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Objectives 
Our research objectives involve the following: 

Formations in resonant orbits 

Formations in highly eccentric orbits 

Formation reconfiguration 

Reference orbit determination 

Formation control 

Differential drag and solar radiation effects 

Status of Effort 

Perturbation based methods for determining initial conditions and shaping satellite formations to 
accommodate nonlinearity of the differential gravitational acceleration as well as eccentricity of 
the reference orbit have been developed. Control laws for formation maintenance as well as 
reconfiguration, valid for large formations and eccentric reference orbits have been developed via 
filter based LQR designs and period matching. An analytical solution to the relative motion 
problem has been obtained by using a unit-sphere description of the motion. This approach 
converts the problem of formation control into an attitude control problem. A sub-optimal 
strategy for reconfiguring a formation using impulsive thrust has been developed that does not 
require any off-line optimization. The results of this approach have been compared with those 
obtained fi-om numerical optimization. An analj^ical technique has also been developed for 
designing formations for large and high eccentricity relative orbits 

Accomplishments 

PERTURBATION SOLUTION TO NONLINEAR RELATIVE MOTION EQUATIONS 

Hill-Clohessy-Wiltshire (HCW) equations describe the relative motion of a satellite with respect 
to another in a circular reference orbit. Initial conditions that generate periodic solutions to these 
equations have to be corrected in order to obtain bounded solutions in the presence of 
nonlinearity of the differential gravitational acceleration model and eccentricity of the reference 
orbit.   We have established corrections to the initial conditions due to quadratic terms in the 



differential gravitational acceleration for circular reference orbits using a perturbation approach. 
These corrections have been related to the period matching constraint required for bounded 
relative motion. Next, the solution to the linear problem including the effect of eccentricity is 
determined. The two solutions obtained are combined to produce an asymptotic solution for the 
quadratic, eccentricity problem. The effects of nonlinearity and eccentricity on the relative 
motion of individual satellites have been investigated. The following figures illustrate our results 
for two satellites with different phase angles. 

SUB-OPTIMAL RECONFIGURATION OF SPACECRAFT FORMATIONS IN EARTH 
ORBITS 

To achieve the desired objectives of a formation-flying mission, it is often necessary for the 
formation to reconfigure itself In this work, we analyze the formation reconfiguration problem 
for formations in orbits given by the HCW periodic solutions. The desired formations are 
characterized by the orbital elemental differences. Gauss's variational equations are used to 
compute impulses that establish the desired orbital elemental differences. An analytical, sub- 
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Fig. 2 Reconfiguration Cost for Individual Satellites 

optimal solution is proposed that can be easily implemented without requiring any online 
optimization. The analytical solution also assigns to each spacecraft in the initial configuration a 
imique slot in the final configuration, such that the overall fuel consumption is minimized. The 
solution is also extended to accommodate the J2 perturbation. The cost incurred with the 
analytical solution is found to be close to that incurred by the optimal solution obtained by a 
numerical optimization procedure. Figure 1 shows a reconfiguration fi-om a 1 km circular 
projection relative orbit to a 2 km circular projection relative orbit. The chief satellite is at the 
origin of the coordinate system. The initial phase angle or the phase angle in the initial orbit is 

30° and the phase angle in the final orbit is 60°. This reconfiguration assumes that there is a 
single thruster on requires only two impulses. 

Figure 2 shows a plot of the A F required for different satellites in an initial configuration to 
transfer to different locations in a final configuration. It can be seen that the individual minimum 
for each satellite occurs at a unique value of the final slot. The overall fuel consumption is 
minimized by assigning to each satellite a slot that corresponds to its minimum AV. 



ANALYTICAL SOLUTIONS FOR THE RELATIVE MOTION OF SATELLITES VALID FOR 
HIGH ECCENTRICITY ORBITS 

The positions of the Chief and Deputy are projected onto a unit sphere by normaHzing their 
positions using their respective distances from the center of the Earth. This results in analytical 
expressions for the so-called "sub-satelhte" points that are functions of the angles only (right 
ascension Q, inclination /, and argument of latitude &). 
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Co and Ci are the direction cosine matrices of the Chief and Deputy, respectively, which are 
functions of their respective angles. The analytical solution to the along-frack position is 

Ay = c^% 12)c^ Oi /2)5(A(9 + AQ) + s^(IQ 12)s^(ii 12)5(A(9 - AQ) 

- s^ (jQ / 2)c^ {i^, 12)5(2^0 + A^ + AQ) - c^ (IQ 12)s'^ {i^' 2)*(2^o + A^ - AQ) (2) 

+ \l2s{iQ)s{i^)[s{Ke) + 5(2^0 + A^*)] 

The true relative position and velocity vectors are then obtained by scaling, using the radial 
distances of the Chief and Deputy, re and VQ, respectively. 

To study the effect of J2, we may use either osculating elements or mean elements. For large 
eccentricity orbits, series expansions in the powers of eccentricity prove annoying since 1) the 
number of terms required in the series expansion is not known, and 2) convergence of the series is 
not guaranteed. In the new method, instead of stepping through time, we step through the true 
anomaly of the Chief This does away with the necessity of solving Kepler's equation for the 
Chief, and we only need to perform the calculations for the Deputy. Usually, wherever mean 
elements are considered, we essentially take into account only the secular growth due to the J2 
perturbation. For the semi-major axis a, eccentricity and inclination, there is no secular growth 
whereas in jQ, w, and M we use the mean rates. If we also take into account the short-period 
variations, then the accuracy of the method is improved. This leads to corrections in Q, i, and d, 
as well as r that are obtained from Kozai's work, which can be incorporated in the algorithm. 

As an example, we consider an eccentricity of 0.8182 and a relative orbit size of 10-20 km, 
established using a node difference. The results obtained from the analytical solution are 
compared with those obtained from numerical integration with and without the short period 
corrections. The first set of figures in Fig. 3 shows the errors between the analytical mean 
element solution and the numerical solution. The second set of figures show the errors obtained 
after the short period corrections are incorporated. The addition of the short period corrections 
leads to a more accurate result. 
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Figure 3 Errors between the analytical solutions and numerical integration for a high eccentricity Orbit. 

LD^IEAR AND NONLINEAR CONTROLLERS FOR FORMATION FLYING 

In this work, we analyze different control schemes for formation flying satellites. The objective is 
to devise control strategies that can stabilize large formations optimally. Three types of 
controllers have been studied in this work: (i) Lyapimov stabilized controller, (ii) LQR 
controllers, and (iii) Period matching controllers. The Lyapunov controller offers global stability 
and zero steady state tracking errors but the associated control cost is very high. The LQR 
controllers guarantee only local stability but offer significant cost benefits. The period matching 
controllers exploit the existence of control-free natural solutions and force the dynamics to the 
nearest period matched trajectory. The period matching control law is globally stable and results 
in the desired relative orbits at a very low control cost. 

CLASSIFICATION OF RELATIVE MOTION ORBITS 

In this paper presented at the 2002 AAS Space Flight Mechanics Conference we developed 
classification of the types of relative motion orbits according to the number of constraints. This 
classification applies to orbits for which the primary perturbation results from differential gravity. 
With each class of orbits the fuel or Av needed to counter the differential gravitational 
perturbation effects was provided. Differences in the momenta or action variables between the 
deputy and chief are what cause drift between the satellites. The semi-major axis, eccentricity and 
inclination define the generalized momenta so the constraints are defined by differences in these 
three quantities. In Class 1 relative motion orbits there are three constraints, the semi-major axis, 
eccentricity and inclination of the deputy and chief are equal.   An example of Class 1 is the 



leader-follower with out-of-plane motion caused by a right ascension difference. In Class 1 no 
fuel s needed to counter the differential gravitational perturbations. In Class 2 orbits there are two 
constraints allowing one degree of freedom in the three momenta variables. One constraint is the 
change in semi-major axis needed to negate the in-track drift resulting from changes in the 
eccentricity and inclination. The 2°*^ constraint negates the out-of-plane drift or perigee drift. The 
J2 invariant orbits developed in the first Techsat21 grant fall into this class. Class 3 orbits have 
only one constraint and that is the constraint on the semi-major axis to negate the secular in-plane 
drift due to changes in the eccentricity and inclination. Almost all boimded relative motion orbits 
can occur in this class, but need some thrusting to maintain. 
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