 50 years of experience in conducting large-scale
models and subsequently studying the corresponding prototype performance. This
study used a 1:25-scale Froudian model in which the viscous differences were
small and could be estimated based on previously reported model-to-prototype
comparisons. Setting the model and prototype Froude numbers equal results in the
following relations between the dimensions and hydraulic quantities:
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Scale Relation
Characteristic Dimension1 Model : Prototype
Length Ly=L 1:25
Pressure P=L, 1:25
Area A=L° 1:625
Velocity V=L, " 1.5
Discharge Q=L 1:3, 125
Time T =L" 1:5
Force F.=L>° 1:15,625
' Dimensions are in terms of length.

These relations were used to transfer model data to prototype equivalents,

and vice versa.

Experimental Procedures

Evaluation of the various elements of the lock system was based on data
obtained during typical filling and emptying operations. Performance was based
primarily on hawser forces on tows in lockage, roughness of the water surface,
pressures, and time required for filling and emptying. Quantification of energy
loss coefficients was made using fixed-head (steady-flow) conditions with the

culvert valve and/or miter gates fully opened or closed.
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5 Laboratory Model
Experiments and Results

Original Design ILCS

Numerous experiments were performed to evaluate the performance of the
ILCS for a range of lift and submergence conditions expected on the Ohio and
Upper Mississippi Rivers. A schematic illustrating lift and submergence is shown
as Figure 12.

The primary technique used to evaluate the performance of the ILCS was to
measure the hawser forces on a 3-wide by 6-long barge arrangement. The dimen-
sions of each barge were 35 ft wide by 195 ft long, drafted to 9 ft. The barges
were placed inside the chamber and centered at Sta 6+35. The upstream and
downstream longitudinal hawser forces and the upstream and downstream trans-
verse forces were measured during the lock operation for the desired lift, submer-
gence, and valve schedule. The normal-speed valve operation curves used for the
reverse tainter valve in the ILCS model are shown in Figure 13. This figure also
shows the permissible filling times determined for previous ILCS models.

Original design filling experiments

During a typical experiment, time-histories of the longitudinal and transverse
hawser forces and the lock water-surface elevation at the middle and both ends of
the chamber were measured. Results from a typical experiment to determine the
lock performance during filling with a 37-ft lift, 19-ft submergence, and 5-min
valve schedule are shown in Figure 14. The fill curve (which indicates that the
lock reached the upper pool elevation in 10.8 min) was determined from the
average of the three water-surface measurements made during the experiment.

The top time-history shown in Figure 14 is the longitudinal hawser force.
Immediately after the valve was opened, a small force in the upstream direction
was observed, followed by a force of 7.4 tons in the downstream direction at
approximately 1 min into the filling operation. An upstream longitudinal hawser
force results when the water surface in the lower end of the chamber is higher
than the water surface in the upper end. Likewise, a downstream longitudinal
hawser force results when the water surface in the upper end of the chamber is
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higher than the water surface in the lower end of the chamber. The maximum
upstream longitudinal hawser was 4.6 tons and was measured at 2 min into the
filling operation. The transverse hawser forces ranged from 2.4 tons (measured on
the downstream right side of the chamber) to -4.9 tons on the downstream left side
of the chamber. Directions are looking downstream, and the negative sign was
assigned to transverse hawser on the left side of the chamber.

In most balanced Corps filling and emptying systems, it is common for the
transverse hawser forces to be less than the longitudinal hawser forces during nor-
mal valve operations. The hawser results shown in Figure 14 indicate that the
downstream longitudinal hawser force is greater than desired for the conditions
with the 37-ft lift, 19-ft submergence, and 5-min valve operation.

To determine acceptable filling performance, hawser forces and operation
times were measured for lifts between 10 and 40 fi, with submergence conditions
between 19 and 29 ft for different normal valve schedules. The average maximum
forces were determined for these experiments by averaging the maximum hawser
forces measured during an individual experiment (such as the one shown in Fig-
ure 14). Typically, the average of three experiments was computed. Figure 15
shows these average maximum hawser forces in graphical form for the experi-
ments with lifts between 20 and 40 ft and a 19-ft submergence. Figure 15 was
then used to determine the filling times for the various lifts where the average
maximum force was 5 tons.

The longitudinal hawser forces were the controlling hawser forces for the
5-ton hawser force for these experiments. For example, to maintain longitudinal
hawser forces less than or equal to 5 tons, a filling time of 10.7 min was necessary
for a lift of 30 ft with a submergence of 19 ft. Figure 16 presents the average max-
imum hawser forces determined with the 19-ft submergence and lifts of 15 and
10 ft.

The average maximum hawser forces determined during filling with a 24-ft
submergence and lifts from 10 to 30 ft are shown in Figure 17. The acceptable
filling times with this submergence were slightly less than those determined with
the 19-ft submergence. Figure 18 shows the average maximum hawser forces
determined with a 29-ft submergence and lifts between 10 and 30 fi.

Original design emptying experiments

Emptying experiments were performed in a manner similar to the filling
experiments. The average maximum emptying times for lifts between 10 and 40 ft
with submergences of 19, 24, and 29 ft are shown in Figures 19-21, respectively.
The acceptable filling times were based on the longitudinal hawser forces, and the
transverse hawser forces for all conditions observed were much less than 5 tons.
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Original design performancé data

The data from the curves shown in Figures 15-18 were used to develop the
performance curves shown in Figure 22. The curves provide the permissible fill-
ing times based on the 5-ton hawser force criterion and represent the fastest filling
times allowable to maintain hawser forces under 5 tons for the lift and submer-
gence conditions shown.

For example, if a project were being designed for a 20-ft lift with a 24-ft
submergence, the fastest filling time determined from the ILCS model data is
8.1 min. As mentioned earlier, this range of lift and submergence values covers
those on the Upper Mississippi and Ohio Rivers.

The procedures described above were also used to obtain the performance
guidance during emptying operations. The guidance developed for emptying is
shown in Figure 23. The ILCS design is slower during emptying compared with
filling for lifts up to 30 ft. For a 20-ft lift and 24-ft submergence, the fastest
emptying time to maintain hawser forces of 5 tons or less was determined to be
8.7 min.

The performance of the ILCS compared with conventional side-port filling
systems is illustrated in Figure 24. The ILCS is slightly slower compared with the
1,270-ft side port, but the overall performance is considered acceptable due to the
reduction in construction costs.

Design Guidance for the Hydraulic
Features of the ILCS

The main hydraulic features of the ILCS are the longitudinal culverts, ports,
port extensions, and wall baffles. The following general guidance is provided
based on information obtained from reviewing previous studies and the research
results.

Port size

The port size was developed based on the smallest practical sizes currently in
use for Corps projects with bottom lateral systems. The individual port cross-
sectional area, Ap;, for these laterals generally varied from 4 to 5 f’. An important
consideration for port sizing is the ability for a person to move in and out of it for
maintenance or inspection purposes. A practical port size was found to be 4.4 ft*
(1.25 ft wide by 3.5 ft high), based on Stockstill (1998). This port size performed
well for the McAlpine Lock models, the Marmet Lock model, and the ILCS
research model. It should be noted that the lock widths proposed for all these
projects was 110 ft.
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Port spacing

Port spacing, along with port size, determines the distribution of turbulence
within the chamber. For a given lock width, there is a combination of port size
and spacing that will result in an optimum distribution of turbulence. The port
spacing design was developed based on an analysis of turbulent momentum jets
(Albertson et al. 1950). The location of the culverts within the chamber affects the
diffusion of the jets discharging from the ports. Good flow conditions within the
lock chamber are achieved when the ports are spread out appropriately and when
an even distribution of port flow along the culvert occurs. From a construction
standpoint, the best location for two culverts within the chamber is placing the
center of the culverts near the quarter points (width-wise) of the chamber. This
puts the normal distance from the center of the culvert to the wall of the chamber
at about 27.5 ft and the distance from the center of one culvert to the center of the
other at 55.0 fi.

Based on the discharge and geometry of the McAlpine culverts, which were
designed for a lift of 37 ft, the port spacing determined by Stockstill (1998) from
an idealized analysis of the jet was 12.2 ft, and a port spacing of 12 ft was used in
the study. This spacing provided minimal interaction between the jets and favor-
able flow conditions in the chamber. Lower lifts and smaller culverts will have
farther spacing due to port location along the culvert. Experimental results of
chamber performance indicate that the ports should be located within the middle
half of the chamber and with half the total number of ports centered about the
third points lengthwise of the chamber. Ports on the inside wall of one culvert
should be staggered with respect to the ports on the inside wall of the other cul-
vert. The ports on the outside wall of the culvert should be located at the same
longitudinal station as the inside ports. The location of the port groupings in the
chamber will affect the port spacing as discussed below.

Number and location of ports

The number of ports for the two-culvert ILCS system depends on the culvert
area. Similar to the side-port design, it is recommended that the sum of the port
areas in the culvert (sum of 4,,) be equal to or slightly less than the area of the
culvert, A.. The ratio of port area to culvert area for the ILCS should be between
0.95 and 0.97. This helps provide flow control at the ports for normal valve
operations (no long valve times) and helps reduce flow instabilities. The location
of the ports was studied extensively by Stockstill (1998). The recommended
location was to begin the upstream port grouping at a distance equivalent to
0.26 the pintle-to-pintle length of the chamber from the upstream pintle. The
downstream port in the downstream port grouping should also be located between
0.26 and 0.27 the pintle-to-pintle length of the chamber from the downstream
pintle. The center of the port grouping should be located at nearly the one-third
points of the chamber. It is important that the distance from the upstream port to
the downstream port be approximately 50 percent of the chamber length to avoid
high hawsers for a tow that does not occupy the entire chamber. A schematic
showing a plan view of the port location is presented as Figure 25.
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Port extensions

Port extensions are needed on the upstream port group to help direct the jet
flow normal to the lock center line. This helps distribute the flow more evenly in
the upper end of the chamber and provides a more balanced flow over the entire
length of the chamber. Inertia effects during filling cause flow to enter the cham-
ber through the most upstream ports and then to start through the other ports in the
downstream direction. The water surface in the upper end of the chamber rises,
resulting in a tilt. An oscillation sets up, which continues throughout the filling
operation. Near peak flows and shortly thereafter, there is a tendency for more
flow to discharge from the downstream ports, resulting in another tilt in the water
surface, this time with the downstream water surface higher than the upstream
water surface. This tilt develops more slowly and occurs over a longer period of
time. This tilt can result in upstream flow near the water surface. The goal for a
filling and emptying design is to balance the distribution of flow into the chamber
and avoid excessive tilts in the water surface and strong surface currents.

Port extensions on the upper ports direct the flow toward the center of the
chamber, as illustrated in Figure 26, which helps distribute the flow more evenly.
The thickness of the ports in the ILCS design depends on the culvert thickness,
which is generally less than desired for good hydraulic performance. A port thick-
ness of 8 ft (minimum) is recommended for the side-port system. The culvert wall
thickness for an ILCS will probably be from 2 to 3 ft, and this thickness will cause
the jet to have more of a downstream component than desired during filling
(Figure 26). A 9-ft-long port extension was used for the McAlpine Lock, and an
8.5-ft-thick port extension was used for the Marmet Lock. A port extension length
equal to 0.5 times the culvert width (C,) is recommended. A schematic of the port
extensions is shown in Figures 27 and 28.

Roof overhang

A roof overhang of at least 2 ft is recommended for the ports, and this length
is included in the port extension length for the ports requiring extensions. The jets
discharging from ports located at the top of the culvert have a vertical component,
which the roof overhang helps to redirect laterally. A sectional view of the roof
overhang is shown as Figure 27.

Wall baffles

A wall baffle is recommended for the ILCS to help diffuse the port jets near
the lock floor and prevent flow from upwelling along the lock walls. The baffle is
simply a horizontal shelf that protrudes out from the lock walls in the areas where
the ports are located, as shown in Figures 27 and 28. A 3-ft-wide baffle is recom-
mended and should be placed at the same elevation as the top of the longitudinal
culvert.
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Figure 27. Cross-sectional view of ILCS ports
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Figure 28. Partial view of port extensions

Vertical baffles underneath the wall baffles are also recommended to aid in
energy dissipation and to enhance the structural support of the wall baffle. The
vertical baffles should be located along the lock walls halfway between the ports
and at a distance of one half the port spacing upstream and downstream from the
first and last ports, respectively.

Valve operations

Acceptable filling times and chamber performance for the ILCS have been
achieved with normal valve speeds from 4 to 8 min. The performance of the ILCS
is sensitive to valve operation, and valve speeds faster than 4 min are not desir-
able, especially for lifts over 15 fi. Fast valve operations cause excessive down-
stream hawsers shortly after the valve is opened, indicating the water surface in
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the upper end of the lock is higher than that in the lower end. This is inherent in a
longitudinal culvert system where flow enters at the upstream end of the chamber.
Single-valve operations require very slow speeds to avoid excessive hawser
forces. During single-valve operations, the barges in the chamber will be pushed
to the side of the chamber where the valve is in operation. Valve type and opera-
tion will be discussed in more detail in subsequent sections.

Modified ILCS Operation and Design

Single-valve experiments

Experiments were performed to evaluate the chamber performance with
single-valve operations. This operation would occur if one of the culvert filling
valves is out of operation or if maintenance in the culvert is necessary. Results
from a typical experiment to determine the lock performance during filling with a
37-ft lift and left (10-min) single-valve operation are shown in Figure 29. The fill
curve indicates the lock reached the upper pool elevation in 21.3 min. The maxi-
mum downstream longitudinal hawser was 2.7 tons and was measured at 1 min
into the filling operation; the maximum upstream longitudinal hawser was
2.2 tons, measured at 9 min into the filling operation. The maximum transverse
hawser forces ranged from 0.7 ton, measured on the upstream right side of the
chamber, to 8.0 tons on the upstream left side of the chamber. The filling time was
21.3 min.

In most Corps filling and emptying systems, it is common for the transverse
hawser forces to be less than the longitudinal hawser forces during normal valve
operations. The hawser results shown in Figure 29 indicate that the transverse
hawser forces are larger than the longitudinal hawser forces for single-valve oper-
ations. The time-histories showed that the left transverse forces, both upstream
and downstream, were the largest hawser forces with the left single-valve opera-
tion. The maximum upstream left transverse hawser force, 8.0 tons, was higher
than the maximum left downstream hawser force, 4.6 tons. Filling characteristics
observed with the right single valve were similar to the left side. The transverse
hawser forces were larger than the longitudinal hawser forces, and the right trans-
verse forces were the highest hawser forces.

The experiments with single-valve operations indicated that the transverse
hawser forces were higher than the longitudinal forces, and slow valve speeds
were necessary to maintain hawser forces of 5 tons or less inside the chamber. The
transverse hawser forces on the side that the single valve operated were the high-
est forces measured during filling. The filling time required to maintain hawser
forces of 5 tons or less with the 37-ft lift and a single-valve operation was 24 min,
as interpolated from Figure 30. The valve opening time that produced a filling
time of 24 min was between 13 and 14 min. The filling time to maintain hawser
forces of 5 tons or less for normal valve operations with a 37-ft lift was 12.2 min,
and the valve opening time that produced a filling time of 12.2 min for normal
valves and a 37-ft lift was 7.5 min. The valve-opening and filling times that pro-
vided acceptable forces in the chamber with single-valve operations were
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approximately twice those required with normal valves. The controlling hawser
forces for acceptable chamber performance were the longitudinal hawser forces
with the normal valve operation and the transverse hawser forces with the single-
valve operations.

Intake designs

The effect of intake location on the ILCS was evaluated for three different
intake locations. The first location was with the intake located at the face of the
upper miter gate sill, as shown in Figure 31. This intake consisted of four rectan-
gular intakes 12 ft wide by 12 ft high. Butterfly valves of the same dimensions
were mounted on the face of the intakes to control flow. This design was desig-
nated the sill intake. The second location represented more conventional intake
designs, as shown in Figure 32. The left intake was face-mounted along the left
lock wall, and the right intake was mounted in a semicircular fashion in the right
approach wall. This design was designated the normal intake design. The third
location was similar to the normal intakes in plan view; however, both intakes
were lowered 16 ft. This design was designated the Type 2 intake design.

Typical time-histories of the three intake designs with a 37-ft lift and 5-min
valve operation are shown in Figures 33-35. Essentially no difference was
observed in the filling characteristics between the normal and Type 2 intake
designs. The maximum downstream longitudinal hawser forces occurred at just
less than 1 min into the filling operation, and the maximum transverse hawser
forces occurred at about the same time the valves were fully open. The filling
times were nearly the same (10.8 and 11 min), which suggests that the head losses
through the intakes for these two designs during filling were similar. The filling
time with the sill-mounted design was not much different from the other two
designs, indicating that the total head losses from the upper pool to the manifold
throughout the filling cycle were nearly the same.

The hawser forces (both longitudinal and transverse) were lower with the sill-
mounted design than the other two designs. This was due more to the valve char-
acteristics than the intake location. The valve-opening curves used for these
experiments are shown in Figure 36. The reverse tainter valve opens faster at the
initial portion of the operation than the butterfly valve. With a fast normal valve
operation, the amount of flow entering the chamber caused high downstream
longitudinal hawser forces. Due to the geometry of the butterfly valve, the amount
of flow entering the chamber during the initial portion was less than the reverse
tainter valve, and resulted in the lower longitudinal hawser forces shown in
Figure 33.

The average maximum hawser forces determined for the three intake locations
and the 37-ft lift are shown in Figure 37. The results from the experiments indi-
cate that with the intakes at the upper miter sill with butterfly valves, the filling
time to maintain hawser forces of 5 tons or less was faster (10.8 min) compared
with the normal and Type 2 intakes (12 min). These filling times were determined
from the downstream longitudinal hawser forces. This difference was attributed

Chapter 5 Laboratory Model Experiments and Results
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more to the valve type than the intake location. The intake type, transitions from
the intake to the filling culverts, length of culvert upstream from the manifold, and
the type valve selected for the filling operations were considered more important
factors in the performance of the ILCS than the intake location.

No inner ports

Experiments were performed with the inside ports of the culverts blocked.
This reduced the port-to-culvert area ratio from the recommended value of 0.97
to 0.485. These experiments were conducted to gain insight into unusual modifi-
cations to the ILCS and were performed since the culverts were going to be mod-
ified for additional testing. Typical time-histories with a 5-min normal valve
opening are shown in Figure 38 for the 37-ft lift. The maximum longitudinal
hawser forces with the 5-min valve were 8.7 tons upstream and 5.4 tons down-
stream. The transverse hawser forces ranged from 4.0 tons on the downstream
right side to 8 tons on the downstream left side. The maximum transverse hawser
forces measured with 5- and 8-min valve operations were just as large as the lon-
gitudinal hawser forces. The average maximum hawser forces measured with the
37-ft lift and 4-, 5-, and 8-min valve operations are shown in Figure 39. The fill-
ing time required to maintain hawser forces of 5 tons or less, determined from
Figure 39, was 18.1 min and was determined from the average maximum trans-
verse hawser forces.

The experiments demonstrated the importance of introducing the flow into the
chamber as uniformly as possible. The high transverse forces and the pronounced
period of upstream longitudinal hawser forces (see Figure 38) are indications of
poorly distributed flow in the chamber during filling,

Hawser forces during emptying with no inner ports were much less than those
observed during filling. Average maximum hawser forces measured during
emptying with the 37-ft lift and 4-, 5-, and 8-min valve operations are shown in
Figure 40. The longitudinal hawser forces were higher than the transverse hawser
forces. The emptying time to maintain hawser forces of 5 tons or less was 15 min.

Ports on top of culvert

Chamber performance experiments were performed with circular ports located
on the roof of the culverts. The port-to-culvert ratio was maintained at 1.0 by
placing 163 ports (1.5-ft diam) in the top of the culvert, as shown in Figure 41.
Typical time-histories of the filling characteristics with a 5-min valve operation
are shown in Figure 42. The longitudinal hawser forces react similarly to the
normal ILCS design for the first few minutes into the filling operation. Initially, a
small upstream longitudinal hawser force occurred, followed by a larger down-
stream hawser force, which was then followed by an upstream hawser force much
larger than the previous one. After this upstream force was observed, the domi-
nant direction for the longitudinal hawser force was downstream and occurred for
all three valve operations tested.

Chapter 5 Laboratory Model Experiments and Results
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The maximum longitudinal hawser force observed was the downstream
hawser, and it occurred near the time the valve was completely open. At about this
same time, the transverse hawser forces reached maximum values. The higher
upstream transverse hawser forces were measured on the right side, and the higher
downstream transverse hawser forces were measured on the left side.

These filling characteristics demonstrate that, even though the ports were
located evenly in the middle of the chamber, the flow did not enter the chamber
uniformly. These experiments showed that with the ports on top of the culverts,
some additional baffling is necessary to help distribute the flow into the chamber.
The chamber water surface was rougher with this design. The average maximum
hawser forces during filling are shown in Figure 43. The filling time required to
maintain hawser forces of 5 tons or less was 15.7 min. This compares to 12.2 min
for the normal ILCS design.

The hawser forces determined from the experiments performed with modifica-
tions to the ports and culverts of the ILCS are compared with the normal ILCS
design in Figure 44. The magnitude of the hawser forces with the ports on top and
that of the normal ILCS design is similar for similar valve-opening operations.
The filling time with the ports on top is slower, even though the port-to-culvert
area ratios are similar. This indicates there is more head loss in the manifold with
the ports on top. This head loss could be reduced by rounding the edges of the
ports. The experiments with no inner ports indicated that the transverse hawser
forces were the forces controlling acceptable chamber performance. The high
transverse forces indicate a poor distribution of flow into the chamber.

Single culvert

Experiments were performed with a single-culvert design to evaluate chamber
performance. The initial single-culvert design is shown in Figure 45. The center of
the longitudinal culvert was located in the center of the chamber, and the port
design was the same as the original design. For the first experiments, no upstream
port extensions or upstream and downstream wall baffles were used. This design
was designated the Type 1 single culvert.

Time-histories of the hawser forces and filling curves are shown in Figure 46
for a 35-ft lift and 12-min valve operation. These results show that, even with this
slow valve speed, large upstream longitudinal hawser forces occurred. Large
transverse hawser forces were also measured with this design. The high transverse
forces on the same side of the chamber, both upstream and downstream, indicate a
strong side-to-side movement. A plot of the average maximum hawser forces
versus filling time for the 8- and 12-min valve operations is shown in Figure 47
for the Type 1 single culvert. The Types 2-4 single-culvert designs that will be
discussed in the following paragraphs are also included in Figure 47. These tests
indicated that additional baffling was needed with the Type 1 single culvert to
help distribute the flow more evenly in the chamber during filling.

Type 2 single culvert. The upstream port extensions and the upstream wall
baffles were placed in the chamber as shown in Figure 48. This design was the

Chapter 5 Laboratory Model Experiments and Results
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Type 2 single culvert. The average maximum hawser forces obtained with this
design are shown in Figure 47. The large upstream longitudinal hawser forces
were reduced to below 5 tons for the 8- and 12-min valve operations, indicating
that the port extensions definitely help distribute the flow longitudinally in the
chamber. The transverse forces were still much higher than desired.

Type 3 single culvert. The downstream wall baffles were added to the cham-
ber, and this design was designated the Type 3 single culvert. The average maxi-
mum hawser forces obtained with this design are shown in Figure 47. Neither the
longitudinal nor transverse hawser forces were changed significantly from the
Type 2 design. These results indicated that the wall baffles were not effective
when located on the lock walls with the single-culvert design.

Type 4 single culvert. The wall baffles located on the lock walls were placed
in the chamber as shown in Figure 49. The distance between the port and the lock
wall with the two-culvert normal ILCS (16.33 ft) was kept the same when the
baffle was moved with the Type 4 single culvert. The average maximum hawser
forces obtained with the Type 4 design and a 35-ft lift are shown in Figure 47.
The transverse forces were less than 5 tons, even with a 4-min valve. The baffles
spaced 16.33 ft laterally from the ports were necessary with the single-culvert
design to achieve desirable chamber performance. The strong side-to-side move-
ment of the barges in the chamber observed with the Type 1 single culvert was
significantly reduced.

Experiments were then conducted with the Type 4 single culvert and a 20-ft
lift. The average maximum hawser forces obtained with the Type 4 single culvert
and a 20-ft lift are shown in Figure 50. The filling time required to maintain
hawser forces of 5 tons or less was 13.5 min. This compares to 8.2 min with the
original two-culvert design ILCS, indicating that, with this lift, the operation with
a single culvert was approximately 65 percent slower.

Summary of experimental results with modified ILCS

The experiments conducted to study the effects of selected modifications to
the ILCS original design were performed to simulate changes that might be
required due to maintenance, site conditions, or construction costs. The single-
valve experiments showed what to expect if one of the culvert valves was out of
operation for a two-culvert, two-valve filling system. The single valve must be
operated at a speed of about one half the normal valve to maintain acceptable
hydraulic conditions in the chamber. The transverse hawser forces were the con-
trolling hawser forces for acceptable chamber performance with a single-valve
operation. The transverse hawser forces were highest on the side of the operating
valve.

The experiments to determine the effects of different intake locations revealed
that the intake type, transitions from the intake to the filling culverts, valve wells,
length of culvert upstream from the manifold, and the type valve selected for the
filling operations had more influence on chamber performance than the intake
location. The through-the-sill intake performed just as well as the conventional
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intakes located in the upper approach walls. In a two-culvert design, the chamber
performance is more balanced when the energy leve! is similar at the first port in
each culvert. The head losses between the intake and the first port need to be the
same.

The experiments with no inner ports were performed to simulate port dis-
charges from one side of the culvert. The results indicated that high hawser forces
both longitudinal and transverse were measured with the 4- and 5-min valve oper-
ations and even with an 8-min valve operation the longitudinal and transverse
hawser forces exceed 5 tons. These experimental results show that the flow in the
chamber needs to be introduced as uniformly as possible.

The experiments with the ports on top showed that the filling time that pro-
duced acceptable chamber performance was about 30 percent slower with the
ports on top of the culvert. The longitudinal hawser forces were predominantly in
the downstream direction, indicating a need for some type of baffling near the
upstream ports. Baffling placed on top of the culverts may require additional
excavation, which is not desirable.

The single-culvert experiments showed that the baffling placed along the
walls of the lock chamber with the original design ILCS was also required with
the single culvert to achieve better chamber performance. The spacing between
the ports and the baffling should be the same as the original two-culvert design.
With a 35-ft lift, the filling time required to achieve acceptable chamber perfor-
mance with normal valve operations (18.5 min) was 61 percent slower than the
original design ILCS. With a 20-ft lif}, the filling time required to achieve accept-
able chamber performance with normal valve operations (13.5 min) was 65 per-
cent slower than the original design ILCS.
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6 Numerical Model Results

The numerical model LOCKSIM (Schohl 1999) was used to compute filling
characteristics for the ILCS design. LOCKSIM is a numerical model developed at
the Tennessee Valley Authority’s (TVA’s) Engineering Laboratory for simulation
of one-dimensional transient filling and emptying flow in navigation locks.

The ILCS was modeled by using diverging manifolds to represent the ports.
Eight diverging manifolds were placed in each culvert—four in the upper half of
the chamber and four in the lower half of the chamber. A schematic representation
of the model used to compare the filling characteristics is shown as Figure 51.
Some of the loss coefficients were measured in the laboratory model while others,
such as the diverging manifold components, were obtained from recommended
values shown in the user’s manual.

A comparison of the filling characteristics with an 8-min normal valve is
shown in Figure 52. The filling curve from the model was determined by averag-
ing the water-surface depths at nodes CHU, CHM, and CHL during the filling
operation. These nodes represent the locations where the pressure measurements
were obtained in the ILCS model. The comparison indicates that the filling curves
are very similar. The longitudinal hawser forces were estimated from the model by
determining the water-surface slope between CHU and CHL. If the forces due to
drag and inertia are neglected and assuming barges in the lock chamber act as a
single rigid vessel and the vessel blockage area has no effect on the hawser forces,
the force required to hold a vessel in place is a function of water-surface slope
only. The weight of the barges multiplied by the water slope gives an approxima-

tion of the longitudinal hawser force. These are the forces shown in Figure 52 that -

are compared to the longitudinal hawser forces measured in the laboratory model.
The approximations of the longitudinal hawser forces from the water-surface
slope are slightly higher than the magnitude of the forces measured in the labora-
tory model, and the forces tend to dampen quicker in the laboratory model. Since
LOCKSIM is a one-dimensional flow model and the computation of the hawser
forces from the model results in an approximation, the results should be viewed
cautiously. The comparison does indicate the model is useful as a screening tool
for eliminating some of the design alternatives. Additional research to take into
account the hydrodynamics and the vessel effects during filling is needed to
improve the computations.
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7 Design Procedure for the
ILCS Lock

Design Guidance

Based on the results determined from the ILCS research, the following guid-
ance is offered for the initial design of an ILCS lock.

Operation times

Filling and emptying times should be established based on an economic anal-
ysis for the navigation project. Once these times are known, the culvert sizes can
be determined.

Initial culvert size

A simple method to estimate the initial culvert size is to first determine an
acceptable maximum velocity for the culverts. For the low-head projects (less than
40 ft), this velocity is usually between 20 and 25 fps. A culvert size is selected,
and the maximum discharge during the filling or emptying operation is computed.
Typically, the average discharge during the filling operation is one half of the
maximum discharge. Using the average discharge, the filling time can be deter-
mined knowing the volume of the lock chamber to be filled. The culvert size that
produces an acceptable filling time is determined from this process.

Ports

The port size, location, and spacing should be determined next. This informa-
tion can be determined from the guidance provided in Chapter 5 of this report.

LOCKSIM

The numerical model can then be developed to determine a better estimate of
the filling and emptying times. Guidance for developing the model is provided in
Chapter 6 and in Schohl (1999). If the results are unacceptable, the culvert size

Chapter 7 Design Procedures for the ILCS Lock



may need to be modified and another LOCKSIM model developed until
acceptable results are obtained.

If unusual structural components, valving, or culvert geometry is required, a

laboratory model is recommended to determine the chamber performance and
verify the final design.

Example ILCS Lock Design

The following example problem (based on the Upper Mississippi River
Project) is provided to illustrate the design steps summarized above.

Given—lock dimensions:
Pintle-to-pintle length = 1,270 ft
Lock width = 110 ft wide
Design lift =15 ft
Target filling time = 9 min
Maximum culvert velocity = 20 fps
Initial culvert size = A (ft)
Maximum culvert discharge = 20*A (cfs)
Average culvert discharge = 10*A (cfs)
Area of lock chamber = 140,240 fi* (approximately)

Volume of chamber to be filled = 2,103,600 ft’

Culvert size A to produce 9-min filling time with two culverts
=2,103,600 ft’ / (540 sec * 20 fps) = 194.8 ft%, or 14 ft by 14 ft

Using a culvert size of 14 ft by 14 ft, the port area for the culvert will be
196 f * 0.97 = 190

Number of ports should be 190 ft*/4.4 ft* = 43 (say 44 ports)

This will give a port-to-culvert area ratio of (44 * 4.4 9)/196 f* = 0.99;
should be okay.

Each culvert should contain 44 ports (22 in each half of the chamber,
with 11 on each side of the culvert).
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Based on the guidance given in Figure 25, the port spacing should be about

17.78 ft from center to center. A plan layout of the culverts and ports is
shown in Figure 53.

A LOCKSIM mode! could now be developed (from this information and that
provided in Chapter 6) to verify the filling time.

Chapter 7 Design Procedures for the ILCS Lock
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8 Summary and Conclusions

The investigation of the In-chamber Longitudinal Culvert System showed that
this type of filling and emptying system was feasible from a hydraulic perfor-
mance point of view. The system is adaptable to the innovative float-in and in-the-
wet construction techniques. The system was not quite as efficient as the side-port
filling and emptying system. However, the reduction in construction costs makes
the system favorable over the project life. The system requires slightly deeper
excavation where the culverts are located in the chamber and is probably better
suited for rock foundations. Geotechnical evaluation is important to determine
uplift pressures on the culverts for the various site conditions.

Guidance for designing the ILCS components is provided in Chapter 5, and a
procedure for evaluating the initial design numerically is provided in Chapter 6.
Chapter 7 suggests a method to develop the initial design and provides a design
example. The unique hydraulic components of the ILCS design are the port exten-
sions and the wall baffles. These were necessary to provide a uniform distribution
of flow into the chamber during filling and to assist in the energy dissipation.

A two-culvert system performed better than the single-culvert system, since it
provided a better distribution of flow into the chamber and allowed faster opera-
tion times. The tests with single-valve operations and unusual port configurations
and locations revealed that the lateral flow distribution during filling was undesir-
able and resulted in high transverse hawser forces on barges moored in the cham-
ber. The filling and emptying times for acceptable chamber performance for lifts
between 10 and 40 ft and submergences between 19 and 29 ft are shown in Fig-
ures 22 and 23, respectively. The recommended submergence is 19 ft. Less sub-
mergence will not allow the desired energy dissipation. Increased submergence
allows for slightly faster operation times.

The following conclusions were determined from this study of the ILCS:

a. A two-culvert system is preferable.
The center of the culverts should be on the width-wise quarter points.

c.  Conventional intakes as well as through-the-sill intakes perform well with
the ILCS.

d. Valve-operating characteristics are important to the chamber performance.

Chapter8 Summary and Conclusions



e. Acceptable chamber performance was achieved with normal valve
operations between 4 and 8 min for the lift and submergence conditions
evaluated.

£ Ports located on the sides of the longitudinal culvert are preferable to
those on the top.

g A culvert roof overhang is beneficial for ports located at the top on the
sides of the culvert. It helps redirect the jet for ports without port
extensions.

% Port extensions are beneficial on the upstream ports. Port extensions also
train the jets issuing from these ports in a direction normal to the longi-
tudinal culvert and improve the longitudinal distribution of flow along the
length of the chamber.

i. The port-to-culvert area ratio should be about 0.97 to help with flow
control.

j. The port spacing in each manifold should be staggered.

k. Two groups of ports should be centered about the one-third points of the
lock length.

I The ports should be located so that the distance from the most upstream
port to the most downstream port is about half of the pintle-to-pintle
length of the lock.

m. Wall baffles are beneficial because they diffuse the port jets at the lock
chamber floor.
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