1. REPORT DATE (DD-MM-YYYY) 7 May 2003
2. REPORT TYPE Technical Abstract
3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE Detonations of Liquid Oxygen Sprays in Gaseous Hydrogen for Pulse Detonation Rockets
5. AUTHOR(S) Edward Coy, Jonathan Watts
6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRSA 10 E. Saturn Blvd. Edwards AFB CA 93524-7680
7. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048
8. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.
9. ABSTRACT

Detonations of liquid oxygen sprays in gaseous hydrogen for pulse detonation rockets are described. The liquid oxygen is atomized and sprayed into a high pressure hydrogen flow. Detonations are initiated by a hotwire igniter or with a laser pulse. The pressures and densities of the fuel and oxidizer are varied to determine the effects on mixture burning velocities. Initial conditions are varied to determine the effects on the shock initiation of the detonation wave. The results of these investigations are presented and discussed.

10. NUMBER OF PAGES 1
11. SPONSOR/MONITOR'S ACRONYM(S) AFRL-PR-ED-AB-2003-128
12. SUPPLEMENTARY NOTES
13. SUBJECT TERMS
14. ABSTRACT

Detonations of liquid oxygen sprays in gaseous hydrogen for pulse detonation rockets are described. The liquid oxygen is atomized and sprayed into a high pressure hydrogen flow. Detonations are initiated by a hotwire igniter or with a laser pulse. The pressures and densities of the fuel and oxidizer are varied to determine the effects on mixture burning velocities. Initial conditions are varied to determine the effects on the shock initiation of the detonation wave. The results of these investigations are presented and discussed.

20030606 107

15. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

18. NUMBER OF PAGES

19. NAME OF RESPONSIBLE PERSON Sheila Benner

19b. TELEPHONE NUMBER (include area code) (661) 275-5693

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Best Available Copy
Abstract for 42nd AIAA Aerospace Sciences Meeting

Detonations of Liquid Oxygen Sprays in Gaseous Hydrogen for Pulse Detonation Rockets

Edward B. Coy
Jonathan M. Watts

Air Force Research Laboratory
Edwards AFB, CA

Detonations of flowing mixtures of cryogenic gaseous hydrogen and liquid oxygen at mixture densities of 3-6 Kg/m3 and varying liquid oxygen fractions have been studied. Wave speeds, pressures, and the time required to effect detonation-to-deflagration transition are reported. Data taken at cryogenic conditions are compared with data taken at equal initial densities and equivalence ratios, but at ambient temperature, as well as with equilibrium, Chapman-Jouget calculations. This work has been undertaken to support development of pulse detonation rocket engines. These results will be directly applicable to the development of the next generation of repetitively pulsed, multi-tube test articles and will also be used to qualify computational models under development for use in system application studies.

Approved for public release; distribution unlimited.