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ABSTRACT

Pseudospectral Collocation Methods for the Direct

Transcription of Optimal Control Problems

by

Jesse A. Pietz

This thesis is concerned with the study of pseudospectral discretizations of optimal

control problems governed by ordinary differential equations and with their applica-

tion to the solution of the International Space Station (ISS) momentum dumping

problem.

Pseudospectral methods are used to transcribe a given optimal control problem

into a nonlinear programming problem. Adjoint estimates are presented and analyzed

that provide approximations of the original adjoint variables using Lagrange multi-

pliers corresponding to the discretized optimal control problem. These adjoint esti-

mations are derived for a broad class of pseudospectral discretizations and generalize

the previously known adjoint estimation procedure for the Legendre pseudospectral

discretization. The error between the desired solution to the infinite dimensional opti-

mal control problem and the solution computed using pseudospectral collocation and

nonlinear programming is estimated for linear-quadratic optimal control problems.

Numerical results are given for both linear-quadratic and nonlinear optimal control

problems.

The Legendre pseudospectral method is applied to formulations of the ISS momen-

tum dumping problem. Computed solutions are verified through simulations using

adaptive higher order integration of the system dynamics.
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Chapter 1

Introduction

Optimal control problems (OCPs) governed by ordinary differential equations arise in

a wide range of applications. One particular field where these optimal control prob-

lems are abundant is the aerospace industry. Aerospace engineers have been solving

optimal control problems for trajectory optimization, spacecraft attitude control, jet

thruster control, missile guidance and many other applications for decades. Methods

for obtaining these solutions are almost as copious as the applications themselves.

A traditional approach to solving OCPs entails forming the optimality conditions

directly, using the calculus of variations and Pontryagin’s maximum principle [42],

and then solving the resulting equations to obtain the solution to the optimal control

problem. This is known as the indirect approach for solving OCPs. The references

[9, 23, 41, 42, 45, 46] present just a small sample of the work that discusses or applies

indirect methods for the solution of optimal control problems. In rare cases the

solution can be obtained analytically from these optimality conditions, but in general,

approximation methods are used to solve the problem numerically. The optimality

conditions of these problems generally take the form of differential algebraic equations

(DAEs) or boundary value problems (BVPs). The approximate solution to the OCP

can be obtained by using a BVP solver. Many such methods exist. Perhaps the most

popular methods are multiple shooting and collocation. The reader is encouraged to

consult [3] for more information on these and other numerical methods for solvings

BVPs.

Alternatively, one can discretize the governing ODEs and the integral terms in the

objective functional or constraint functions and thereby replace the infinite dimen-
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sional optimal control problem by a large nonlinear programming problem (NLP).

This is known as the direct or direct transcription approach for solving OCPs. This

approach is typically easier to use, especially for OCPs with state equality or inequal-

ity constraints. Direct methods have been used, e.g., in [6, 7, 16, 44].

This thesis focuses on a class of direct transcription methods in which the govern-

ing ODEs are discretized using pseudospectral collocation methods. Such methods

have attracted attention [15, 14, 17, 18, 20, 43] because of their alleged superior

approximation properties and, in the case of Legendre pseudospectral method, the

availability of a so-called adjoint map or estimate. However, most of the existing

work in this area is numerical with incomplete, informal discussions of mathematical

properties of pseudospectral discretizations for optimal control problems.

The goals of this thesis are to improve the mathematical understanding of pseu-

dospectral discretizations for optimal control problems and to apply these methods

to the solution of optimal control problems with significance to the aerospace com-

munity. In particular, we provide a systematic derivation of adjoint estimates for all

pseudospectral discretizations that use Gauss-Lobatto points and we present rigorous

results on the error between the solution computed using pseudospectral discretiza-

tions and the exact solution of the underlying infinite dimensional OCP.

Adjoint estimates provide approximations to the adjoint variables (also known

as costate variables) corresponding to the optimal solution of the OCP in terms of

the Lagrange multipliers corresponding to the NLP derived using the direct tran-

scription method. Such approximations are important for error analysis, mesh refine-

ment strategies, and real-time optimization using the method of neighboring extrema.

Among the few results on adjoint estimates are [17, 26, 27]. In the context of pseu-

dospectral discretizations, only [17] have provided an adjoint estimation procedure for

the particular case of Legendre pseudospectral discretizations. This thesis provides

a systematic derivation of adjoint estimates for all Gauss-Lobatto pseudospectral

discretizations, which as a special case includes the result of [17]. The work on ad-
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joint estimation provides the foundation towards a rigorous convergence analysis that

provides estimates for the error between the solution of the infinite dimensional opti-

mal control problem and associated adjoint as well as the solution of the discretized

optimal control problem and associated Lagrange multipliers. Such error estimates

are not available in the existing literature. This thesis derives error estimates for

linear-quadratic optimal control problems, and presents numerical results for both

linear-quadratic and nonlinear optimal control example problems.

In the second part of this thesis, a class of pseudospectral direct transcription

methods are applied to a series of optimal control problems derived from the International

Space Station (ISS) momentum dumping problem. This is an attitude control prob-

lem where the attitude of the station is manipulated by a controller which uses control

moment gyroscopes (CMGs). The issue here is that the CMGs have a maximum mo-

mentum threshold which cannot be exceeded. Doing so will result in loss of control of

the vehicle. The goal is to find a control trajectory that will maneuver the attitude of

the ISS from some initial state to some final state with minimal total momentum on

the CMGs, obeying the system dynamics and never exceeding the momentum thresh-

old along the way. What makes this problem difficult is the severe nonlinearity of the

problem and the possible discrete nature of the controls. Related spacecraft control

problems are discussed in [1, 5, 8, 13, 36, 38, 43, 45]. This thesis includes a study of

the numerical solution to the ISS momentum dumping problem which demonstrates

the utility of pseudospectral methods for the direct transcription of optimal control

problems.

This thesis is organized as follows. Chapter 2 states the general form of the

optimal control problems that will be considered, their corresponding optimality con-

ditions and provides some examples problems that will be used throughout this the-

sis. Chapter 3 states the optimality conditions of the discretized OCP, describes

how adjoint estimates are obtained and explores some of the consequences of using

pseudospectral methods in the direct transcription of optimal control problems. The
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application of the Legendre pseudospectral method to the space station momentum

dumping problem is addressed in Chapter 4. Finally, Chapter 5 contains remarks,

conclusions and suggestions for future work.



5

Chapter 2

Optimal Control Problems Governed by Ordinary

Differential Equations

This chapter provides a description of the optimal control problems that are consid-

ered in this thesis. In addition, first order necessary optimality conditions are stated

for the infinite dimensional problem and reformulations of optimal control problems

are presented. This material is well known and will be used in subsequent chapters.

Much of the material developed in Chapter 3 can be applied to OCPs that are of a

more general form than (2.1). However (2.1) covers the applications considered in this

thesis and is sufficient to describe the theoretical aspects of pseudospectral methods

as used to transcribe optimal control problems.

2.1 Problem Statement and Necessary Optimality Conditions

In this thesis we consider optimal control problems of the following class

min m(y(tf )) +

∫ tf

t0

`(y(t), u(t))dt, (2.1a)

s.t.

d

dt
y(t) = f(y(t), u(t)), (2.1b)

y(t0) = ȳ0, (2.1c)

b(y(tf )) = 0. (2.1d)

Here y : [t0, tf ] 7→ Rny are the state variables and u : [t0, tf ] 7→ Rnu are the control

variables to be determined. The functions m : Rny 7→ R, ` : Rny × Rnu 7→ R,

f : Rny ×Rnu 7→ Rny and b : Rny 7→ Rnb as well as ȳ0 ∈ Rny are given. The conditions
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(2.1b) and (2.1c) are called the state equations. The problem (2.1) is said to be in

Bolza form.

We seek solutions u ∈ Lnu
∞ [t0, tf ] and y ∈ W

ny

1,∞[t0, tf ]. The space L∞[t0, tf ] is

the space of all Lebesgue-measurable functions with the property that their absolute

value is essentially bounded on [t0, tf ] and Lnu
∞ [t0, tf ] = (L∞[t0, tf ])

nu , while

W
ny

1,∞[t0, tf ] :=
{
y : [t0, tf ] 7→ Rny

∣∣∣ y is absolutely continuous,
d

dt
y ∈ Lny

∞ [t0, tf ]
}
.

These spaces are equipped with norms

‖u‖Lnu∞ [t0,tf ] = ess sup
t0≤t≤tf

‖u(t)‖2

and

‖y‖W
ny
1,∞[t0,tf ] = max

{
‖y‖L

ny
∞ [t0,tf ], ‖

d

dt
y‖L

ny
∞ [t0,tf ]

}
.

The necessary optimality conditions for (2.1) can be obtained using a general-

ization of the well-known Lagrange multiplier theorem. We need a constraint qual-

ification to ensure the surjectivity of the linearized constraints (2.1b)–(2.1d) at the

solution y∗, u∗. For (2.1) this can be guaranteed by assuming that the Jacobian

by(y∗(tf )) has full row rank and that the linearized state equations

d

dt
y(t) = fy(y∗(t), u∗(t))

Ty(t) + fu(y∗(t), u∗(t))
Tu(t),

almost everywhere on [t0, tf ],

y(t0) = ȳ0, (2.2)

are controllable. Controllable means that for every yf ∈ Rny there exists a control

u ∈ Lnu
∞ [t0, tf ] such that the solution y ∈ W ny

1,∞[t0, tf ] of (2.2) satisfies y(tf ) = yf .

The following theorem is proven in [33, Sec. 5.4].

Theorem 2.1 Let the optimal control problem (2.1) be given. Let the

functions m, `, f and b be continuously partially differentiable. Let u∗ ∈

Lnu
∞ [t0, tf ] be an optimal control and let y∗ ∈ W ny

1,∞[t0, tf ] be the resulting

state. Let the matrix by(y∗(tf )) have full row rank and let the linearized
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system (2.2) be controllable. Then there exists a function p∗ ∈ W ny

1,∞[t0, tf ]

and vectors (q0)∗ ∈ Rny and (qf )∗ ∈ Rnb such that the boundary value

problem

d

dt
y∗(t) = f(y∗(t), u∗(t)),

y∗(t0) = ȳ0, (2.3a)

b(y∗(tf )) = 0,

d

dt
p∗(t) = −fy(y∗(t), u∗(t))

Tp∗(t)− `y(y∗(t), u∗(t)), (2.3b)

(adjoint equation)

p∗(t0) = −(q0)∗,

p∗(tf ) = my(y∗(tf )) + by(y∗(tf ))
T (qf )∗, (2.3c)

(transversality conditions)

0 = fu(y∗(t), u∗(t))
Tp∗(t) + `u(y∗(t), u∗(t)), (2.3d)

(local Pontryagin maximum principle)

are satisfied almost everywhere on [t0, tf ].

The conditions (2.3b),(2.3c) and (2.3d) are obtained by computing the Fréchet

derivatives of the Lagrangian function

L(y, u, p, q0, qf ) = m(y(tf )) + b(y(tf ))
T qf + (y(t0)− ȳ0)

T q0

+

∫ tf

t0

`(y(t), u(t)) + p(t)T [f(y(t), u(t))− d

dt
y(t)] dt, (2.4)

with respect to y and u and setting these Fréchet derivatives to zero.
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2.2 Bolza and Mayer Forms of the Optimal Control Problem

For most of this thesis, optimal control problems of the following Mayer form are

considered,

min m(y(tf )), (2.5a)

s.t.

d

dt
y(t) = f(y(t), u(t)), (2.5b)

y(t0) = ȳ0, (2.5c)

b(y(tf )) = 0. (2.5d)

This is no restriction, since every problem (2.1) in Bolza form can be converted into

an equivalent problem in Mayer form. This will be discussed shortly.

The optimality conditions for the Mayer form optimal control problem can be

obtained as an application of Theorem 2.1. They are stated here for later reference.

They consist of the boundary value problem

d
dt
y(t) = f(y(t), u(t)),

y(t0) = ȳ0,

b(y(tf )) = 0,

(2.6a)

the adjoint equation

d

dt
p(t) = −fy(y(t), u(t))

Tp(t), (2.6b)

with transversality conditions

p(t0) = −q0,

p(tf ) = my(y(tf )) + by(y(tf ))
T qf , (2.6c)

and the gradient equation

fu(y(t), u(t))
Tp(t) = 0. (2.6d)
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One can transform a Bolza problem into a Mayer problem by moving the integral

term in (2.1) into the differential equation by defining an auxiliary variable

z(t) =
∫ t

t0
`(y(τ), u(τ))dτ. (2.7)

If (2.7) is differentiated with respect to t the following initial value problem (IVP) for

z arises

d

dt
z(t) = `(y(t), u(t)),

z(t0) = 0. (2.8)

The IVP (2.7) could then be inserted into the differential equation in (2.5b) along

with y. This leads to the following optimal control problem (2.9) in Mayer form,

which is equivalent to (2.1).

min m(y(tf )) + z(tf ), (2.9a)

s.t.

d

dt
y(t) = f(y(t), u(t)), (2.9b)

d

dt
z(t) = `(y(t), u(t)), (2.9c)

y(t0) = ȳ0, (2.9d)

z(t0) = 0, (2.9e)

b(y(tf )) = 0. (2.9f)

Application of Theorem 2.1 to (2.9) leads to the following necessary optimality

conditions. There exist adjoint variables p associated with (2.9b) and r associated

with (2.9c) as well as multipliers q0, qf associated with (2.9d), (2.9f) and multipliers

s0 associated with (2.9e) such that the constraints

d
dt
y(t) = f(y(t), u(t)),

y(t0) = ȳ0,

b(y(tf )) = 0,

(2.10a)
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and
d
dt
z(t) = `(y(t), u(t)),

z(t0) = 0,
(2.10b)

are satisfied, the adjoint equation

d

dt
p(t) = −fy(y(t), u(t))

Tp(t)− `y(y(t), u(t))r(t), (2.10c)

the auxiliary adjoint equation

d

dt
r(t) = 0, (2.10d)

the transversality conditions

p(t0) = −q0,

p(tf ) = my(y(tf )) + by(y(tf ))
T qf , (2.10e)

the auxiliary transversality conditions

r(t0) = −s0,

r(tf ) = 1, (2.10f)

are satisfied, and the gradient equation

fu(y(t), u(t))
Tp(t) + `u(y(t), u(t))r(t) = 0, (2.10g)

holds.

Note that (2.10d) and (2.10f) imply r(t) = 1. The necessary optimality conditions

for (2.1) and (2.9) are equivalent.

The conversion of the problem (2.1) in Bolza form into a problem (2.9) in Mayer

form is also important from a numerical point of view. For an efficient numerical

solution it is important that the discretization of the state equation (2.1b) is consistent

with the discretization of the integral in (2.1a). This is not straightforward for many

high order discretization methods. This difficulty is avoided when (2.1) is transformed

into (2.9), since only a system of differential equations has to be discretized. The
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discretization of the z-component of this system implicitly defines a discretization of

the integral term in (2.1a) that is consistent with the discretization of (2.1b). For

additional discussions see, e.g., [7].

2.3 Prototypical Examples

Throughout this thesis two example problems are used to demonstrate various prop-

erties associated with solving optimal control problems using a pseudospectral direct

transcription method. These problems are stated here so that they may be referred

to elsewhere.

Example 2.2 (Linear-Quadratic Optimal Control Problem) This prob-

lem was adapted from [27]. Consider the following linear-quadratic opti-

mal control problem

min
∫ 1

0
y(t)2 + 1

2
u(t)2 dt,

s.t.

d
dt
y(t) = 1

2
y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

(2.11)

Simple evaluation of the necessary conditions (2.3) leads to the following

exact solution for the state

y∗(t) =
2e3t + e3

e3t/2(2 + e3)
, t ∈ [0, 1], (2.12a)

the control

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
, t ∈ [0, 1], (2.12b)

and the adjoint

p∗(t) = − 2(e3t − e3)

e3t/2(2 + e3)
, t ∈ [0, 1]. (2.12c)
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The problem (2.11) can be equivalently written as a problem in Mayer

from:

min y2(1),

s.t.

d
dt
y1(t) = 1

2
y1(t) + u(t), t ∈ [0, 1],

d
dt
y2(t) = y1(t)

2 + 1
2
u(t)2, t ∈ [0, 1],

y1(0) = 1,

y2(0) = 0.

(2.13)

Evaluation of the necessary conditions (2.6) leads to the following exact

solution for the state

(y1)∗(t) =
2e3t + e3

e3t/2(2 + e3)
, t ∈ [0, 1], (2.14a)

the auxiliary state

(y2)∗(t) =
e−3t(2e6t + (e6 − 2)e3t)− e6

(2 + e3)2
, t ∈ [0, 1], (2.14b)

the control

u∗(t) =
2(e3t − e3)

e3t/2(2 + e3)
, t ∈ [0, 1], (2.14c)

the adjoint

(p1)∗(t) = − 2(e3t − e3)

e3t/2(2 + e3)
, t ∈ [0, 1], (2.14d)

and the auxiliary adjoint

(p2)∗(t) = 1, t ∈ [0, 1]. (2.14e)

Example 2.3 (Orbit Transfer Optimal Control Problem) This example

is adapted from [8]. This problem is frequently used in the context of

pseudospectral direct transcription methods for optimal control problems,

see [15, 14, 17]. Consider the following orbit transfer optimal control

problem of finding an optimal trajectory and thrust steering vector to
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transfer a spacecraft from an initial orbit to a final orbit in a fixed amount

of time. This problem is stated as

min −1
2
y2(50)2 − 1

2
y3(50)2 + y1(50)−1,

s.t.

d
dt
y1(t) = y2(t), t ∈ [0, 50],

d
dt
y2(t) = y3(t)2

y1(t)
− 1

y1(t)2
+ 0.01 sin(u(t)), t ∈ [0, 50],

d
dt
y3(t) = −y2(t)y3(t)

y1(t)
+ 0.01 cos(u(t)), t ∈ [0, 50],

y1(0) = 1.1,

y2(0) = 0,

y3(0) = 1/
√

1.1,

(2.15)

where y1 is the state which describes radial distance, y2 is the state which

describes the radial component of velocity, y3 is the state which describes

the tangential component of velocity, and u is the controllable thrust

steering angle. It should be noted that this problem has no analytical

solution, however numerical solutions to this problem can be found in

[15, 14, 17].
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Chapter 3

Direct Transcription of Optimal Control Problems

In this chapter we describe and analyze pseudospectral collocation discretization of

the optimal control problem (2.5). Such direct transcription methods, especially

Chebyshev collocation and Legendre collocation methods have received significant

attention recently [14, 16, 17, 19, 29, 30]. One reason for this is the alleged fast con-

vergence of the solutions of discretized optimal control problem to the solution of the

underlying infinite dimensional control problem. Another reason for the large interest

in direct transcription methods based on Legendre collocation is the availability of

an adjoint estimate that relates the Lagrange multipliers of the discretized problem

to the adjoint variables p evaluated at collocation points.

While there is numerical evidence that shows fast convergence of the solutions

of discretized optimal control problem to the solution of the underlying infinite di-

mensional control problem, the theoretical foundation is largely missing. The papers

[14, 17, 19] cite estimates in [10, 25] for errors between a function (its derivatives)

and its interpolant (derivatives of its interpolant). Such a result may be used to

establish consistency results as one step in the argument that pseudospectral collo-

cation are fast converging schemes for the solution of the dynamics for a given fixed

control. But these results are not sufficient to establish convergence of the solution

of the discretized optimal control problem to the solution of the underlying infinite

dimensional control problem. In fact, [27] contains simple examples using Runge-

Kutta discretizations of optimal control problems, which show that the solution of

the discretized optimal control problem may converge to the solution of the underly-
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ing infinite dimensional control problem with a slower rate than one might expect, or

may not converge at all.

The goal of this section is to obtain a better understanding of pseudospectral col-

location discretizations of the optimal control problem (2.5), in particular to obtain

a better theoretical foundation for their observed fast convergence. An important

step towards this goal is obtaining estimates for the error between the true solution

to the OCP and the computed solution to the OCP. To obtain these error estimates,

the derivation of an adjoint estimate that relates the Lagrange multipliers of the dis-

cretized problem to the adjoint variables p evaluated at collocation points is necessary.

Such adjoint estimates are also important because the adjoint variables p are used,

e.g., in the method of neighboring extrema for real-time optimal control. Despite the

theoretical and practical importance of adjoint estimates, there are few results for

high order discretizations. We will derive, in a systematic way, adjoint estimates for

a large class of pseudospectral collocation discretizations of the optimal control prob-

lem (2.5). The adjoint estimation procedure of [17] is a special case of our treatment.

We also derive some important estimates for the error between the solution of the

discretized optimal control problem and the solution of the underlying infinite dimen-

sional control problem for linear quadratic problems. For a linear quadratic optimal

control problem we investigate stability results numerically. Finally, we comment on

the discretization of optimal control problems in Bolza form using pseudospectral

collocation discretizations.

Since the reference interval [t0, tf ] can always be transformed to the standard

interval [−1, 1] using the change of variables

t 7→ −1 + 2(t− t0)/(tf − t0),

it is assumed that

[t0, tf ] = [−1, 1]

throughout this chapter, except for Section 3.6.
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3.1 Pseudospectral Discretization of the Optimal Control Problem

For the numerical solution of the optimal control problem we discretize (2.5) using a

pseudospectral collocation method with collocation points

c0 = −1, c1, . . . , cN−1 ∈ (−1, 1), cN = 1.

The state y is approximated by the polynomial

yN(t) =
N∑

j=0

yjψj(t), (3.1)

where

ψj(t) =
N∏

l=1
l6=j

t− cl
cj − cl

, (3.2)

j = 0, . . . , N , is the jth Lagrange polynomial. Clearly,

yN(cj) = yj, j = 0, . . . , N.

Furthermore,

d

dt
yN(cj) =

N∑
k=0

yk
d

dt
ψk(cj)

and 
d
dt
yN(c0)

...

d
dt
yN(cN)

 = D


y0

...

yN

 , (3.3)

where D = D⊗Iny ∈ Rny(N+1)×ny(N+1) is the Kronecker product between the so-called

differentiation matrix D ∈ R(N+1)×(N+1) with entries

Djk =
d

dt
ψk(cj), j, k = 1, . . . , N + 1, (3.4)

and the ny×ny identity matrix Iny . Recall that the Kronecker product of two matrices

A ∈ Rm×n and B ∈ Rk×l is defined as

A⊗B =


A11B · · · A1nB

...
...

Am1B · · · AmnB

 ∈ Rmk×nl.
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To discretize the state equation (2.5b), we substitute y by yN given by (3.1) and

require that the ODE (2.5b) holds at the collocation points c0, . . . , cN . Furthermore,

we insert (3.1) into the objective function (2.5a), the initial condition (2.5c), and the

final time condition (2.5d). This leads to the following pseudospectral collocation

discretization of (2.5).

min m(yN), (3.5a)

s.t.

D


y0

...

yN

 =


f(y0, u0)

...

f(yN , uN)

 , (3.5b)

y0 = ȳ0, (3.5c)

b(yN) = 0. (3.5d)

It is important to note that, following [14, 17, 19] and others, we include a col-

location condition at c0 as well as the initial condition as constraints in (3.5). This

is different from other direct transcription methods based on collocation, where only

the collocation conditions at c1, . . . , cN as well as the initial condition are included as

constraints (see e.g., [4, 7, 44]). This also seems different from the way pseudospectral

methods are used to discretize boundary value problems, where one also eliminates

collocation conditions at c0, cN , depending on the type of boundary conditions spec-

ified (see, e.g., [21, 48, 49]).

With the inclusion of the collocation condition at c0 it is, in general, not possible

to solve the ny(N+2) discretized state equations (3.5b), (3.5c) for the ny(N+1) states

y0, . . . , yN given controls u0, . . . , uN , even if the infinite dimensional state equation

(2.5b), (2.5c) has a unique solution y for given control u. This is quite different

from the collocation discretizations [4, 7, 44], where the discretized state equation

consists of ny(N+1) equations and where, under suitable assumptions, the discretized

state equation has a unique solution y0, . . . , yN , given controls u0, . . . , uN . Hence the
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discretization (3.5b), (3.5c) of the state equation (2.5b), (2.5c) only makes sense in

the context of optimal control, but not for simulations.

The choice of including the collocation condition at c0 leads to nice adjoint esti-

mation properties, which will be discussed in Section 3.3. On the other hand, it is

not obvious that the linearization of the constraints (3.5b)–(3.5d) has full row rank,

even if the constraint qualification in Theorem 2.1 holds for the infinite dimensional

problem. It is possible to check this condition a priori for problems with linear con-

straints, but for problems with nonlinear constraints, it is typical to assume that this

constraint qualification holds and then verify it after computing the estimated solu-

tion, see [47]. In the next example we examine the numerical rank of the linearized

constraints for the discretization of the two problems stated in Examples 2.13 and

2.15.

Example 3.1 In this example, the numerical rank of the constraint

Jacobian in (3.5), evaluated at the computed solutions and using Legendre

pseudospectral collocation, are investigated for the problems in Examples

2.13 and 2.15. The numerical rank is investigated by inspecting the ratio

between smallest singular value and largest singular value of the constraint

Jacobian. Figure 3.1 depicts the ratio of the minimum singular value of

the constraint Jacobian divided by the maximum singular of the constraint

Jacobian value for different N . While for fixed N the constraint Jacobians

have full rank, Figure 3.1 indicates that one should expect numerical rank

deficiency for large N .

We conclude this section by stating a few facts about the two pseudospectral col-

location methods that have been used for the direct transcription of optimal control

problems [14, 17, 19]. Details about the computation of collocation points, cor-

responding differentiation matrices and quadrature weights may be found, e.g., in

[10, 21, 34, 49].
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Figure 3.1: Ratio Between Minimum Singular Value and Maximum
Singular Value of the Constraint Jacobian at the Solution for
Various N . - Left: Linear-Quadratic OCP in Mayer Form -
Right: Orbit Transfer OCP

Example 3.2 (Chebyshev-Gauss-Lobatto Collocation) The Chebyshev-

Gauss-Lobatto collocation points are

cj = − cos

(
jπ

N

)
, j = 0, . . . , N. (3.6)

The cj’s are the extrema of the Chebyshev polynomials TN(t) in [−1, 1].

The cj’s are also the roots of (1− t2) d
dt
TN(t) in [−1, 1]. The corresponding

differentiation matrix is given by

Djk =



− ξk(−1)j+k

ξj(ck−cj)
j 6= k,

−2N2+1
6

j = k = 0,

2N2+1
6

j = k = N,

1
2

ck

(1−c2k)
otherwise,

(3.7)

where ξ0 = ξN = 2 and ξ1 = . . . = ξN−1 = 1.

Note that the points cj = − cos(jπ/N) are defined so that −1 = c0 <

c1 < . . . < cN−1 < cp = 1. In the literature, one often finds the definition
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cj = + cos(jπ/p). In the latter case the signs in the differentiation matrix

given in (3.7) need to be reversed.

With the weighting function

g(t) = 1/
√

1− t2,

and the quadrature weights

wj =

∫ 1

−1

g(t)ψj(t)dt =


π/N 1 ≤ j ≤ N − 1,

π/(2N) j = 0, N,

(3.8)

the quadrature formula∫ 1

−1

g(t)h(t)dt ≈
N∑

j=0

wjh(cj), (3.9)

is exact of degree 2N − 1, i.e.,∫ 1

−1

g(t)h(t)dt =
N∑

j=0

wjh(cj) ∀h ∈ P2N−1([−1, 1]).

Example 3.3 (Legendre-Gauss-Lobatto Collocation) The Legendre-Gauss-

Lobatto collocation points cj, j = 0, . . . , N , are the roots of (1−t2) d
dt
LN(t),

where LN(t) is the Legendre polynomial of degree N . The differentiation

matrix for the Legendre-Gauss-Lobatto collocation is given by

Djk =



LN (cj)

LN (ck)
1

cj−ck
j 6= k,

−N(N+1)
4

j = k = 0,

N(N+1)
4

j = k = N,

0 otherwise.

(3.10)

The weighting function is

g(t) = 1,

and the quadrature weights are

wj =

∫ 1

−1

ψj(t)dt =
2

N(N + 1)

1

[LN(cj)]2
. (3.11)

The quadrature formula (3.9) is exact of degree 2N − 1.
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3.2 Optimality Conditions for the Discretized Optimal Control

Problem

The Lagrangian corresponding to (3.5) is given by

L(y,u, λ̃, µ0, µN) = m(yN)

+
N∑

j=0

λ̃T
j

[
f(yj, uj)−

N∑
k=0

Dj,kyk

]
+µT

0 (y0 − ȳ0) + µT
Nb(yN), (3.12)

where

y = (yT
0 , . . . , y

T
N)T ,

u = (uT
0 , . . . , u

T
N)T ,

and

λ̃ = (λ̃T
0 , . . . , λ̃

T
N)T .

Differentiating the Lagrangian (3.12) with respect to the yj’s and setting the deriva-

tives to zero gives the discrete adjoint equations

fy(y0, u0)
T λ̃0 −

∑N
k=0Dk,0λ̃k = −µ0,

fy(yj, uj)
T λ̃j −

∑N
k=0Dk,jλ̃k = 0, j = 1, . . . , N − 1,

fy(yN , uN)T λ̃N −
∑N

k=0Dk,N λ̃k = −by(yN)TµN −my(yN).

(3.13a)

Differentiating the Lagrangian (3.12) with respect to the uj’s and setting the deriva-

tives to zero gives the discrete gradient equations

fu(yj, uj)
T λ̃j = 0, j = 0, . . . , N. (3.13b)

For completeness we also state the discrete state constraints

f(yj, uj)−
∑N

k=0Dj,kyk = 0, j = 0, . . . , N,

y0 − ȳ0 = 0,

b(yN) = 0,

(3.13c)
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which are obtained by differentiating the Lagrangian (3.12) with respect to λ̃j, j =

0, . . . , N , µ0 and µN and setting the derivatives to zero.

Note that the discrete adjoint equations (3.13a) consist only of ny(N+1) equations

for the ny(N + 2) +nb Lagrange multipliers. Therefore the discrete adjoint equations

alone do not specify the Lagrange multipliers, given uj, yj, j = 0, . . . , N . This is a

consequence of the fact that we include both the collocation condition at c0 and the

initial conditions as constraints into our discretized optimal control problem (3.5) and

therefore have ny(N +2) discrete state equations (3.5b), (3.5c) for ny(N +1) discrete

state variables yj, j = 0, . . . , N .

3.3 Pseudospectral Method Adjoint Estimation Properties

As stated earlier, a goal of this thesis is to derive an estimate for the error between

the solution of the optimal control problem (2.5) and the solution of the discretized

problem (3.5). One step towards this goal is to identify a suitable adjoint estimation

procedure, i.e., to compare the Lagrange multipliers λ̃j and the adjoints p evaluated

at the collocation points cj. Such adjoint estimates are not only useful for the error

estimate described above. For many applications it is important to know an approx-

imation of the adjoint variables p of the infinite dimensional control problem (2.5).

Adjoint information is, for example, important to adaptive mesh refinement for opti-

mal control problems. It is also important in real-time optimization of optimal control

problems using neighboring extrema [12, 35, 52]. Despite its importance, there are

few results about adjoint estimation. Adjoint estimates for optimal control problems

discretized using Runge-Kutta methods are discussed in [27]. An adjoint estimation

procedure for the Legendre-Gauss-Lobatto pseudospectral discretization of optimal

control problems is presented in [17]. In this section, we will derive adjoint estimates

for a broad class of pseudospectral discretization of optimal control problems. Our

class of adjoint estimates includes those presented in [17] as a special case and is

derived in a systematic way.
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3.3.1 Integration by Parts Approach

Let c0, . . . , cN be the collocation points, let g : [−1, 1] → R be a positive weighting

function and let w0, . . . , wN be positive weights such that the quadrature formula∫ 1

−1

g(t)h(t)dt ≈
N∑

j=0

wjh(cj), (3.14)

is exact of degree 2N − 1, i.e.,∫ 1

−1

g(t)h(t)dt =
N∑

j=0

wjh(cj) ∀h ∈ P2N−1([−1, 1]). (3.15)

Instead of (3.12) consider the weighted Lagrangian

Lw(y,u,λ, µ0, µN) = m(yN) + (y0 − ȳ0)
Tµ0 + b(yN)TµN

+
N∑

j=0

wjλ
T
j

[
f(yj, uj)−

N∑
k=0

Djkyk

]
. (3.16)

Clearly, if λ̃j = wjλj, then L(y,u, λ̃, µ0, µN) = Lw(y,u,λ, µ0, µN). We define the

polynomials

yN(t) =
N∑

k=0

ykψk(t),

uN(t) =
N∑

k=0

ukψk(t),

and

λN(t) =
N∑

k=0

λkψk(t).

Note that since

d

dt
yN(t) =

N∑
k=0

yk
d

dt
ψk(t) ∈ PN−1([−1, 1]),

and λN(t) ∈ PN([−1, 1]), the equation (3.15) implies that

N∑
j=0

wjλ
T
j

N∑
k=0

Djkyk =
N∑

j=0

wj(λ
N(cj))

T d

dt
yN(cj)

=

∫ 1

−1

g(t)(λN(t))T d

dt
yN(t)dt.
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Furthermore, (3.14) yields the approximation

N∑
j=0

wjλ
T
j f(yj, uj) =

N∑
j=0

wj(λ
N(cj))

Tf(yN(cj), u
N(cj))

≈
∫ 1

−1

g(t)(λN(t))Tf(yN(t), uN(t))dt.

Hence, one may interpret

Lw(y,u,λ, µ0, µN) ≈ m(yN(1)) + (yN(−1)− ȳ0)
Tµ0 + b(yN(1))TµN

+

∫ 1

−1

g(t)(λN(t))T
[ d
dt
yN(t)− f(yN(t), uN(t))

]
dt. (3.17)

This suggests the following relation between the Lagrange multipliers λ̃j and the

weighted Lagrange multipliers λj of the direct transcription and the adjoint variables

p

1

wj

λ̃j = λj ≈
p(cj)

g(cj)
. (3.18)

The relation (3.18) means that λ̃j/wj = λj should be identified with p(cj)/g(cj). In

general λ̃j/wj = λj is not identical to p(cj)/g(cj). However, in Section 3.4 we will

give conditions that guarantee

1

wj

λ̃j →
p(cj)

g(cj)
,

as N →∞.

The necessary optimality conditions associated with (3.16), obtained by differen-

tiating the weighted Lagrangian with respect to each variable and setting the result

to zero are given by the weighted-discrete adjoint equations

fy(y0, u0)
Tw0λ0 −

∑N
k=0Dk0wkλk = −µ0,

fy(yj, uj)
Twjλj −

∑N
k=0Dkjwkλk = 0, j = 1, . . . , N − 1,

fy(yN , uN)TwNλN −
∑N

k=0DkNwkλk = −by(yN)TµN −my(yN),

(3.19a)

by the weighted-discrete gradient equations

fu(yj, uj)
Twjλj = 0, j = 0, . . . , N, (3.19b)
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and by the weighted-discrete boundary value problem

wj

(
f(yj, uj)−

∑N
k=0Djkyk

)
= 0, j = 0, . . . , N,

y0 − ȳ0 = 0,

b(yN) = 0.

(3.19c)

Note that these optimality conditions (3.19) can also be obtained from (3.13) by

substituting λ̃j = wjλj in (3.13).

The following notation will be useful. For a given function f : [−1, 1] → R we

define its interpolating polynomial

PN(f)(t) =
N∑

i=0

f(ci)ψi(t). (3.20)

Note that

PN(f)(ci) = f(ci), i = 0, . . . , N,

and

d

dt
PN(f)(ci) =

N∑
j=0

Dijf(cj), i = 0, . . . , N. (3.21)

The following lemma provides a discrete integration by parts formula.

Lemma 3.1 Let z0, . . . , zN be arbitrary and define zN(t) =
∑N

i=0 ziψi(t).

For any continuously differentiable function p : [−1, 1] → R the equation

N∑
i=0

wi

g(ci)
p(ci)

N∑
j=0

Dijzj

= p(cN)zN − p(c0)z0 −
N∑

i=0

wi

g(ci)
zi

N∑
j=0

Dijp(cj)

+

∫ 1

−1

g(t)

(
PN(

p

g
)(t)− p(t)

g(t)

)
d

dt
zN(t)dt

+

∫ 1

−1

g(t)

(
PN(

zN

g
)(t)− zN(t)

g(t)

)
d

dt
PN(p)(t)dt

+

∫ 1

−1

g(t)
zN(t)

g(t)

d

dt
(PN(p)(t)− p(t)) dt (3.22)
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holds. Furthermore,

N∑
i=0

wi

g(ci)
p(ci)Di,k = p(cN)δkN − p(c0)δk0

− wk

g(ck)

N∑
i=0

Dkip(ci) + εk(N, p, g), (3.23)

k = 0, . . . , N , where δjk is the Kronecker delta and

εk(N, p, g) =

∫ 1

−1

g(t)

(
PN(

p

g
)(t)− p(t)

g(t)

)
d

dt
ψk(t)dt

+

∫ 1

−1

g(t)

(
PN(

ψk

g
)(t)− ψk(t)

g(t)

)
d

dt
PN(p)(t)dt

+

∫ 1

−1

g(t)
ψk(t)

g(t)

d

dt
(PN(p)(t)− p(t)) dt. (3.24)

Proof The definition of PN and equation (3.15) imply

N∑
i=0

wi
p(ci)

g(ci)

N∑
j=0

Dijzj

=

∫ 1

−1

g(t)PN(
p

g
)(t)

d

dt
zN(t)dt

=

∫ 1

−1

p(t)
d

dt
zN(t)dt+

∫ 1

−1

g(t)

(
PN(

p

g
)(t)− p(t)

g(t)

)
d

dt
zN(t)dt

= p(cN)zN − p(c0)z0 −
∫ 1

−1

d

dt
p(t) zN(t)dt

+

∫ 1

−1

g(t)

(
PN(

p

g
)(t)− p(t)

g(t)

)
d

dt
zN(t)dt.

Similarly,

N∑
i=0

wi
zi

g(ci)

N∑
j=0

Dijp(cj)

=

∫ 1

−1

g(t)PN(
zN

g
)(t)

d

dt
PN(p)(t)dt

=

∫ 1

−1

zN(t)
d

dt
p(t)dt+

∫ 1

−1

g(t)

(
PN(

zN

g
)(t)− zN(t)

g(t)

)
d

dt
PN(p)(t)dt

+

∫ 1

−1

g(t)
zN(t)

g(t)

d

dt
(PN(p)(t)− p(t)) dt.

These identities imply (3.22).
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Equation (3.23) follows from the choice zj = δjk.

Remark 3.4 If g = 1, then

PN(
zN

g
)− zN

g
= PN(zN)− zN = 0

for all z0, . . . , zN .

The properties of the Lagrange polynomials imply

PN(
ψk

g
)(t) =

N∑
i=0

ψk(ci)

g(ci)
ψi(t) =

ψk(t)

g(ck)
.

Remark 3.5 The integrals in (3.22) and (3.24) are well defined for

g(t) = 1 and g(t) = 1/
√

1− t2. This is obvious for g(t) = 1. In the other

case it can be seen from the following argument. Let g(t) = 1/
√

1− t2

and let h : [−1, 1] → R be a continuously differentiable function with

h(±1) = 0. By the l’Hospital rule,

lim
t→±1

h(t)g(t) = lim
t→±1

h(t)

1/g(t)

= lim
t→±1

h′(t)

−g′(t)/g2(t)

= lim
t→±1

h′(t)

√
1− t2

t
= 0.

Hence the integrands in (3.22) and (3.24) are bounded on [−1, 1] and

continuous on (−1, 1).

The next lemma shows that the adjoint variable p divided by the weighting func-

tion g satisfies the weighted-discrete adjoint equations (3.19a) with an error that is

dependent on the true adjoint p and on N .
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Lemma 3.2 If p satisfies the adjoint equation (2.6b), and q0 and qf

satisfy the transversality conditions (2.6c), then

fy(y(c0), u(c0))
Tw0

p(c0)

g(c0)
−

N∑
k=0

Dk0wk
p(ck)

g(ck)
= −q0 + ra

0(N, p, g),

fy(y(cj), u(cj))
Twj

p(cj)

g(cj)
−

N∑
k=0

Dkjwk
p(ck)

g(ck)
= ra

j (N, p, g),

j = 1, . . . , N − 1,

fy(y(cN), u(cN))TwN
p(cN)

g(cN)
−

N∑
k=0

DkNwk
p(ck)

g(ck)
= −by(y(cN))T qf −my(y(cN))

+ra
N(N, p, g),

(3.25)

where

ra
j (N, p, g) =

wj

g(cj)

[
d

dt
PN(p)(cj)−

d

dt
p(cj)

]
+ εj(N, p, g), (3.26)

with εj(N, p, g) defined in Lemma 3.1.

Proof Use equation (3.23) and the fact that p satisfies the adjoint equations (2.6b)

and transversality conditions (2.6c) to deduce

fy(y(cj), u(cj))
Twj

p(cj)

g(cj)
−

N∑
k=0

Dkjwk
p(ck)

g(ck)

=
wj

g(cj)

[
fy(y(cj), u(cj))

Tp(cj) +
N∑

k=0

Djkp(ck)

]
− p(cN)δjN + p(c0)δj0 + εj(N, p, g)

=
wj

g(cj)

[
d

dt
PN(p)(cj)−

d

dt
p(cj)

]
+

wj

g(cj)

[
d

dt
p(cj) + fy(cj, y(cj), u(cj))

Tp(cj)

]
−p(cN)δjN + p(c0)δj0 + εj(N, p, g)

=
wj

g(cj)

[
d

dt
PN(p)(cj)−

d

dt
p(cj)

]
−
[
my(y(1))

T + by(y(1))T qf
]
δjN + εj(N, p, g),

+q0 δj0

for j = 0, . . . , N .
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The residual terms (3.26) can be estimated using results from [10, 11]. To state

these results we need the norms

‖f‖2
g =

∫ 1

−1

g(t)f 2(t)dt, (3.27)

and

‖f‖2
s,g =

s∑
k=0

‖ d
k

dtk
f‖2

g. (3.28)

Theorem 3.6 i. Let c0, . . . , cN and w0, . . . , wN be the Chebyshev-

Gauss-Lobatto collocation points and corresponding quadrature weights

defined in Example 3.2 and g(t) = 1/
√

1− t2. If f : [−1, 1] → R is s-times

continuously differentiable, then there exists a constant C independent of

f and N such that

‖PN(f)− f‖0,g ≤ CN−s‖f‖s,g, (3.29)

‖PN(f)− f‖1,g ≤ CN2−s‖f‖s,g, (3.30)

and (
N∑

j=0

wj

(
d

dt
PN(f)(cj)−

d

dt
f(cj)

)2
)1/2

≤ CN2−s‖f‖s,g. (3.31)

ii. Let c0, . . . , cN and w0, . . . , wN be the Legendre-Gauss-Lobatto colloca-

tion points and corresponding quadrature weights defined in Example 3.3

and g(t) = 1. If f : [−1, 1] → R is s-times continuously differentiable,

then there exists a constant C independent of f and N such that

‖PN(f)− f‖0,1 ≤ CN1/2−s‖f‖s,1, (3.32)

‖PN(f)− f‖1,1 ≤ CN5/2−s‖f‖s,1, (3.33)

and (
N∑

j=0

wj

(
d

dt
PN(f)(cj)−

d

dt
f(cj)

)2
)1/2

≤ CN5/2−s‖f‖s,1. (3.34)
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Proof Estimates (3.29)–(3.31) can be found in [10, p.298]. Estimates (3.32)–(3.34)

can be found in [10, pp.293/294].

Corollary 3.1 i. Let c0, . . . , cN be the Chebyshev-Gauss-Lobatto col-

location points defined in Example 3.2 and g(t) = 1/
√

1− t2. If f :

[−1, 1] → R is s-times continuously differentiable, s > 2, and σ > 0 then

there exists a constant C independent of f and N such that(
N∑

j=0

(ra
j (N, f, g))

2

)1/2

≤ CN2−s

(∥∥∥∥fg
∥∥∥∥

s,g

+ ‖f‖s,g

)

+CN−σ‖f‖s,g max
0≤j≤N

∥∥∥∥ψj

g

∥∥∥∥
σ,g

. (3.35)

ii. Let c0, . . . , cN be the Legendre-Gauss-Lobatto collocation points de-

fined in Example 3.3 and g(t) = 1. If f : [−1, 1] → R is s-times continu-

ously differentiable, s > 5/2, then there exists a constant C independent

of f and N such that(
N∑

j=0

(ra
j (N, f, 1))2

)1/2

≤ CN5/2−s‖f‖s,1. (3.36)

Proof In this proof C > 0 denotes a generic constraint independent of N and f .

The Cauchy-Schwarz inequality yields

εj(N, f, g) ≤
∥∥∥∥PN(

f

g
)− f

g

∥∥∥∥
0,g

‖ψj‖1,g +

∥∥∥∥PN(
ψj

g
)− ψj

g

∥∥∥∥
0,g

‖PN(f)‖1,g

+

∥∥∥∥ψj

g

∥∥∥∥
0,g

‖PN(f)− f‖1,g.

Hence,

N∑
j=0

ε2j(N, f, g) ≤ 2

∥∥∥∥PN(
f

g
)− f

g

∥∥∥∥2

0,g

N∑
j=0

‖ψj‖2
1,g

+4
N∑

j=0

∥∥∥∥PN(
ψj

g
)− ψj

g

∥∥∥∥2

0,g

‖PN(f)‖2
1,g

+4‖PN(f)− f‖2
1,g

N∑
j=0

∥∥∥∥ψj

g

∥∥∥∥2

0,g

.
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There exists a C > 0 independent of N such that the inverse estimate

‖ d
dt
ψj‖0,g ≤ CN2‖ψj‖0,g

holds (see equations (9.4.4) and (9.5.4) in [10]). Furthermore, there exists a constant

C > 0 such that

‖ψj‖0,g ≤ C

(
N∑

i=0

wiψ
2
j (ci)

)1/2

= C
√
wj

(see equation (9.3.2) in [10]). Finally,∥∥∥∥ψj

g

∥∥∥∥
0,g

≤ ‖1/g‖∞‖ψj‖0,g ≤ ‖ψj‖0,g ≤ C
√
wj.

Using wj ∈ (0, 1) and
∑N

i=0wi = 1, the previous inequalities imply the existence of a

constant C independent of N such that

N∑
j=0

‖ψj‖2
1,g ≤ CN4,

N∑
j=0

∥∥∥∥ψj

g

∥∥∥∥2

0,g

≤ C.

Consequently, there exists C > 0 with

N∑
j=0

ε2j(N, f, g) ≤ CN4

∥∥∥∥PN(
f

g
)− f

g

∥∥∥∥2

0,g

+C‖PN(f)‖2
1,g

N∑
j=0

∥∥∥∥PN(
ψj

g
)− ψj

g

∥∥∥∥2

0,g

+C‖PN(f)− f‖2
1,g. (3.37)

If g = 1, then PN(ψj/g)− ψj/g = PN(ψj)− ψj = 0, j = 0, . . . , N .

The inequality ‖PN(f)‖1,g ≤ ‖f‖1,g + ‖PN(f)− f‖1,g and (3.30), (3.33) imply

‖PN(f)‖1,g ≤ C‖f‖s,g ∀N.

Using wj/g
2(cj) ≤ 1, we find that

N∑
j=0

w2
j

g2(cj)

[
d

dt
PN(f)(cj)−

d

dt
f(cj)

]2

≤
N∑

j=0

wj

g2(cj)
wj

[
d

dt
PN(f)(cj)−

d

dt
f(cj)

]2

,

≤
N∑

j=0

wj

[
d

dt
PN(f)(cj)−

d

dt
f(cj)

]2

. (3.38)



32

The desired estimates now follow from (3.37), (3.38) and Theorem 3.6.

The following consistency result is an immediate consequence of Lemma 3.2.

Lemma 3.3 (Consistency) Let p satisfy the adjoint equation (2.6b), let

q0 and qf satisfy the transversality conditions (2.6c), and let λj, j =

0, . . . , N , µ0, µN satisfy (3.19a). If fy(y(cj), u(cj)) = fy(yj, uj), j =

0, . . . , N , by(y(cN)) = by(yN) and my(y(cN)) = my(yN), then

fy(y(c0), u(c0))
Tw0

(
p(c0)

g(c0)
− λ0

)
−

N∑
k=0

Dk0wk

(
p(ck)

g(ck)
− λk

)
= −(q0 − µ0) + ra

0(N, p, g),

fy(y(cj), u(cj))
Twj

(
p(cj)

g(cj)
− λj

)
−

N∑
k=0

Dkjwk

(
p(ck)

g(ck)
− λk

)
= ra

j (N, p, g) j = 1, . . . , N − 1,

fy(y(cN), u(cN))TwN

(
p(cN)

g(cN)
− λN

)
−

N∑
k=0

DkNwk

(
p(ck)

g(ck)
− λk

)
= −by(y(cN))T (qf − µN)−my(y(cN)) + ra

N(N, p, g)

where ra
j (N, p, g), j = 0, . . . , N , is defined in (3.26).

Proof This result follows immediately by subtracting the weighted discrete adjoint

equations (3.19a) from (3.25).

Note that since the discretized optimal control problem (3.5) has ny(N + 2) + nb

constraints, but only ny(N + 1) state variables, there are only ny(N + 1) discrete

adjoint equations for the ny(N + 2) + nb Lagrange multipliers λ̃0, . . . , λ̃N , µ0, µN .

Hence, the Lagrange multipliers cannot be computed from (3.19a) alone. Therefore,

it not possible to use Lemma 3.3 and a stability result to obtain an estimate for the

error between p(cj)/g(cj) and λ̃j/wj. Such an estimate will be obtained in Section

3.4, where the entire optimality system is considered.

The following example illustrates the adjoint estimate (3.18) applied to the orbit

transfer problem, Example 2.3.
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Example 3.7 Consider the Example 2.3. We apply a Legendre and a

Chebyshev pseudospectral discretization, with N = 100, to this problem.

Figure 3.2 shows the Lagrange multipliers λ̃j as well as estimated adjoint

variables p(cj) ≈ g(cj)λ̃j/wj for each discretization. Since the weighting

function g(t) = 1/
√

1− t2 for the Chebyshev pseudospectral methods is

singular at ±1, the estimated adjoint g(cj)λ̃j/wj becomes less accurate as

t→ ±1.
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Figure 3.2: Lagrange Multipliers λ̃N and Estimated Adjoints gλN . Top
Left: Legendre Pseudospectral Lagrange Multipliers λ̃N .
Top Right: Chebyshev Pseudospectral Lagrange Multipliers
λ̃N . Mid Left: Legendre Pseudospectral Adjoint Estimates.
Mid Right: Chebyshev Pseudospectral Adjoint Estimates.
Bottom Middle: Error Between Legendre Adjoint Estimates
and Chebyshev Adjoint Estimates
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3.3.2 Weighting Matrix Minimization Approach

In the previous section, we have obtained the consistency result in Lemma 3.3 by

rewriting the adjoint equations (2.6b) evaluated at cj, j = 0, . . . , N , in the form of

the weighted discrete adjoint equations (3.19a) using the discrete integration by parts

formula (3.22).

Alternatively, one may consider an approach which is motivated by the adjoint

estimation procedure in [17]. In this approach, we identify

λ̃j

w̃j

≈ p(cj), j = 0, . . . , N, (3.39)

where w̃j, j = 0, . . . , N are suitably chosen weights to be determined below.

Let w̃j 6= 0, j = 0, . . . , N , and consider the identity

fy(yj, uj)
T λ̃j −

N∑
k=0

Dkjλ̃k

= fy(yj, uj)
T λ̃j −

N∑
k=0

w̃kDkj
λ̃k

w̃k

= fy(yj, uj)
T λ̃j −

N∑
k=0

(w̃kDkj + w̃jDjk)
λ̃k

w̃k

+
N∑

k=0

w̃jDjk
λ̃k

w̃k

= w̃j

[
fy(yj, uj)

T λ̃j

w̃j

+
N∑

k=0

Djk
λ̃k

w̃k

]
−

N∑
k=0

(w̃kDkj + w̃jDjk)
λ̃k

w̃k

. (3.40)

If

w̃kDkj + w̃jDjk =


−1 j = k = 0,

1 j = k = N,

0 otherwise,

(3.41)

then we will show below that λ̃j/w̃j and p(cj) are related. However, the identities

(3.41) cannot always be satisfied. Therefore, let E ∈ R(N+1)×(N+1) be the matrix with

entries

Ejk =


−1 j = k = 0,

1 j = k = N,

0 otherwise

(3.42)
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and choose the w̃j’s such that

N∑
j,k=0

(w̃kDkj + w̃jDjk − Ejk)
2 = ‖W̃D +DT W̃ − E‖2

F ,

is minimized, where W̃ = diag(w̃0, . . . , w̃N) and ‖ · ‖F is the Frobenius norm. The

problem

min
w̃0,...,w̃N

‖W̃D +DT W̃ − E‖2
F , (3.43)

is a linear least squares problem.

Remark 3.8 For any choice of collocation points for which the cor-

responding differentiation matrix D has a nonzero diagonal entry Djj,

j ∈ {1, . . . , N − 1}, there is no w̃j 6= 0 such that

w̃jDjj = −w̃jDjj. (3.44)

Consequently, in this case there are no w̃j 6= 0, j = 1, . . . , N−1, for which

W̃D +DT W̃ − E = 0.

The differentiation matrix (3.7) for the Chebyshev pseudospectral method,

satisfies Djj 6= 0, j = 0, . . . , N .

The differentiation matrix for the Legendre pseudospectral method, which uses

Legendre-Gauss-Lobatto points, satisfies D11 = . . . = DN−1,N−1 = 0 (see Example

3.3). In this case the solution of the linear least squares problem (3.43) is known and

satisfies (3.41).

Lemma 3.4 Let cj, j = 0, . . . , N , be the Legendre-Gauss-Lobatto points

and let D be the corresponding differentiation matrix (3.10). If

w̃j = wj =
2

N(N + 1)

1

L2
N(cj)

, (3.45)
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then

w̃jDjk = −w̃kDkj, j 6= k,

w̃jDjj = −w̃jDjj, j = 1, . . . , N − 1,

2D00 = −1/w̃0,

2DNN = 1/w̃N .

(3.46)

Proof This result can easily be verified, keeping in mind that LN(−1) = (−1)N ,

LN(1) = 1.

For the Chebyshev collocation the following lemma provides a suboptimal solution

of the linear least squares problem (3.43).

Lemma 3.5 Let

cj = − cos

(
jπ

N

)
, j = 0, . . . , N,

(Chebyshev-Gauss-Lobatto collocation points), let D be the correspond-

ing differentiation matrix (3.7). If

w̃j = wj =


π

2N
j = 0, N,

π
N

j = 1, . . . , N − 1,

(3.47)

then

w̃jDjk = −w̃kDkj, j 6= k,

2D00 = −1/w̃0,

2DNN = 1/w̃N .

(3.48)

The least squares norms ‖W̃D+DT W̃ −E‖2
F , using the weights defined by (3.47),

for different numbers of collocation points are shown in Figure 3.3.

For the Chebyshev collocation points the linear least squares problem (3.43) is

solved numerically. The least squares norms ‖W̃D + DT W̃ − E‖2
F , using optimal

weights, for different numbers of collocation points are shown in Figure 3.4. Figure 3.5
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Figure 3.5: min w̃i and max w̃i for different numbers of collocation points

shows that the optimal weights w̃j, j = 0, . . . , N , are positive. The element wise error

|W̃D +DT W̃ − E| for N = 64 is displayed in Figure 3.6.

If we define

εjk = w̃kDkj + w̃jDjk − Ejk, (3.49)

j, k = 0, . . . , N , and use the identities (3.40) in (3.13a), we obtain

w̃0

[
fy(y0, u0)

T λ̃0

w̃0
+
∑N

k=0D0k
λ̃k

w̃k

]
+ λ̃0

w̃0
+ µ0 =

∑N
k=0 ε0k

λ̃k

w̃k
,

w̃j

[
fy(, yj, uj)

T λ̃j

w̃j
+
∑N

k=0Djk
λ̃k

w̃k

]
=

∑N
k=0 εjk

λ̃k

w̃k
, j = 1, . . . , N − 1,

w̃N

[
fy(yN , uN)T λ̃N

w̃N
+
∑N

k=0Djk
λ̃k

w̃k

]
− λ̃N

w̃N
+my(yN) + by(yN)TµN =

∑N
k=0 εNk

λ̃k

w̃k
.

(3.50)
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Figure 3.6: Element Wise Error log10 |(W̃D+DT W̃ −E)ij,| for N = 64.

We use the adjoint equations (2.6b) evaluated at cj, j = 0, . . . , N , and the

transversality conditions (2.6c), to obtain

w̃0

[
fy(y(c0), u(c0))

Tp(c0) +
∑N

k=0D0kp(ck)
]

+p(c0) + q0 = w̃0

[
d
dt
PN(p)(c0)− d

dt
p(c0)

]
,

w̃j

[
fy(y(cj), u(cj))

Tp(cj) +
∑N

k=0Djkp(ck)
]

= w̃j

[
d
dt
PN(p)(cj)− d

dt
p(cj)

]
,

j = 1, . . . , N − 1,

w̃N

[
fy(y(cN), u(cN))Tp(cN) +

∑N
k=0Djkp(ck)

]
−p(cN) +my(y(cN)) + by(y(cN))T qf = w̃N

[
d
dt
PN(p)(cN)− d

dt
p(cN)

]
.

(3.51)

Recall the definition (3.20) of PN .

Subtracting (3.50) from (3.51) leads to the following result.

Lemma 3.6 (Consistency) Let p satisfy the adjoint equation (2.6b), let

q0 and qf satisfy the transversality conditions (2.6c), and let λj, j =

0, . . . , N , µ0, µN satisfy (3.19a). If fy(y(cj), u(cj)) = fy(yj, uj), j =
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0, . . . , N , by(y(cN)) = by(yN) and my(y(cN)) = my(yN), then

w̃0

[
fy(y(c0), u(c0))

T

(
p(c0)−

λ̃0

w̃0

)
+

N∑
k=0

D0k

(
p(ck)−

λ̃k

w̃k

)]

+

(
p(c0)−

λ̃0

w̃0

)
+ q0 − µ0

= w̃0

[
d

dt
PN(p)(c0)−

d

dt
p(c0)

]
−

N∑
k=0

ε0k
λ̃k

w̃k

,

w̃j

[
fy(y(cj), u(cj))

T

(
p(cj)−

λ̃j

w̃j

)
+

N∑
k=0

Djk

(
p(ck)−

λ̃k

w̃k

)]

= w̃j

[
d

dt
PN(p)(cj)−

d

dt
p(cj)

] N∑
k=0

εjk
λ̃k

w̃k

, j = 1, . . . , N − 1,

w̃N

[
fy(y(cN), u(cN))T

(
p(cN)− λ̃N

w̃N

)
+

N∑
k=0

Djk

(
p(ck)−

λ̃k

w̃k

)]

−

(
p(cN)− λ̃N

w̃N

)
+my(y(cN)) + by(y(cN))T (qf − µN)

= w̃N

[
d

dt
PN(p)(cN)− d

dt
p(cN)

]
−

N∑
k=0

εNk
λ̃k

w̃k

.

(3.52)

In the case of Legendre-Gauss-Lobatto points, cj, j = 0, . . . , N , the weights

w̃j = wj =
2

N(N + 1)

1

L2
N(cj)

,

are optimal and lead to

εjk = 0, j, k = 0, . . . , N.

In this case the adjoint estimates (3.18) and (3.39) are identical. Furthermore, in this

case the consistency results in Lemma 3.3 and in Lemma 3.6 are identical. However,

for the Chebyshev-Gauss-Lobatto points, Remark 3.8 shows that

|εjj| > 0, j = 0, . . . , N,
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and the numerical results displayed in Figure 3.4 indicate that

N∑
j=0

N∑
k=0

ε2jk → ε∗ ≈ 0.65 > 0 (N →∞).

Hence, in the case of Chebyshev-Gauss-Lobatto collocation, the adjoint estimate

(3.39) suggested by the weighting matrix approach is not useful, unlike the adjoint

estimate (3.18) derived earlier.

3.4 Discretization Error for the Optimal Control

With the adjoint estimation procedure in place, it is now possible to quantify the

error between the state

yN(t) =
N∑

i=0

yiψi(t),

control

uN(t) =
N∑

i=0

uiψi(t),

and adjoint

λN(t) =
N∑

i=0

λiψi(t),

computed as the optimal solution of the discretized optimal control problem (3.5) and

the solution y, u, and p of the infinite dimensional optimal control problem (2.5).

Recall that yj, uj, λj, j = 0, . . . , N and µ0, µN satisfy the weighted discrete adjoint

equations

fy(y0, u0)
Tw0λ0 −

∑N
k=0Dk,0wkλk = −µ0,

fy(yj, uj)
Twjλj −

∑N
k=0Dk,jwkλk = 0, j = 1, . . . , N − 1,

fy(yN , uN)TwNλN −
∑N

k=0Dk,Nwkλk = −by(yN)TµN −my(yN),

(3.53a)

the weighted-discrete gradient equations

fu(yj, uj)
Twjλj = 0, j = 0, . . . , N, (3.53b)
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and weighted-discretized state equations

wj

(
f(yj, uj)−

∑N
k=0Dj,kyk

)
= 0, j = 0, . . . , N,

y0 − ȳ0 = 0,

b(yN) = 0.

(3.53c)

If f is affine linear,

f(y(t), u(t)) = Fy(t)y(t) + Fu(t)u(t) + fa(t),

if m is quadratic,

m(y(tf )) = 1
2
y(tf )

TMy(tf ) +mT
l y(tf ) +ma,

and if b is affine linear

b(y(tf )) = By(tf ) + ba,

then the optimality conditions (3.53) can be written as

KNxN = bN , (3.54)

where

xN = (yT
0 , . . . , y

T
N , u

T
0 , . . . , u

T
N , λ

T
0 , . . . , λ

T
N , µ

T
0 , µ

T
N)T . (3.55)

Lemma 3.7 If y, u satisfy the state equations (2.5b)–(2.5d), then

wj

[
f(y(cj), u(cj))−

N∑
k=0

Djky(ck)
]

= rs
j(N, y, 1), j = 0, . . . , N,

y(c0)− ȳ0 = 0,

b(y(cN)) = 0, (3.56)

where

rs
j(N, p, g) =

wj

g(cj)

[
d

dt
PN(p)(cj)−

d

dt
p(cj)

]
. (3.57)

Proof This result follows from evaluating (2.5b) at the collocation points and using

the definition (3.20) of the interpolating polynomial.
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The following error results are shown for linear-quadratic optimal control prob-

lems. More analysis is needed to extend these results to nonlinear OCPs, however

that exceeds the scope of this thesis.

The following lemma provides a consistency result which will be used to derive an

error estimate for the optimal control for linear-quadratic OCPs.

Lemma 3.8 (Consistency for Linear-Quadratic OCPs) Let f be affine

linear,

f(y(t), u(t)) = Fy(t)y(t) + Fu(t)u(t) + fa(t),

let m be quadratic,

m(y(tf )) = 1
2
y(tf )

TMy(tf ) +mT
l y(tf ) +ma,

and let b be affine linear

b(y(tf )) = By(tf ) + ba.

If y, u, p, q0, qf are the solution of (3.5) and corresponding adjoint vari-

ables and Lagrange multipliers, and if y0, . . . , yN , u0, . . . , uN , λ0, . . . , λN ,

µ0, µN are the solution of the discretized optimal control problem (3.5)

and corresponding weighted Lagrange multipliers, then

Fy(c0)
Tw0

(
p(c0)

g(c0)
− λ0

)
−

N∑
k=0

Dk0wk

(
p(ck)

g(ck)
− λk

)
+(q0 − µ0) = ra

0(N, p, g),

Fy(cj)
Twj

(
p(cj)

g(cj)
− λj

)
−

N∑
k=0

Dkjwk

(
p(ck)

g(ck)
− λj

)
= ra

j (N, p, g),

j = 1, . . . , N − 1,

Fy(cN)TwN

(
p(cN)

g(cN)
− λN

)
−

N∑
k=0

DkNwk

(
p(ck)

g(ck)
− λN

)
+BT (qf − µN) +M(y(cN)− yN) = ra

N(N, p, g),

(3.58a)
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Fu(cj)
Twj

(
p(ck)

g(ck)
− λj

)
= 0, j = 0, . . . , N, (3.58b)

wj

[
Fy(cj)(y(cj)− yj) + Fu(cj)(u(cj)− uj)

−
N∑

k=0

Djk(y(ck)− yk)
]

= rs
j(N, y, 1),

j = 0, . . . , N,

y(c0)− y0 = 0,

B(y(cN)− yN) = 0, (3.58c)

where ra
j (N, y, g) and rs

j(N, y, g), j = 0, . . . , N , are defined as in (3.26)

and (3.57) respectively.

Proof The equations (3.58a) were derived in Lemma 3.3. The equations (3.58b)

are obtained by evaluating (2.6d) at cj and subtracting (3.53b). The equations (3.58c)

are obtained by subtracting (3.53c) from (3.56).

The first part of the following theorem is an immediate consequence of Lemma

3.8. parts two and three follows from Corollary 3.1.

Theorem 3.9 (Error for Linear-Quadratic OCPs) i. Let the assump-

tions of Lemma 3.8 be valid. If xN is defined as in (3.55) and if

x =

(
y(c0)

T , . . . , y(cN)T , u(c0)
T , . . . , u(cN)T ,

p(c0)
T

g(c0)
, . . . ,

p(cN)T

g(cN)
, qT

0 , q
T
f

)T

,

then

‖xN − x‖2 ≤ ‖K−1
N ‖2‖r(N, y, p, g)‖2, (3.59)
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where KN is the system matrix in (3.53), (3.54) and

r(N, y, p, g) =



ra
0(N, p, g)

...

ra
N(N, p, g)

0

...

0

rs
0(N, y, 1)

...

rs
N(N, y, 1)

0

0



. (3.60)

ii. Let c0, . . . , cN be the Chebyshev-Gauss-Lobatto collocation points de-

fined in Example 3.2 and g(t) = 1/
√

1− t2. If y and p are s-times con-

tinuously differentiable, s > 2, and σ > 0, then there exists a constant C

independent of y, p and N such that

‖r(N, y, p, g)‖2

≤ CN2−s (‖y‖s,g + ‖p‖s,g + ‖p/g‖s,g)

+CN−σ‖p‖s,g max
0≤j≤N

‖ψj/g‖σ,g. (3.61)

iii. Let c0, . . . , cN be the Legendre-Gauss-Lobatto collocation points de-

fined in Example 3.3 and g(t) = 1. If y and p are s-times continuously

differentiable, s > 5/2, then there exists a constant C independent of y,

p and N such that

‖r(N, y, p, 1)‖2 ≤ CN5/2−s (‖y‖s,1 + ‖p‖s,1) . (3.62)

To obtain an error estimate, one needs a stability result that guarantees the uni-

form boundedness of ‖K−1
N ‖2. Such a result is not yet known.
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Example 3.10 Consider Example 2.13. Applying a Legendre pseu-

dospectral discretization to this problem yields the results shown in Figure

3.7. The numerical results indicate that the solutions of the discretized

problem converge quickly to the solution of the infinite dimensional prob-

lem. The lower right plot in Figure 3.7 also shows that ‖K−1
N ‖2 increased

significantly as N increases.
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Example 3.11 Again consider Example 2.13. Now the Chebychev pseu-

dospectral discretization is applied to this problem. The numerical results

are shown in Figure 3.8. The error between the solutions of the discretized

problem and the solution of the infinite dimensional problem decays much

slower than in Example 3.10. Especially the error λN −p/g for given N is

much larger than in Example 3.10. We also observe that for the Chebychev

pseudospectral discretization ‖K−1
N ‖2 is larger and increases more rapidly

as N increases than in Example 3.10.

0 20 40 60 80 100
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

||y
N

(t
)−

y(
t)

|| l 2

N
0 20 40 60 80 100

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

||u
N

(t
)−

u(
t)

|| l 2

N

0 20 40 60 80 100
10

−2

10
−1

10
0

||λ
N

(t
)−

p(
t)

/g
(t

)|
| l 2

N
0 20 40 60 80 100

10
1

10
2

10
3

10
4

10
5

||K
−

1 ||

N

Figure 3.8: Error vs. N for Linear-Quadratic Optimal Control
Problem in Mayer Form Using Chebyshev Pseudospectral
Collocation- Top Left: `2 State Error - Top Right: `2 Control
Error - Bottom Left: `2 Adjoint Divided by Weighting
Function Error - Bottom Right: Norm of System Matrix
Inverse



49

From the numerical results in Examples 3.10 3.11 it is questionable whether one

can prove that ‖K−1
N ‖2 is bounded. The numerical results, however, indicate that

even if ‖K−1
N ‖2 is not bounded it grows slower than ‖r(N, y, p, g)‖2 decreases. In such

a case, convergence of the solutions to the discretized problems can be guaranteed,

but the rate of convergence is less than one would expect based on the consistency

results alone. It is also not known whether and, if so how, the growth in ‖K−1
N ‖2 is

related to the increasing condition number of the constraint Jacobians reported on in

Example 3.1.

3.5 Numerical Equivalence of Bolza and Mayer Forms

In this section the numerical difference between the Bolza form OCP (2.1) and the

Mayer form OCP (2.9) is addressed. In [17] the argument is made that for the

Legendre pseudospectral method the quadrature rule used to compute the integral

in (2.1a) is equivalent to the resulting auxiliary discrete adjoint equations in the

transformed problem (2.9). This would imply that for the Legendre pseudospectral

method, a direct transcription of either problem leads to the same numerical solution.

It will be shown that this assertion is not quite correct and that solving the discretized

OCP in Mayer and Bolza forms, respectively, yield results that merely converge to

the same solution as N →∞. Recall the Bolza form optimal control problem

min m(y(1)) +

∫ 1

−1

`(y(t), u(t))dt, (3.63a)

s.t.

d

dt
y(t) = f(y(t), u(t)), (3.63b)

y(−1) = ȳ0, (3.63c)

b(y(1)) = 0. (3.63d)
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Recall the transformed Mayer form OCP

min m(y(1)) + z(1), (3.64a)

s.t.

d

dt
y(t) = f(y(t), u(t)), (3.64b)

d

dt
z(t) = `(y(t), u(t)), (3.64c)

y(−1) = ȳ0, (3.64d)

z(−1) = 0, (3.64e)

b(y(1)) = 0. (3.64f)

To compare the discrete solutions to (3.63a) and (3.64) it is necessary to look

at the discrete optimality systems of each. The weighted discrete Lagrangian from

(3.16) for (3.64) can be written as

Lw(y, z,u,λ,γ, µ0, µN , ν0) = m(yN) + b(yN)TµN + (y0 − ȳ0)
Tµ0 + zT

0 ν0

+wjγj

[ N∑
j=0

`(yj, uj)−
N∑

k=0

Dj,kzk

]
+wjλ

T
j

[ N∑
j=0

f(yj, uj)−
N∑

k=0

Dj,kyk

]
. (3.65)

Differentiating (3.65) with respect to the yj’s and setting it equal to zero yields

fy(y0, u0)
Tw0λ0 + `y(y0, u0)w0γ0 −

∑N
k=0Dk,0wkλk = −µ0,

fy(yj, uj)
Twjλj + `y(yj, uj)wjγj −

∑N
k=0Dk,jwkλk = 0, j = 1, . . . , N − 1,

fy(yN , uN)TwNλN + `y(yN , uN)wNγN −
∑N

k=0Dk,Nwkλk = −by(yN)TµN −my(yN).

(3.66a)

Differentiating (3.65) with respect to the zj’s and setting it equal to zero yields

−
∑N

k=0Dk,0wkγk = −ν0,

−
∑N

k=0Dk,jwkγk = 0, j = 1, . . . , N.

(3.66b)
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Differentiating the Lagrangian (3.65) with respect to the uj’s and setting the deriva-

tives to zero gives

fu(yj, uj)
Twjλj + `u(yj, uj)wjγj = 0, j = 0, . . . , N. (3.66c)

Differentiating the Lagrangian (3.65) with respect to the λj’s, µ0 and µN and setting

the derivatives equal to zero

wj

[
f(yj, uj)−

∑N
k=0Dj,kyk

]
= 0, j = 0, . . . , N,

y0 − ȳ0 = 0,

b(yN) = 0.

(3.66d)

Differentiating the Lagrangian (3.65) with respect to the λj’s, µ0 and µN and setting

the derivatives equal to zero as well

wj

[
`(yj, uj)−

∑N
k=0Dj,kzk

]
= 0, j = 0, . . . , N,

z0 = 0.

(3.66e)

Alternatively, the OCP (3.63) can be solved directly in Bolza form. In this case

the integral term is approximated by∫ 1

−1

`(y(t), u(t))dt =

∫ 1

−1

g(t)

g(t)
`(y(t), u(t))dt

≈
N∑

j=0

wj

g(cj)
`(yj, uj). (3.67)

Using (3.67), the weighted discrete Lagrangian for (3.63) can be written as

Lw(y,u,λ, µ0, µN) = m(yN) +
N∑

j=0

wj

g(cj)
`(yj, uj)

+b(yN)TµN + (y0 − ȳ0)
Tµ0

+wjλ
T
j

[ N∑
j=0

f(yj, uj)−
N∑

k=0

Dj,kyk

]
. (3.68)



52

Differentiating (3.68) with respect to the yj’s and setting it equal to zero yields

fy(y0, u0)
Tw0λ0 + `y(y0, u0)

w0

g(c0)
−
∑N

k=0Dk,0wkλk = −µ0,

fy(yj, uj)
Twjλj + `y(yj, uj)

wj

g(cj)
−
∑N

k=0Dk,jwkλk = 0, j = 1, . . . , N − 1,

fy(yN , uN)TwNλN + `y(yN , uN)wN
wN

g(cN )
−
∑N

k=0Dk,Nwkλk = −by(yN)TµN −my(yN).

(3.69a)

Differentiating the Lagrangian (3.68) with respect to the uj’s and setting the deriva-

tives to zero gives

fu(yj, uj)
Twjλj + `u(yj, uj)

wj

g(cj)
= 0, j = 0, . . . , N. (3.69b)

Differentiating the Lagrangian (3.68) with respect to the λj’s, µ0 and µN and setting

the derivatives to zero gives

wj

[
f(yj, uj)−

∑N
k=0Dj,kyk

]
= 0, j = 0, . . . , N,

y0 − ȳ0 = 0,

b(yN) = 0.

(3.69c)

Lemma 3.9 Let yM , uM , λM , γM , µM
0 , µ

M
N and νM

0 be solutions to the

weighted discrete optimality system (3.65) corresponding to the trans-

formed Mayer form OCP (3.64). Let yB, uB, λB, µB
0 and µB

N be solutions

to the weighted discrete optimality system (3.68) corresponding to the

Bolza form OCP (3.63). We define

xM
N =

(
(yM

0 )T , . . . , (yM
N )T , (uM

0 )T , . . . , (uM
N )T , (λM

0 )T , . . . , (λM
N )T , (µM

0 )T , (µM
N )T

)T

,

and

xB
N =

(
(yB

0 )T , . . . , (yB
N)T , (uB

0 )T , . . . , (uB
N)T , (λB

0 )T , . . . , (λB
N)T , (µB

0 )T , (µB
N)T

)T

,

to be the numerical solutions to (3.64) and (3.63) respectively. If the

weighted discrete optimality systems (3.65) and (3.68) are sufficiently sta-

ble, then the error between these solutions, ‖xM
N − xB

N‖2, will converge to

zero as N →∞.
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Proof This result is easily verified using the adjoint estimation Lemma 3.2 and the

optimality conditions (2.10) in Section 2.2, γ → r(t)/g(t) = 1/g(t), where r(t) is the

true auxiliary adjoint.

It is evident that the systems (3.66) and (3.69) are not equivalent. This is because

the estimated auxiliary adjoint,

γN(t) =
N∑

k=0

γkψk(t),

will only converge to its true solution 1/g(t) as N →∞. In order for these systems to

be equivalent, the auxiliary adjoint γN would have to be equal to its true solution, 1,

for all N . This notion is reinforced by the following example to conclude this section.

Example 3.12 Consider the example problem (2.2) in Mayer from (2.13).

A Legendre pseudospectral discretization to this problem is applied. Secondly,

consider the example problem (2.2) in Bolza from (2.11). Again a Legendre

pseudospectral discretization to this problem is applied. Taking the `2

norm error between the state, control, and adjoint for each N yields the

results shown in Figure 3.9. Notice that the behavior described in Lemma

3.9 is exhibited. The solutions are never identical, but converge to the

true solution as N →∞.
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Figure 3.9: `2 Error between Mayer Form Problem and Bolza Form
Problem vs. N for Linear-Quadratic Optimal Control
Problem Using Legendre Pseudospectral Collocation- Top
Left: State Error - Top Right: Control Error - Bottom
Middle: Adjoint Divided by Weighting Function Error



55

3.6 Extension to Multiple Subintervals

Much of the work done in this chapter applied the pseudospectral method on one

interval [−1, 1]. Extensions to multiple intervals are very important for many prob-

lems. Our error bound in Theorem 3.9 indicates that the discretization error between

computed solution and true solution depends on the smoothness of the state and

of the adjoint. The smoothness of the state depends, among other things, on the

properties of the right hand side function f in the governing dynamics. For problems

with piecewise continuous right hand sides (e.g., due to change of mass in launch

problems, or due to piecewise constant controls), it is important to introduce mul-

tiple subintervals. Another potential benefit of using pseudospectral methods along

multiple intervals is to take advantage of sparsity. Indeed the optimality system for a

pseudospectral method along many subintervals will be very sparse relative to a pseu-

dospectral method applied on one interval. The benefit is that proper exploitation of

sparsity may improve solution time.

The pseudospectral method can easily be extended to multiple subintervals. To

accomplish this, the collocation points

c0 = −1, c1, . . . , cN−1 ∈ (−1, 1), cN = 1

are again used. At this point it is more useful to consider the OCP (2.5) on the

interval [t0, tf ].

Remark 3.13 The time interval shift can be accomplished by the fol-

lowing identity. Let t(c) ∈ [tf , t0] be the mapping

t(c) =
(
(tf − t0)c+ tf + t0

)
/2.

By the chain rule, we have that

d

dc
y(t(c)) =

d

dt
y(t(c))

d

dc
t(c) =

tf − t0
2

f(y(t(c)), u(t(c))).
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However, for the remainder of this section, t will not be written as an explicit function

of c and the more convenient notation

d

dt
y(t) =

tf − t0
2

f(y(t), u(t)),

will be used.

The interval [t0, tf ] is subdivided into I subintervals [ti, ti+1], i = 0, . . . , I−1, with

t0 < t1 < . . . < tI = tf .

We define hi = ti+1− ti. The state y is approximated by a piecewise polynomial yh,N .

The restriction of yh,N onto [ti, ti+1], i = 0, . . . , I − 1, is denoted by yh,N
i and written

as

yh,N
i (t) =

N∑
j=0

yi,jψj

(
−1 + 2

t− ti
hi

)
, (3.70)

The collocation discretization of the optimal control problem (2.5) is given by

min m(yI−1,N), (3.71a)

s.t.

D


yi,0

...

yi,N

 =
hi

2


f(yi,0, ui,0)

...

f(yi,N , ui,N)

 , i = 0, . . . , I − 1, (3.71b)

yi,N = yi+1,0, i = 0, . . . , I − 2, (3.71c)

y0,0 = ȳ0, (3.71d)

b(yI−1,N) = 0. (3.71e)



57

The weighted Lagrangian corresponding to (3.71) is given by

Lw(y,u,λ, µ̄, µ0, µN) = m(yI−1,N) (3.72)

+
I−1∑
i=0

N∑
j=0

wjλ
T
i,j

[hi

2
f(yi,j, ui,j)−

N∑
k=0

Dj,kyi,k

]
+

I−2∑
i=0

µ̄T
i [yi,N − yi+1,0]

+b(yI−1,N)TµN + (y0,0 − ȳ0)
Tµ0. (3.73)

Differentiating the Lagrangian (3.72) with respect to the yi,j’s and setting the deriva-

tives to zero gives the weighted-discrete adjoint equations on multiple intervals

h0

2
fy(y0,0, u0,0)

Tw0λ0,0 −
∑N

k=0Dk,0wkλ0,k + µ0, = 0,

h0

2
fy(y0,j, u0,j)

Twjλ0,j −
∑N

k=0Dk,jwkλ0,k = 0, j = 1, . . . , N − 1,

h0

2
fy(y0,N , u0,N)TwNλ0,N −

∑N
k=0Dk,Nwkλ0,k + µ̄0 = 0,

(3.74a)

on the first subinterval i = 0,

hi

2
fy(yi,0, ui,0)

Tw0λi,0 −
∑N

k=0Dk,0wkλi,k − µ̄i−1 = 0,

hi

2
fy(yi,j, ui,j)

Twjλi,j −
∑N

k=0Dk,jwkλi,k = 0, j = 1, . . . , N − 1,

hi

2
fy(yi,N , ui,N)TwNλi,N −

∑N
k=0Dk,Nwkλi,k + µ̄i = 0,

(3.74b)

for i = 1, . . . , I − 2, and

hi

2
fy(yI−1,0, uI−1,0)

Tw0λI−1,0 −
∑N

k=0Dk,0wkλI−1,k − µ̄I−2 = 0,

hi

2
fy(yI−1,j, uI−1,j)

TwjλI−1,j −
∑N

k=0Dk,jwjλI−1,k = 0, j = 1, . . . , N − 1,

hi

2
fy(yI−1,N , uI−1,N)TwNλI−1,N −

∑N
k=0Dk,NwkλI−1,k

+by(yI−1,N)TµN +my(yI−1,N) = 0,

(3.74c)

on the last subinterval i = I − 1.
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The next lemma shows that the adjoint variable p divided by the weighting func-

tion g satisfies the weighted-discrete adjoint equations along multiple subintervals

(3.19a) with an error that is dependent on the true adjoint p, the weighting function

g and N .

Lemma 3.10 If p, q0 and qf satisfy the adjoint equation (2.6b) and the

transversality conditions (2.6c) then

h0

2
fy(y0,0, u0,0)

T p(t0,0)

g(c0)
−

N∑
k=0

Dk,0
p(t0,k)

g(ck)
+ q0

= ra
0,0(N, p, g),

h0

2
fy(y0,j, u0,j)

T p(t0,j)

g(cj)
−

N∑
k=0

Dk,j
p(t0,k)

g(ck)

= ra
0,j(N, p, g), j = 1, . . . , N − 1,

h0

2
fy(y0,N , u0,N)T p(t0,N)

g(cN)
−

N∑
k=0

Dk,N
p(t0,k)

g(ck)
+ p(t0,N)

= ra
0,N(N, p, g), (3.75a)

on the first subinterval i = 0,

hi

2
fy(yi,0, ui,0)

T p(ti,0)

g(c0)
−

N∑
k=0

Dk,0
p(ti,k)

g(ck)
− p(ti−1,N)

= ra
i,0(N, p, g),

hi

2
fy(yi,j, ui,j)

T p(ti,j)

g(cj)
−

N∑
k=0

Dk,j
p(ti,k)

g(ck)

= ra
i,j(N, p, g), j = 1, . . . , N − 1,

hi

2
fy(yi,N , ui,N)T p(ti,N)

g(cN)
−

N∑
k=0

Dk,N
p(ti,k)

g(ck)
+ p(ti,N)

= ra
i,N(N, p, g), (3.75b)
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for i = 1, . . . , I − 2, and

hi

2
fy(yI−1,0, uI−1,0)

T p(tI−1,0)

g(c0)
−

N∑
k=0

Dk,0
p(tI−1,k)

g(ck)
− p(tI−2,N)

= ra
I−1,0(N, p, g),

hi

2
fy(yI−1,j, uI−1,j)

T p(tI−1,j)

g(cj)
−

N∑
k=0

Dk,j
p(tI−1,k)

g(ck)

= ra
I−1,j(N, p, g), j = 1, . . . , N − 1,

hi

2
fy(yI−1,N , uI−1,N)T p(tI−1,N)

g(cN)
−

N∑
k=0

Dk,N
p(tI−1,k)

g(ck)

+by(yI−1,N)T qf +my(yI−1,N)

= ra
I−1,N(N, p, g), (3.75c)

on the last subinterval i = I − 1, where

ra
i,j(N, p, g) =

wj

g(cj)

[
d

dt
PN(p)(ti,j)−

d

dt
p(ti,j)

]
+ εi,j(N, p, g), (3.76)

with

εi,j(N, p, g) =

∫ 1

−1

g(t)

(
PN(

p(ti + (hi/2) ·)
g

)(t)− p(ti + (hi/2)t)

g(t)

)
d

dt
ψj(t)dt

+

∫ 1

−1

g(t)

(
PN(

ψj

g
)(t)− ψj(t)

g(t)

)
d

dt
PN(p(ti + (hi/2) ·))(t)dt

+

∫ 1

−1

g(t)
ψj(t)

g(t)

d

dt
(PN(p(ti + (hi/2) ·)(t)− p(ti + (hi/2)t)) dt.

(3.77)

Proof The result is a direct extension of Lemma 3.2. It is obtained by using

equation (3.23) and the fact that p, q0 and qf satisfy the adjoint equation (2.6b) and

the transversality conditions (2.6c). Then p/g, p, q0 and qf are inserted into (3.74) for

λ, µ̄, µ0 and µN respectively to obtain (3.75).
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Chapter 4

International Space Station Momentum Dumping

Problem

The Legendre Pseudospectral method described in the previous chapters is now ap-

plied to a realistic optimal control problem. This chapter describes formulation and

solution of the International Space Station momentum dumping problem. One version

of this problem, where a continuous control is considered, lends itself to the appli-

cation of the Legendre Pseudospectral method on one interval while other versions,

where piecewise constant controls are considered, lend themselves to the Legendre

Pseudospectral method using multiple subintervals. In each case, the problem is

stated, then transcribed into a nonlinear program and solved using standard nonlin-

ear programming techniques. Numerical results for each problem scenario are given.

4.1 Background

Spacecraft attitude control is usually provided by momentum devices such Control

Moment Gyroscopes (CMGs) or reaction wheels, as they do not require consumables.

However, the momentum of such devices is limited and when this limit is reached the

device is termed saturated. In this situation, ‘controllability’ is lost along the mo-

mentum saturation direction. Recovering full three degree-of-freedom control requires

desaturating the momentum device.

The usual approach to desaturate accumulated momentum is to use an addi-

tional device. Examples are mass expulsion devices, magnetic dipoles which interact

with the Earth’s magnetic field, and rotating solar arrays which interact with solar

radiation pressure [22],[50]. Mass expulsion devices require the use of consumable
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propellant, which has finite lifetime and is expensive to get to orbit or replenish.

Magnetic dipoles are electromagnets, which generate a torque on the spacecraft by

their dipole interaction with the Earth’s magnetic field. Disadvantages are that the

Earth’s magnetic field is not well known and hence may require the use of magne-

tometers to measure it, that it can be affected by sun spots or magnetic storms, and

that it varies with orbit location thus restricting the amount and direction in which

momentum can be unloaded. Roll and pitch momentum is unloaded near the mag-

netic poles, while roll and yaw momentum is unloaded near the geomagnetic equator

[32],[51]. Further, the use of dipoles generates an additional magnetic field on the

spacecraft, which may affect other sensors or devices. Solar pressure based methods

require the use of modulating surfaces such as solar arrays. This sacrifices electrical

power, creates mechanical lifetime issues due to wear and tear and increases the risk

of drive failure.

An alternative is to use the momentum devices to appropriately maneuver the

spacecraft in a disturbance field such that accumulated momentum can be removed

[51]. Since most environmental disturbances on the spacecraft are a function of its

attitude, the accumulated momentum due to navigating in such a disturbance field

is path dependent. Performing an attitude maneuver over a pre-selected trajectory

can result in a lower final momentum state than one with which the vehicle started.

The advantage of this approach is that it does not require any additional hardware

or specialized software. Hence, it can be applied to any existing vehicles that use

momentum devices. In general, the method provides momentum unloading in all

axes and does not require preferred orbit locations. Gravity gradient and to a lesser

extent aerodynamic torques are well defined and better known than Earth’s magnetic

field. This approach can also be used as a contingency operational mode for spacecraft

which use other actuators for momentum dumping purposes, consequently increasing

the operational lifetime of satellites already in orbit.
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4.2 Rotational Dynamics

The equations of motion described in this section can be found in [32]. The attitude

dynamics of a rigid body in a circular orbit are given as

J
d

dt
ω(t) = τd − ω(t)×(Jω(t) + h(t))− u(t), (4.1a)

where ω : R 7→ R3 is the angular velocity of the spacecraft with respect to an inertial

reference frame measured in rad/sec. The remaining terms are h : R 7→ R3 the

angular momentum of the Control Moment Gyroscopes (CMGs) measured in ft-lbs-

sec, u : R 7→ R3 the control torque measured in ft-lbs, τd ∈ R3 the external disturbance

torque, J ∈ R3×3 the inertia matrix of the spacecraft measured in slugs-ft2. All terms

are evaluated with respect to the spacecrafts fixed body reference frame, see Figure

4.1. The skew-symmetric cross product operator × is is given as

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

External disturbance torques may take many forms. Examples are gravity gradient

torque, aerodynamic torque and magnetic torque. This model considers only gravity

gradient torque τgg which is given by

τgg = 3ω2
orbC

×
3 JC3, (4.1b)

where ωorb = 0.0011 rad/sec is the orbital for the current altitude and C3 is the

third column of the rotation matrix which rotates any vector in the local vertical

local horizontal (LVLH) reference frame into the spacecrafts body reference frame.

It is assumed that all other external torques are small relative to those modeled and

therefore negligible.

The attitude kinematics, using a quaternion formulation, are given as

d

dt
q(t) = T (q)(ω(t)− ωo), (4.1c)
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where q : R 7→ R4 is the attitude quaternion, T : R4 7→ R4×3 is given by

T (q) =
1

2


−q2(t) −q3(t) −q4(t)

q1(t) −q4(t) q3(t)

q4(t) q1(t) −q2(t)

−q3(t) q2(t) q1(t)


and ωo ∈ R3 is the constant orbital rate for the LVLH reference frame, assuming a

circular orbit. The ω(t)−ωo term represents the relative angular rate with respect to

the LVLH reference frame, therefore the quaternion q computed from (4.1c) describes

the attitude of the spacecraft with respect to the LVLH reference frame. It is standard

for the control variable to enter into the dynamics through a control law. For now it

is assumed that the CMGs are controllable directly, resulting in the control law

d

dt
h(t) = u(t). (4.1d)

Figure (4.1) shows the aforementioned reference frames as they relate to the Earth,

the LVLH orbit and the space station.

Additional consideration must be given to the attitude kinematics equation (4.1c)

because a quaternion must always have a unit norm. Therefore a path equality

constraint must be added

||q(t)||2 = 1, ∀ t ∈ [t0, tf ]. (4.2)

This is typically a difficult constraint to satisfy. For simulations, the standard pro-

cedure in simulations is to divide the current quaternion by its magnitude during

each step of numerical integration. In this thesis we use Legendre Pseudospectral

collocation to discretize the dynamics in the optimal control problem. Since equality

constraints are only enforced at the collocation points, it should not be expected that

the unity norm constraint will be satisfied in the infinite dimensional sense. Such a

constraint violation results in a solution which has no physical meaning. Therefore it

is beneficial to use Euler-Rodriguez parameters which are defined to be [32]

r(t) =
1

q1(t)
(q2(t) q3(t) q3(t))

T . (4.3)
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xInertial

yInertial

zInertial

xLVLH

yLVLH

zLVLH
xISS yISS

zISS

Figure 4.1: Earth’s Inertial Reference Frame, Local Vertical Local
Horizontal Reference Frame, International Space Station’s
Body Reference Frame (ISS Assembly 12A shown)

Note that (4.3) is not defined when q1(t) = 0, which is equivalent to a 180o rotation.

This corresponds to attitudes which are assumed to not occur along the optimal

trajectory. Using the representation (4.3) does not require the path equality constraint

(4.2). Via Euler-Rodriguez parameters, (4.1c) can be converted to

d

dt
r(t) =

1

2
(r(t)r(t)T + I + r(t)×)(ω(t)− ωo). (4.4)

The rotation matrix in (4.1b) can be computed as

C = I +
2

1 + rT r
(r×r× − r×).

The resulting attitude dynamics for the space station are given as

J d
dt
ω(t) = τgg(r)− ω(t)×(Jω(t) + h(t))− u(t)

d
dt
r(t) = 1

2
(r(t)r(t)T + I + r(t)×)(ω(t)− ωo(r))

d
dt
h(t) = u(t).

(4.5)
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4.2.1 International Space Station Assembly Stage 12A

This thesis considers International Space Station stage 12A, which was originally

scheduled for launch in December 2002. This assembly makes the following additions

[2]:

• Delivers second port truss segment (P3/P4 truss) to attach to first port truss

segment (P1 truss).

• Central cooling radiators, delivered earlier on flights 9A and 11A, are deployed

from first starboard (S1 truss) port (P1) truss segments.

• Exterior attachments for Brazilian Unpressurized Logistics Carriers (ULCs) are

delivered.

The inertia matrix J for space station assembly stage 12A, shown in Figure 4.2, is

given in Table 4.1 [40].

2.8070× 107 4.8225× 105 −1.7168× 107

4.8225× 105 9.5145× 107 6.0260× 104

−1.7168× 107 6.0260× 104 7.6594× 107

Table 4.1: ISS 12A Inertia Matrix [slugs-ft2]

Due to physical limitations, the CMGs must not reach a certain momentum mag-

nitude threshold because they will become saturated. This saturation limit can be

found in [39] to be 10000 ft-lbs-sec. This leads to the path inequality constraint

||h(t)||2 ≤ hmax, ∀ t ∈ [t0, tf ], (4.6)

where hmax = 10000.
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Figure 4.2: International Space Station Assembly 12A
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4.2.2 Boundary Conditions

The boundary conditions for (4.5) are chosen such that the spacecraft is at a Principal

Axis (PA) attitude initially and travels to a Torque Equilibrium Attitude (TEA). A

PA attitude is an attitude for which the gravity gradient torque is zero. A PA is a

common rest attitude for a spacecraft such as the space station. The PA attitude

associated with the inertia matrix, in Table 4.1, is shown in Table 4.2.

ω(t0) −9.54× 10−6 −1.14× 10−3 5.35× 10−6

r(t0) 3.00× 10−3 1.53× 10−1 3.83× 10−3

Table 4.2: Attitude and Rate Corresponding to Principal Axis

A TEA is a special attitude for which the right-hand side of the differential equa-

tions (4.5) are all zero when no control is exerted in the vehicle. Finding and reaching

a TEA reduces to a final time boundary condition where a root-finding problem to

find ω, r and h such that the right hand side of the differential equation is equal to

zero when u = 0. A TEA corresponds to attitudes that can be held indefinitely. This

is a desirable attitude because when a spacecraft is at a TEA, it does not require

attitude control devices to stay at that attitude. In other words, the final state of the

system can be maintained indefinitely with zero control effort.

Additionally, an initial value for angular momentum must be specified. This value

can change from one simulation scenario to the next, so this condition is somewhat

less strict as the PA and TEA requirements. For problems considered in this thesis,

the initial value

h(t0) =
(
5000, 5000, 5000

)T

ft-lbs-sec

was used.
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These boundary conditions can be written compactly as

ω(t0) = ω̄0,

r(t0) = r̄0,

h(t0) = h̄0,

and

b(ω(tf ), r(tf ), h(tf )) = J−1(τgg(tf )− ω(tf )
×(Jω(tf ) + h(tf )))

1
2
(r(tf )r(tf )

T + I + r(tf )
×)(ω(tf )− ωo(r))

 = 0, (4.7)

where ω̄0, r̄0 and h̄0 are given by the above initial conditions.
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4.3 ISS Momentum Dumping Problem with Continuous Control

From a modeling perspective, the simplest version of the space station momentum

dumping problem is posed such that the control in (4.5) is a continuous function on

the interval [t0, tf ]. The optimal control problem can be stated as

min ||h(tf )||2

s.t.

J d
dt
ω(t) = τgg(r)− ω(t)×(Jω(t) + h(t))− u(t), t ∈ [t0, tf ],

d
dt
r(t) = 1

2
(r(t)r(t)T + I + r(t)×)(ω(t)− ωo(r)), t ∈ [t0, tf ],

d
dt
h(t) = u(t), t ∈ [t0, tf ],

||h(t)||2 ≤ hmax, t ∈ [t0, tf ],

ω(t0) = ω̄0,

r(t0) = r̄0,

h(t0) = h̄0,

b(ω(tf ), r(tf ), h(tf )) = 0,

(4.8)

where b, ω̄0, r̄0 and h̄0 are given by (4.7). This problem is posed on the interval

[t0, tf ] = [0, 1800] sec [38]. The initial data ω̄0, r̄0 for the attitude and the angular

rate were chosen to be the principal axis from Table 4.2. The initial value for the

angular momentum was chosen to be h̄0 = (5000, 5000, 5000)T , where ||h̄0||2 is

close to hmax to make a desaturation maneuver meaningful. The final time boundary

condition is defined in (4.7).

Since the control is continuous on the interval [t0, tf ] the Legendre Pseudospectral

method with one time interval can be applied to discretize this problem. Applying
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this direct transcription to (4.8) results in the following NLP

min ||hN ||2

s.t.

2
tf−t0

J
N∑

k=0

Djkωk = τgg(rj)− ω×j (Jωj + hj)− uj, j = 0, . . . , N,

2
tf−t0

N∑
k=0

Djkrk = 1
2
(rjr

T
j + I + r×j )(ωj − ωo(rj)), j = 0, . . . , N,

2
tf−t0

N∑
k=0

Djkhk = uj, j = 0, . . . , N,

||hj||2 ≤ hmax, j = 0, . . . , N,

ω0 = ω̄0,

r0 = r̄0,

h0 = h̄0,

b(ωN , rN , hN) = 0,

(4.9)

where the optimization variables are ωj, rj, hj, and uj, j = 0, . . . , N . Note that the

path inequality constraint is only enforced at the collocation points. It is assumed that

doing so will result in solutions that satisfy this constraint on the entire interval. The

optimization problem (4.9) was solved with N = 50 using DIDO version 2003a [19], a

MATLAB [37] based tool which implements the Legendre Pseudospectral collocation

method, and uses SNOPT [24] to solve the resulting nonlinear program. MATLAB

code for solving this problem can be found in Section B.1. Note that scaling factors

were used to scale each variable in the optimization problem such that the constraint

evaluations and variable magnitudes are of similar orders of magnitude. Values for

the scaling factors used to solve this problem can be found in Section B.1. The initial

guess for the NLP solver was obtained by using a constant control u(t) = (0, 0, 0)T

and integrating the differential equations (4.5) forward using ODE45 [37].

The computed optimal solutions are shown in Figures 4.3-4.8, along with simula-

tion results. The simulation results were obtained by inputting the computed optimal

control values into a simulation which implements (4.5) and uses MATLAB’s ODE45

for numerical integration.
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Figure 4.3: Simulated, Optimal and Error Angular Momentum
Magnitude for Space Station Momentum Dumping Problem
with Continuous Control, Using N=150

Figure 4.3 shows the computed optimal objective function and the simulated ob-

jective function on the interval. It is apparent that the computed results and the

simulated results are in close agreement, the CMG momentum magnitude was re-

duced from 8666 ft-lbs-sec to 0.1 ft-lbs-sec.

Figure 4.4 shows the computed optimal angular momentum values and the sim-

ulated angular momentum values on the interval. Just as for the magnitude, the

angular momentum in each axis are in close agreement.

Figure 4.5 shows the optimal control computed by the Legendre Pseudospectral

method. As one would expect, the control is very nonlinear which is due to the
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Figure 4.4: Simulated, Optimal and Error Angular Momentum for Space
Station Momentum Dumping Problem with Continuous
Control, Using N=150

nonlinear disturbances that are acting on the spacecraft. After the maneuver ended,

at 1800 seconds, the control was set to zero to verify that a TEA was reached.

Figure 4.6 depicts the optimal attitude trajectory in Euler angles. The conversion

from Euler-Rodrigues parameters to Euler angles can be found in [32]. As shown in

[38] the optimal attitude trajectory for a desaturation maneuver resembles a sinusoid

in the roll axis and the attitude trajectories for the pitch and yaw axes are fairly flat.

The corresponding angular rate trajectories are shown in Figure 4.7. As indicated,

after 1800 seconds the attitude and rate trajectories are constant. This verifies that

a TEA was reached because no control was used to hold this attitude.
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Figure 4.5: Computed Optimal Control, Extended by Zero for t > 1800,
for the Space Station Momentum Dumping Problem with
Continuous Control, Using N=150.

Figure 4.8 depicts the external torques that are acting on the spacecraft. As

mentioned earlier, the nonlinearity in these torques account for the nonlinearity in

the optimal control. As further proof that a TEA was reached, after the maneuver

was completed these torques are either zero or counteract each other. This means

that the right hand side of (4.1a) is zero. Figure 4.8 shows that the gravity gradient

torque and the Euler torque combined were zero.

The optimal solution described in this section is meaningful in the sense that

it solves the problem of interest. However this solution may not be directly imple-

mentable aboard the space station because computational storage limits and pro-

cessing speed make it difficult to command a continuous control such as Figure 4.5.

Obtaining implementable results requires that the optimal control problem be solved

using piecewise constant controls.
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Figure 4.6: Simulated, Optimal and Error Attitude for Space Station
Momentum Dumping Problem with Continuous Control,
Using N=150
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Figure 4.7: Simulated, Optimal and Error Angular Rate for Space
Station Momentum Dumping Problem with Continuous
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Figure 4.8: Simulated External Torques for Space Station Momentum
Dumping Problem with Continuous Control, Using N=150
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4.4 ISS Momentum Dumping Problem with Piecewise Constant

Control

In contrast to Section 4.3, this version of the space station momentum dumping

problem is posed such that the control in (4.5) is a piecewise constant function on the

interval [t0, tf ]. This is done because it is typical for the station to perform a series

of constant attitude holds [39], which amount to having a piecewise constant control.

Again the optimal control problem is be stated as

min ||h(tf )||2

s.t.

J d
dt
ω(t) = τgg(r)− ω(t)×(Jω(t) + h(t))− u(t), t ∈ [t0, tf ],

d
dt
r(t) = 1

2
(r(t)r(t)T + I + r(t)×)(ω(t)− ωo(r)), t ∈ [t0, tf ],

d
dt
h(t) = u(t), t ∈ [t0, tf ],

||h(t)||2 ≤ hmax, t ∈ [t0, tf ],

ω(t0) = ω̄0,

r(t0) = r̄0,

h(t0) = h̄0,

b(ω(tf ), r(tf ), h(tf )) = 0,

(4.10)

where b, ω̄0, r̄0 and h̄0 are given by (4.7). Initial and final conditions for the angular

rate and the attitude as well as the initial value for the angular momentum are

identical to those in Section 4.3,

Since the control is piecewise constant on the each subinterval the Legendre

Pseudospectral method with multiple subintervals of time must be applied to dis-

cretize this problem. This problem is posed on I = 5 subintervals due to the compu-

tational storage restrictions of onboard computers. The intervals are written as [t0, t1],

[t1, t2], [t2, t3], [t3, t4], and [t4, t5], with t0 = 0, t5 = 1800. Applying the pseudospectral
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direct transcription to (4.8) results in the NLP

min ||h4N ||2

s.t.

2
ti−ti−1

J
N∑

k=0

Djkωik = τgg(rij)− ω×ij(Jωij + hij)− ui,

j = 0, . . . , N, i = 0, . . . , 4,

2
ti−ti−1

N∑
j=0

Djkrik = 1
2
(rijr

T
ij + I + r×ij)(ωij − ωo(rij))

j = 0, . . . , N, i = 0, . . . , 4,

2
ti−ti−1

N∑
j=0

Djkhik = ui, j = 0, . . . , N, i = 0, . . . , 4,

||hij||2 ≤ hmax, j = 0, . . . , N, i = 0, . . . , 4,

ωi−1,N = ωi0, i = 1, . . . , 4,

hi−1,N = hi0, i = 1, . . . , 4,

ri−1,N = ri0, i = 1, . . . , 4,

ω0,0 = ω̄0

r0,0 = r̄0

h0,0 = h̄0

b(ω4,N , r4,N , h4,N) = 0,

(4.11)

where the optimization variables once again are ωij, rij, hij and ui, j = 0, . . . , N ,

i = 0, . . . , 4. The problem (4.11) has four new optimization variables, t1, t2, t3 and

t4, because the times for which the control changes are also to be determined. As in

(4.9) the path inequality constraint is only enforced at the collocation points and it is

assumed that doing so will result in solutions that satisfy this constraint on the entire

interval. The optimization problem (4.11) was solved withN = 30 on each subinterval

using DIDO version 2003a which relies on SNOPT to solve the resulting nonlinear

program. MATLAB code for solving this problem can be found in Section B.2. Note

that scaling factors were used to scale each variable in the optimization problem

such that the constraint evaluations and variable magnitudes are of similar orders of
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magnitude. Values for the scaling factors used to solve this problem can be found in

Section B.2.
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Figure 4.9: Simulated, Optimal and Error Angular Momentum for
Space Station Momentum Dumping Problem with Piecewise
Constant Control, Using N=30 on Five Subintervals

Figure 4.9 shows the computed optimal objective function and the simulated ob-

jective function on the interval. As indicated the computed results and the simulated

results are in close agreement, despite the discontinuous control. The momentum

magnitude was reduced by almost 6000 ft-lbs-sec, from 8666 ft-lbs-sec to 556 ft-lbs-

sec. For this problem the objective function value is larger than the one computed in

Section 4.3. Of course this is to be expected because the control is restricted to be

from a smaller space of functions.
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Figure 4.10: Simulated, Optimal and Error Angular Momentum for
Space Station Momentum Dumping Problem with Piecewise
Constant Control, Using N=30 on Five Subintervals

Figure 4.10 shows the computed optimal angular momentum values and the sim-

ulated angular momentum values on the interval. Just as for the magnitude, the

angular momentum in each axis are in close agreement. Figure 4.11 shows the opti-

mal control computed by the Legendre Pseudospectral method.

Figure 4.12 depicts the optimal attitude trajectory in Euler angles. The attitude

trajectory is similar to the one in Section 4.3 but for kinks at the control transitions

and the terminal values. As with previous results, the roll trajectory resembles a

sinusoid while the pitch and yaw trajectories are fairly flat. The corresponding an-

gular rate trajectories are shown in Figure 4.13. Due to the kinks in the attitude at
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Figure 4.11: Computed Piecewise Constant Optimal Control, Extended
by Zero for t > 1800, for Space Station Momentum Dumping
Problem, Using N=30 on Five Subintervals.

the control transition points, the rate is nearly discontinuous at the points. Again,

after 1800 seconds, the control was set to zero and the attitude and rate trajectories

remained constant. This verifies that a TEA was reached because no control was used

to hold this attitude.

Figure 4.14 depicts the external torques that are acting on the spacecraft. As

further proof that a TEA was reached, after the maneuver was completed these

torques are either zero or counteract each other. Figure 4.14 shows that the combined

external torque goes to zero.
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Figure 4.12: Simulated, Optimal and Error Attitude for Space Station
Momentum Dumping Problem with Piecewise Constant
Control, Using N=30 on Five Subintervals
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Figure 4.13: Simulated, Optimal and Error Angular Rate for Space
Station Momentum Dumping Problem with Piecewise
Constant Control, Using N=30 on Five Subintervals
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Figure 4.14: Simulated External Torques for Space Station Momentum
Dumping Problem with Piecewise Constant Control, Using
N=30 on Five Subintervals
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4.4.1 Constraint on the Control Magnitude

Some control systems have a limit on the amount of torque that the attitude controller

can generate at any given time. These limits manifest themselves in the form of a

path inequality constraint on the control. Since the problem considered in Section 4.4

uses piecewise constant controls on each subinterval, constraining the control can be

accomplished by simple bounds on the control on each subinterval. The constraint

||ui||2 ≤ umax, i = 1, . . . , 5 (4.12)

was added to the NLP (4.11) to produce the results shown in Figures 4.15 through

4.20 for umax = 200 ft-lbs. MATLAB code for solving this problem can be found in

Section B.2. Again, note that scaling factors were used to scale each variable in the

optimization problem such that the constraint evaluations and variable magnitudes

are of similar orders of magnitude. Values for the scaling factors used to solve this

problem can be found in Section B.1.
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Figure 4.15: Simulated, Optimal and Error Angular Momentum
Magnitude for Space Station Momentum Dumping Problem
with Constrained Piecewise Constant Control, Using N=30
on Five Subintervals
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Figure 4.16: Simulated, Optimal and Error Angular Momentum
for Space Station Momentum Dumping Problem with
Constrained Piecewise Constant Control, Using N=30 on
Five Subintervals
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Figure 4.17: Computed Piecewise Constant Optimal Control, Extended
by Zero for t > 1800, for Space Station Momentum Dumping
Problem, Using N=30 on Five Subintervals
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Figure 4.18: Simulated, Optimal and Error Attitude for Space Station
Momentum Dumping Problem with Constrained Piecewise
Constant Control, Using N=30 on Five Subintervals
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Figure 4.19: Simulated, Optimal and Error Angular Rate for Space
Station Momentum Dumping Problem with Constrained
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4.5 ISS Momentum Dumping Problem with Control Law

This problem is a variation of the one described in Section 4.3 but with a control law

introduced into the dynamics. Using a control law rather than a torque command,

as done in Sections 4.3-4.4, allows the ISS to be controlled by an attitude command.

Typically this control law is used to drive the spacecraft to some desired attitude by

inputting an attitude command into the controller. This is an important variation

to the momentum dumping problem because the ISS actually controls its attitude

through this type of control law. Therefore, obtaining an optimal attitude command,

as opposed to an optimal torque control, has more practical value. The control

law used here is a proportional derivative control law which is described in [51].

This control law is formulated in terms of quaternions. The relationship between

quaternions and Euler-Rodriguez parameters, which are used here, can be found in

[32].

The state variables are the angular rate ω, the attitude r and the CMG angular

momentum h. The control variable here is rd instead of u due to the fact that the

control for this problem is actually the desired attitude not the time derivative of

momentum as in Section 4.3.

min ||h(tf )||2

s.t.

J d
dt
ω(t) = τgg(r)− ω(t)×(Jω(t) + h(t))− d

dt
h(t), t ∈ [t0, tf ],

d
dt
r(t) = 1

2
(r(t)r(t)T + I + r(t)×)(ω(t)− ωo(r)), t ∈ [t0, tf ],

d
dt
h(t) = k1Jωerr(ω, rd) + k2Jrerr(r, rd), t ∈ [t0, tf ],

||h(t)||2 ≤ hmax, t ∈ [t0, tf ],

ω(t0) = ω̄0,

r(t0) = r̄0,

h(t0) = h̄0,

b(ω(tf ), r(tf ), h(tf )) = 0,

(4.13)
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where rd : R 7→ R3 is the attitude command and

C = I + 2
1+rT r

(r×r× − r×),

C3 = C
(
0, 0, 1

)T

,

C2 = C
(
0, 1, 0

)T

,

T = C×3 (JC3),

R = I + 2
1+rT

d rd
(r×d r

×
d − r×d ),

R2 = R
(
0, 0, 1

)T

,

ωerr = ω + ωorbR2,

D = CRT ,

rerr = 1
2
(1 +D11 +D22 +D33)

−1/2



D23 −D32

D31 −D13

D12 −D21


,

and

ωo = −ωorbC2.

(4.14)

In (4.14), R2 is the second column of the rotation matrix associated with the attitude

control rd. Again, b, ω̄0, r̄0 and h̄0 are given by (4.7). The gains for the CMG controller

k1 and k2 are given as

k1 = 0.0632,

k2 = 0.002.

The control law described here forces the spacecraft to go to the desired attitude

with a fixed angular rate. This is a restrictive model because real systems tend to
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reach the required rate only at the end of the maneuver. However, this control law is

consistent with the one used in [38] to control the same system.

MATLAB code for solving this problem can be found in Section B.3. Note that

scaling factors were used to scale each variable in the optimization problem such that

the constraint evaluations and variable magnitudes are of similar orders of magnitude.

Values for the scaling factors used to solve this problem can be found in Section B.3.

Results for this problem for N = 150 are shown in Figures 4.21 through 4.27.
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Figure 4.27: Simulated External Torques for Space Station Momentum
Dumping Problem with Control Law, Using N=150
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The results presented in this chapter represent a solution which is accurate in the

sense that it has been verified through simulation, and practical in the sense that

piecewise constant controls are implementable aboard the space station. This chap-

ter demonstrated the utility of the Legendre Pseudospectral method for solving an

optimal control problem. Due to the accuracy properties of this method, this problem

was solved using few collocation points. The pseudospectral collocation method was

also versatile enough to account for time dependent and piecewise constant control

problems with little modification to the direct transcription of the optimal control

problem.
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Chapter 5

Conclusions and Future Work

In this thesis pseudospectral collocation methods for the direct transcription of op-

timal control problems were presented. It was shown that these methods exhibit

properties which make it possible to relate the discretized NLP to the infinite di-

mensional OCP. This was done by constructing a new adjoint mapping that relates

the Lagrange multipliers in the discretized optimal control problem to the adjoint

variables corresponding to the infinite dimensional optimal control problem.

Through this adjoint estimation procedure, error estimates between the computed

solution and the true solution to the optimal control problem were derived for linear-

quadratic optimal control problems. It was shown that the conditioning of the opti-

mality system matrix plays an important role in obtaining accurate solutions.

These methods were applied to the International Space Station momentum dump-

ing problem to demonstrate their utility for difficult problems. The solutions obtained

here are of great practical value as they may be directly implementable aboard oper-

ational spacecraft.

One suggestion for future work is to compute error estimates for the optimal con-

trol for nonlinear optimal control problems. This would be an significant result in the

sense that many important applications are using pseudospectral collocation meth-

ods to solve optimal control problems. Such error estimate would give the scientists,

engineers and mathematicians who use these methods more confidence in computed

solutions.

Another suggestion for future work would be to develop a more robust optimal

control solver that implements pseudospectral methods. Current packages either do
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not give the user sufficient insight into the nonlinear programming solver, do not

allow the user to supply analytical derivatives or do not allow the user to choose

which pseudospectral collocation method is used.

A final suggestion would be to use pseudospectral methods, or another direct tran-

scription method for that matter, to solve extensions of the ISS momentum dumping

problem, as solutions to this problem can be quite useful in the aerospace industry.

Extensions to the ISS momentum dumping problem include solving for a discrete

(piece-wise constant) attitude command control that will remove built-up momen-

tum, solving for an optimal control that is robust to unmodeled dynamics or changes

in the boundary conditions, and attitude maneuvers during payload operations.



104

Bibliography

[1] N. J. Adams and D. C. Redding. An Optimized Rotation Axis Model-Following

Controller for STS Orbiter Vernier-Jet Attitude Maneuvers. Technical Report

CSDL-R-1747, Draper Lab, 1984.

[2] C. Ariotti. Space Online, http://www.ik1sld.org/iss flt12a.htm, February 2003.

[3] U. M. Ascher, R. M. M. Mattheij, and R. D. Russel. Numerical Solution of

Boundary Value Problems for Ordinary Differential Equations. Classics in Ap-

plied Mathematics, Vol. 13. SIAM, Philadelphia, 1995.

[4] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential–Algebraic Equations. SIAM, Philadelphia, 1998.

[5] N. Bedrossian, F. Ghorbel, and E. McCants. Space station momentum optimal

cmg maneuver logic during payload operations. In AIAA Paper 2000–4451, 2000.

[6] J. T. Betts. A survey of numerical methods for trajectory optimization. Journal

of Guidance, Control, and Dynamics, 21:193–207, 1998.

[7] J. T. Betts. Practical Methods for Optimal Control using Nonlinear Program-

ming. Advances in Design and Control. SIAM, Philadelphia, 2001.

[8] A.E. Bryson and Y.C. Ho. Applied Optimal Control. Hemisphere, New York,

1975.

[9] R. Bulirsch, E. Nerz, H. J. Pesch, and O. von Stryk. Combining direct and

indirect methods in optimal control: Range maximization of a hang glider. In

R. Bulirsch, A. Miele, J. Stoer, and K. H. Well, editors, Optimal Control –



105

Calculus of Variations, Optimal Control Theory and Numerical Methods, pages

271–288. Birkhäuser, 1993.
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Appendix A

DIDO: A Tool for Direct and InDirect

Optimization

DIDO [19] is a MATLAB [37] based tool which implements the Legendre Pseudospectral

method described in Section 3. The resulting nonlinear programming problem is

solved using SNOPT [24] which is interfaced through MATLAB via an optimization

tool called TOMLAB [31]. TOMLAB implements various optimization solvers, one

of which is SNOPT, using MEX-files which call supporting Fortran routines. DIDO

discretizes the infinite dimensional optimal control problem and sends the resulting

NLP into TOMLAB to obtain solutions.

DIDO is set up to solve optimal control problems of the following form

minE(y(t0), y(tf ), t0, tf ) +

∫ tf

t0

F (y(t), u(t), t)dt, (A.1a)

subject to the dynamic constraints

d

dt
y(t) = f(y(t), u(t), t), (A.1b)

the event constraints

el ≤ e(y(t0), y(tf ), t0, tf ) ≤ eu, (A.1c)

the path inequality constraints

hl ≤ h(y(t), u(t), t) ≤ hu, (A.1d)

and the state and control bounds

yl ≤ y(t) ≤ yu,

ul ≤ u(t) ≤ uu.
(A.1e)



111

In (A.1) we have used the notation applied in [19], which is slightly different from

the one used in previous chapters. To use this tool, one must define at least two, up

to four, auxiliary functions. An M-file which defines the objective function (A.1a).

This file must, given state, control and time values, return the end-time cost function

value E and the integral cost function value F at each collocation point. In addition,

an M-file which defines the dynamics function must be defined. This file must, given

state, control, time and state time derivative values, return the difference between the

approximated state time derivative d
dt
yN and the right hand side function f at each

collocation point. The optional event function can be defined, which, given state and

time initial and final values, return the value of the event function e. The optional

path inequality function can be defined, which, given state, control and time values,

return the value of the path function h. Bounds on each function, the states and the

controls are passed directly to the DIDO function call. Examples of each function

can be found in Section B.

DIDO is a relatively easy tool to use because the setup time involved in solving

a given optimal control problem can be small as compared to most alternatives. The

coding that is required of a user is minimal in the sense that only a few, possibly

small, M-files need to be programmed. Additionally, the user interface, or DIDO

function call, is very straight forward and resembles that of any standard MATLAB

function call.

Despite these nice characteristics, there are some unattractive aspects to DIDO.

The first is that, as the reader may have noticed, none of the user supplied functions

output derivative information. Not only do they not require derivative information,

the tool is not set up to allow the use of user supplied derivatives. Instead, finite

difference derivatives are computed within SNOPT. This has several consequences.

First and foremost, it is well known that the performance of an optimization algo-

rithm can be severely slowed down when finite difference derivatives are used. As a

consequence, solving relatively small problems can be very time consuming ordeal,
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even when exact derivatives may be easy to compute. Secondly, the accuracy of

solutions are impacted because the quality of derivative approximations are limited

by the error in function values. In our context, error in function values are related

to machine precision ε. For example, the error in derivative approximations, when

forward finite differences are used, is on the order of
√
ε [28]. Therefore, solutions

that are obtained by using DIDO may be less accurate than expected, especially if

high order pseudospectral collocation discretizations are used.

Another disadvantage is that DIDO does not give the user the opportunity to

control the NLP solver. Stopping tolerances, iteration limits and the like are all

set within DIDO. As a consequence, accuracy expected from high order Legendre

Pseudospectral collocation methods may be polluted by coarse optimization stopping

tolerances. The user, while free to select the degree N of the Legendre Pseudospectral

has no opportunity to adjust the accuracy of the NLP solve to match the expected

discretization error.
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Appendix B

MATLAB Code for the Solution of the ISS

Momentum Dumping Problem Using DIDO

This Appendix contains the MATLAB code that may be used to produce the results

for the ISS momentum dumping problem as solved by DIDO in Section 4.

B.1 ISS Momentum Dumping Problem with Continuous Control

The main file which calls DIDO is shown below.

%

% issMain

%

% solve the ISS momentum dumping problem for

% continuous control

%

% min ||h(tf)||

%

% s.t.

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = u

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% ||h|| <= 10000

%

%-------------------------

% Set global variables

%-------------------------

global ws hs rs us w_orb J iJ

% Scaling factors

ws = 1e-3;

hs = 1e3;
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rs = 1e0;

us = 1e0;

% Orbital rate

w_orb = 0.06511*(pi/180);

% Inertia matrix

J = [2.807019116160000e+007 4.822509936000001e+005 -1.716750944480000e+007

4.822509936000001e+005 9.514463934400001e+007 6.026044480000001e+004

-1.716750944480000e+007 6.026044480000001e+004 7.659440133600001e+007];

% Inertia matrix inverse

iJ = [4.128859554604031e-008 -2.151370870617538e-010 9.254401181964391e-009

-2.151370870617538e-010 1.051143985685158e-008 -5.648966425550106e-011

9.254401181964391e-009 -5.648966425550106e-011 1.513006699674998e-008];

%-------------------------

% Set input functions

%-------------------------

iss.cost = ’issCost’;

iss.dynamics = ’issDynamics’;

iss.path = ’issPath’;

iss.events = ’issEvents’;

%----------------------------------------

% Set variable parameters

%----------------------------------------

t0 = 0;

tf = 1800;

w0 = [-9.5380685844896e-006 -1.1363312657036e-003 5.3472801108427e-006]/ws;

wlb = inf*[-1 -1 -1]/ws;

wub = inf*[1 1 1]/ws;

wf = w0;

h0 = [5e3 5e3 5e3]/hs;

hlb = [-1e4 -1e4 -1e4]/hs;

hub = [1e4 1e4 1e4]/hs;

r0 = [2.9963689649816e-003 1.5334477761054e-001 3.8359805613992e-003]/rs;

rlb = inf*[-1e10 -1e10 -1e10]/rs;

rub = inf*[1e10 1e10 1e10]/rs;

rf = r0;

%----------------------------------------

% Set time bounds

%----------------------------------------

knots.locations = [t0 tf];
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knots.definitions = {’hard’, ’hard’};

knots.bounds.lower = [t0 tf];

knots.bounds.upper = [t0 tf];

knots.numNodes = [150];

%----------------------------------------

% Set variable bounds

%----------------------------------------

bounds.lower.states(:,1) = [w0 h0 r0]’;

bounds.upper.states(:,1) = [w0 h0 r0]’;

bounds.lower.states(:,2) = [wlb hlb rlb]’;

bounds.upper.states(:,2) = [wub hub rub]’;

bounds.lower.states(:,3) = [wlb hlb rlb]’;

bounds.upper.states(:,3) = [wub hub rub]’;

bounds.lower.controls = -inf * [1 1 1]’;

bounds.upper.controls = inf * [1 1 1]’;

%----------------------------------------

% Set constraint bounds

%----------------------------------------

bounds.lower.path = [0]’;

bounds.upper.path = [1e8 / hs^2]’;

bounds.lower.events = 0 * [1 1 1 1 1 1]’;

bounds.upper.events = 0 * [1 1 1 1 1 1]’;

%-----------------------------

% Provide a guess

%-----------------------------

load iss_cont_guess;

%-----------------------------

% Call DIDO

%-----------------------------

[cost, primal,dual] = dido(iss, knots, bounds, guess);

The main file sets the dynamics function, the events function, and the path func-

tion for the DIDO tool. It also defines global variables, sets bounds on variables

and function right-hand sides, and loads an initial guess from a data file. Note that

weighting parameters were used to rescale each variable to be on the same order of

magnitude. This procedure is discussed in [7, 19].
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The function which implements the differential equation is shown below.

function [R] = issDynamics(primal)

%

% ISS momentum control dynamics

%

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = u

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% global variables

global ws hs rs us w_orb J iJ

% initialize variables

w = primal.states(1:3,:) * ws;

h = primal.states(4:6,:) * hs;

r = primal.states(7:9,:) * rs;

u = primal.controls * us;

N = length(w(1,:));

R = zeros(9,N);

for i = 1:N

% compute auxiliary values

C = eye(3) + 2/(1+r(:,i)’*r(:,i))*(skew(r(:,i))*...

skew(r(:,i)) - skew(r(:,i)));

C2 = C(:,2);

C3 = C(:,3);

wp = -w_orb * C2;

Tgg = 3*w_orb^2*(cross(C3,(J*C3)));

% compute differential constraint

R(:,i) = primal.statedots(:,i) - [ iJ*(Tgg - ...

cross(w(:,i),J*w(:,i)+h(:,i)) - u(:,i))/ws;

(u(:,i))/hs;

(0.5*(r(:,i)*r(:,i)’ + eye(3) + skew(r(:,i)))*(w(:,i)-wp))/rs];

end

As discussed in [19] it is more computationally efficient to vectorize all functions.

In order to do this, the above dynamics function must be expanded out component-

wise. For the sake of brevity, this exercise is left out of this thesis.
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The function which enforces the final time constraint is shown below.

function [E] = issEvents(primal)

%

% this function enforces that a TEA is reached

% at the final time by requireing that the ODE

% is zero at the final time when the control is zero

%

% global variables

global ws hs rs us w_orb J iJ

% initialize variables

w = primal.states(1:3,end) * ws;

h = primal.states(4:6,end) * hs;

r = primal.states(7:9,end) * rs;

% compute auxiliary values

C = eye(3) + 2/(1+r’*r)*(skew(r)*skew(r) - skew(r));

C2 = C(:,2);

C3 = C(:,3);

wp = -w_orb * C2;

Tgg = 3*w_orb^2*(cross(C3,(J*C3)));

% compute differential constraint

E = [ iJ*(Tgg - cross(w,J*w+h))/ws;

(0.5*(r*r’ + eye(3) + skew(r))*(w-wp))/rs];

The above function sets the constraint that a toque equilibrium attitude must be

reached at the final time. As described in Section 4.2, this is equivalent to forcing

the right-hand side of the differential equation to zero.

The function that implements the path inequality constraint is shown below.

function [P] = issPath(primal)

%

% this function enforces the path inequality constraint

% that ||h|| is less than or equal to 10000 at each time

%
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% global variables

global ws hs rs us w_orb J iJ

% 2-norm-squared of h at each time

P = [(primal.states(4,:)*hs).^2 + (primal.states(5,:)*hs).^2 +...

(primal.states(6,:)*hs).^2] / hs^2;

The above function enforces the path inequality constraint on the norm of the

angular momentum.

The function that implements the final time cost function on the norm of the

angular momentum is shown below.

function [M, I] = issCost(primal)

%

% this function is the final time objective function

% on the 2-norm of h (squared)

%

% global variables

global ws hs rs us w_orb J iJ

% final time function

M = hs^2 * primal.states(4:6,end)’*primal.states(4:6,end);

% no integral function

I = zeros(size( primal.states(1,:) ) );

B.2 ISS Momentum Dumping Problem with Piecewise Constant

Control

The main file which calls DIDO is shown below.

%

% issMain

%
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% solve the ISS momentum dumping problem for

% pw constant control

%

% min ||h(tf)||

%

% s.t.

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = u

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% ||h|| <= 10000

%

%-------------------------

% Set control bound

% 0 = no

% 1 = yes

%-------------------------

bounded_control = 0;

%-------------------------

% Set global variables

%-------------------------

global ws hs rs us N1 N2 N3 N4 N5 J iJ w_orb

% N on each subinterval

N1 = 30;

N2 = 30;

N3 = 30;

N4 = 30;

N5 = 30;

% Scaling factors

ws = 1e-2;

hs = 1e3;

rs = 1e-2;

us = 1e0;

% Orbital rate

w_orb = 0.06511*(pi/180);

% Inertia matrix

J = [2.807019116160000e+007 4.822509936000001e+005 -1.716750944480000e+007

4.822509936000001e+005 9.514463934400001e+007 6.026044480000001e+004

-1.716750944480000e+007 6.026044480000001e+004 7.659440133600001e+007];
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% Inertia matrix inverse

iJ = [4.128859554604031e-008 -2.151370870617538e-010 9.254401181964391e-009

-2.151370870617538e-010 1.051143985685158e-008 -5.648966425550106e-011

9.254401181964391e-009 -5.648966425550106e-011 1.513006699674998e-008];

%-------------------------

% Set input functions

%-------------------------

iss.cost = ’issCost’;

iss.dynamics = ’issDynamics’;

iss.path = ’issPath’;

iss.events = ’issEvents’;

%----------------------------------------

% Set variable parameters

%----------------------------------------

t0 = 0;

tf = 1800;

w0 = [-9.5380685844896e-006 -1.1363312657036e-003 5.3472801108427e-006]/ws;

wlb = [-1 -1 -1]/ws;

wub = [1 1 1]/ws;

wf = w0;

h0 = [5e3 5e3 5e3]/hs;

hlb = [-1e4 -1e4 -1e4]/hs;

hub = [1e4 1e4 1e4]/hs;

r0 = [2.9963689649816e-003 1.5334477761054e-001 3.8359805613992e-003]/rs;

rlb = [-1e10 -1e10 -1e10]/rs;

rub = [1e10 1e10 1e10]/rs;

rf = r0;

%----------------------------------------

% Set time bounds

%----------------------------------------

small = 100*eps;

knots.locations = [t0 360 720 1080 1440 tf];

knots.definitions = {’hard’, ’soft’, ’soft’, ’soft’,’soft’,’hard’};

knots.bounds.lower = [t0 t0+small 540 1000+small 1400 tf];

knots.bounds.upper = [t0 540-small 1000 1400-small tf-small tf];

knots.numNodes = [N1 N2 N3 N4 N5];

%----------------------------------------

% Set variable bounds

%----------------------------------------

bounds.lower.states(:,1) = [w0 h0 r0]’;
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bounds.upper.states(:,1) = [w0 h0 r0]’;

bounds.lower.states(:,2) = [wlb hlb rlb]’;

bounds.upper.states(:,2) = [wub hub rub]’;

bounds.lower.states(:,3) = [wlb hlb rlb]’;

bounds.upper.states(:,3) = [wub hub rub]’;

% note: parameters act as controls here,

% but the must be a control variable

% "placeholder" which is not iterated upon

if bounded_control == 0

bounds.lower.parameters = -1e10 * ones(5*3,1);

bounds.upper.parameters = 1e10 * ones(5*3,1);

elseif bounded_control == 1

bounds.lower.parameters = -200 * ones(5*3,1);

bounds.upper.parameters = 200 * ones(5*3,1);

end

bounds.lower.controls = 0;

bounds.upper.controls = 0;

%----------------------------------------

% Set constraint bounds

%----------------------------------------

bounds.lower.path = [0]’;

bounds.upper.path = [1e2]’;

bounds.lower.events = 0 * [1 1 1 1 1 1]’;

bounds.upper.events = 0 * [1 1 1 1 1 1]’;

%-----------------------------

% Provide a guess

%-----------------------------

load iss_dis_guess;

%-----------------------------

% Call DIDO

%-----------------------------

[cost, primal,dual] = dido(iss, knots, bounds, guess);

This main file does the same things as the one shown in Section B.1 except for

two main things. The first is that the time interval is broken up into five subintervals

so that a constant control can be used on each subinterval. This leads to the second
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difference. In terms of the DIDO tool, the control in this setting is not used and

the variable acting as the control is viewed as a parameter. DIDO must evaluate the

control at every collocation point and it forces these variable to be variable in the

optimization, eventhough the user may want the value to remain constant over each

subinterval. The use of parameters alleviates this problem. Accomplishing the bound

on the control can be accomplished by changing the parameter bound in the main

driver file.

The function which implements the differential equation is shown below.

function [R] = issDynamics(primal)

%

% ISS momentum control dynamics

%

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = u

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% global variables

global ws hs rs us N1 N2 N3 N4 N5 J iJ w_orb

% initialize variables

w = primal.states(1:3,:) * ws;

h = primal.states(4:6,:) * hs;

r = primal.states(7:9,:) * rs;

u = reshape(primal.parameters,3,5) * us;

u = [kron(u(:,1),ones(1,N1)) kron(u(:,2),ones(1,N2)) ...

kron(u(:,3),ones(1,N3)) kron(u(:,4),ones(1,N4)) ...

kron(u(:,5),ones(1,N5))];

N = length(w(1,:));

R = zeros(9,N);

for i = 1:N

% compute auxiliary values

C = eye(3) + 2/(1+r(:,i)’*r(:,i))*...

(skew(r(:,i))*skew(r(:,i)) - skew(r(:,i)));

C2 = C(:,2);

C3 = C(:,3);

wp = -w_orb * C2;

Tgg = 3*w_orb^2*(cross(C3,(J*C3)));
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% compute differential constraint

R(:,i) = primal.statedots(:,i) - [ iJ*(Tgg - ...

cross(w(:,i),J*w(:,i)+h(:,i)) - u(:,i))/ws;

(u(:,i))/hs;

(0.5*(r(:,i)*r(:,i)’ + eye(3) + skew(r(:,i)))*(w(:,i)-wp))/rs];

end

The events function, the path function and the cost function for this problem are

the same as the ones stated in Section B.1.

B.3 ISS Momentum Dumping Problem with Control Law

The main file which calls DIDO is shown below.

%

% issMain

%

% solve the ISS momentum dumping problem for

% control law

%

% min ||h(tf)||

%

% s.t.

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = k1*J*w_e + k2*J*r_e

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% ||h|| <= 10000

%

%-------------------------

% Set global variables

%-------------------------

global ws hs rs us k1 k2 J iJ w_orb

% Scaling factors

ws = 1e-2;

hs = 1e3;

rs = 1e-1;

us = 1e-1;

% Orbital rate
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w_orb = 0.06511*(pi/180);

% Inertia matrix

J = [2.807019116160000e+007 4.822509936000001e+005 -1.716750944480000e+007

4.822509936000001e+005 9.514463934400001e+007 6.026044480000001e+004

-1.716750944480000e+007 6.026044480000001e+004 7.659440133600001e+007];

% Inertia matrix inverse

iJ = [4.128859554604031e-008 -2.151370870617538e-010 9.254401181964391e-009

-2.151370870617538e-010 1.051143985685158e-008 -5.648966425550106e-011

9.254401181964391e-009 -5.648966425550106e-011 1.513006699674998e-008];

% Controller gains

k1 = 0.0632;

k2 = 0.002;

%-------------------------

% Set input functions

%-------------------------

iss.cost = ’issCost’;

iss.dynamics = ’issDynamics’;

iss.path = ’issPath’;

iss.events = ’issEvents’;

%----------------------------------------

% Set variable parameters

%----------------------------------------

t0 = 0;

tf = 1800;

w0 = [-9.5380685844896e-006 -1.1363312657036e-003 5.3472801108427e-006]/ws;

wlb = [-1 -1 -1]/ws;

wub = [1 1 1]/ws;

wf = w0;

h0 = [5e3 5e3 5e3]/hs;

hlb = [-1e4 -1e4 -1e4]/hs;

hub = [1e4 1e4 1e4]/hs;

r0 = [2.9963689649816e-003 1.5334477761054e-001 3.8359805613992e-003]/rs;

rlb = [-1e10 -1e10 -1e10]/rs;

rub = [1e10 1e10 1e10]/rs;

rf = r0;

%----------------------------------------

% Set time bounds

%----------------------------------------

knots.locations = [t0 tf];
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knots.definitions = {’hard’, ’hard’};

knots.bounds.lower = [t0 tf];

knots.bounds.upper = [t0 tf];

knots.numNodes = [150];

%----------------------------------------

% Set variable bounds

%----------------------------------------

bounds.lower.states(:,1) = [w0 h0 r0]’;

bounds.upper.states(:,1) = [w0 h0 r0]’;

bounds.lower.states(:,2) = [wlb hlb rlb]’;

bounds.upper.states(:,2) = [wub hub rub]’;

bounds.lower.states(:,3) = [wlb hlb rlb]’;

bounds.upper.states(:,3) = [wub hub rub]’;

bounds.lower.controls = -inf * [1 1 1]’;

bounds.upper.controls = inf * [1 1 1]’;

%----------------------------------------

% Set constraint bounds

%----------------------------------------

bounds.lower.path = [0]’;

bounds.upper.path = [1e2]’;

bounds.lower.events = 0 * [1 1 1 1 1 1]’;

bounds.upper.events = 0 * [1 1 1 1 1 1]’;

%-----------------------------

% Provide a guess

%-----------------------------

load iss_law_guess;

%-----------------------------

% Call DIDO

%-----------------------------

[cost, primal,dual] = dido(iss, knots, bounds, guess);

The above main file is similar to the one in Section B.1 because the control in this

case is a continuous variable. The main distinction between this problem set-up and

previous ones shows up in the differential equation. The function which implements

the differential equation is shown below.
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function [R] = issDynamics(primal)

%

% ISS momentum control dynamics

%

% Jw’ = Tgg(r) - w x (Jw+h) - u

% h’ = k1*J*w_e + k2*J*r_e

% r’ = 0.5 * ( rr’ + I + skew(r))(w - w(r))

% global variables

global ws hs rs us k1 k2 J iJ w_orb

% initialize variables

w = primal.states(1:3,:) * ws;

h = primal.states(4:6,:) * hs;

r = primal.states(7:9,:) * rs;

u = primal.controls * us;

N = length(w(1,:));

R = zeros(9,N);

for i = 1:N

% compute auxiliary values

C = eye(3) + 2/(1+r(:,i)’*r(:,i))*...

(skew(r(:,i))*skew(r(:,i)) - skew(r(:,i)));

C2 = C(:,2);

C3 = C(:,3);

wp = -w_orb * C2;

Tgg = 3*w_orb^2*(cross(C3,(J*C3)));

U = eye(3) + 2/(1+u(:,i)’*u(:,i))*...

(skew(u(:,i))*skew(u(:,i)) - skew(u(:,i)));

Ct = C * U’;

wt = w(:,i) + w_orb * U(:,2);

pt = 0.5 * [Ct(2,3)-Ct(3,2);Ct(3,1)-Ct(1,3);Ct(1,2)-Ct(2,1)] /...

sqrt(1+Ct(1,1)+Ct(2,2)+Ct(3,3));

% compute differential constraint

R(:,i) = primal.statedots(:,i) - [ iJ*(Tgg - ...

cross(w(:,i),J*w(:,i)+h(:,i)) - u(:,i))/ws;

(k1*J*wt + k2*J*pt)/hs;

(0.5*(r(:,i)*r(:,i)’ + eye(3) + skew(r(:,i)))*(w(:,i)-wp))/rs];

end


