The goals of the proposed research were to: 1) develop novel Raman-based spectroscopic methods for characterizing corrosion barrier layers prepared from self-assembled monolayers (SAMs); these methods rely on Au colloid as Raman enhancers, and 2) use in situ atomic force microscopy to study the corrosion inhibition effects of organic monolayers on superconductors.
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. IIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

19b. TELEPHONE NUMBER (include area code)
847.491.2907 or 847.467.7302

Standard Form 298 (Rev. 8-96)
Prescribed by ANSI Std. Z39.18
Structural Characterization of Artificial Corrosion and Tunnel Junction Barrier Layers

AFOSR Contract #: F49620-97-1-0418

Principle Investigator: Chad A. Mirkin
Institution: Northwestern University
Chemistry Department
2145 Sheridan Road
Evanston, IL 60208

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
Objectives:
The goals of the proposed research were to: 1) develop novel Raman-based spectroscopic methods for characterizing corrosion barrier layers prepared from self-assembled monolayers (SAMs); these methods rely on Au colloids as Raman enhancers, and 2) use in situ atomic force microscopy to study the corrosion inhibition effects of organic monolayers on superconductors.

Status of effort: The project has been completed.

Accomplishments/New Findings: The project resulted in the characterization of the primary binding mode of alkylamines to the surfaces of HTSC substrates. In addition, it showed that one could profoundly increase the stability of HTSCs, with respect to susceptibility to corrosion, by using hydrophobic linear alkanes that form crystalline SAMs on the surfaces of such substrates. In addition, we developed a general way of using colloidal gold coatings to extract valuable spectroscopic information (SERS) from HTSC modified substrates.

Personnel Supported:
Adam Eisenberg
Martin Masar
Ann Eidelman

Publications:


Patents:

Interactions/Transitions:
Scientists from Conductus, Inc. evaluated the use of our monolayer technology for stabilizing their HTSC devices and concluded that there were substantial benefits.

Honors Awards:
2001 Leo Hendrik Baekland Award (NU, 2001)
Crain's Chicago Business “40 under 40 Award” (NU, 2001)
Discover 2000 Award for Technological Innovation (NU, 2000)
Elected Fellow of the American Association for the Advancement of Science (NU, 2000)
I-Street Magazine's Top 5 List for Leading Academics in Technology (NU, 2000)
Materials Research Society Young Investigator Award (NU, 1999)
ACS Award in Pure Chemistry (NU, 1999)
PLU Fresenius Award (NU, 1998)
E. Bright Wilson Prize, Harvard University (NU, 1998)