Award Number: DAMD17-00-1-0653

TITLE: Sialyltransferase in Breast Cancer

PRINCIPAL INVESTIGATOR: Joseph T. Y. Lau, Ph.D.

CONTRACTING ORGANIZATION: Health Research, Incorporated
Buffalo, New York 14263

REPORT DATE: September 2002

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Abstract
Alterations in sialylation are well documented in breast cancer as well as other epithelial cancers. A principal enzyme implicated in this process is the sialyltransferase ST6Gal, which mediates the synthesis of the sialyl a2,6-anomeric linkage to terminal lactosamine structures on glycoproteins, and high levels have been linked to a poor prognosis especially among patients with locally advanced stage III breast cancer. Transcription of the ST6Gal gene is regulated by selective use of multiple promoters in a tissue- and developmental-specific manner.

We documented the existence of a breast-specific promoter that is recruited de novo to allow high ST6Gal gene expression during late pregnancy and lactation in mouse mammary glands. However we failed to detect an equivalent breast-specific promoter operative in humans. Examination in a number of murine breast cancer models also failed to detect recruitment of this promoter in ST6Gal expression.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td></td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td></td>
</tr>
<tr>
<td>Conclusions</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>Appendices</td>
<td>4</td>
</tr>
<tr>
<td>U.S. Army Medical Research and Development</td>
<td>Page 5</td>
</tr>
<tr>
<td>Research and Development activities report</td>
<td>Page 5</td>
</tr>
<tr>
<td>Report of Inventions and Subcontracts</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Alterations in sialylation are well documented in breast cancer as well as other epithelial cancers. In particular, elevated cell surface sialylation may mask tumor cells from immune surveillance. Of equally importance to the long-term survival of breast cancer patients, increased cell surface sialylation may decrease intercellular adhesion, directly contributing to the ability of tumor cells to metastasize. A principal enzyme implicated in this process is the sialyltransferase ST6Gal, which mediates the addition of sialic acid via an α2,6-anomeric linkage to terminal lactosamine structures on glycoproteins. High levels of ST6Gal have been linked to a poor prognosis especially among patients with locally advanced stage III breast cancer. In normal individuals, serum and mammary gland ST6Gal levels are also elevated during late pregnancy and lactation. Among all animal species examined, including human, bovine, rat, and mouse, transcription of the ST6Gal gene is regulated by the selective use of multiple promoters in a tissue- and developmental-specific manner.

BODY

This work was initiated by our original finding that a novel ST6Gal mRNA form is expressed in the lactating mammary glands of the mouse. This prompted our hypothesis that the novel mRNA form originates from a heretofore unique ST6Gal promoter. Further, we reasoned that a human homologue of this "lactation-specific" may exist and that its inappropriate utilization may generate the elevated ST6Gal expression during breast cancer.

The key research accomplishments to this concept award are as follows:

1. We have successfully characterized the murine "lactation-specific" ST6Gal mRNA. We conclusively demonstrated that it originates from a unique promoter/transcription regulatory region that is expressed only in mammary glands and only during late pregnancy and lactation. We have mapped this promoter region on the murine ST6Gal gene, Siat1. These findings have been published.

2. We established that elevated ST6Gal mRNA during lactation is not due to contribution of lymphocytes during this process since an identical increase was also observed in lactating mammary glands of SCID mice.

3. We examined the expression of ST6Gal in a number of mouse breast cancer models, including mouse breast carcinoma lines 410.4, SHI, N2O2-neu, and BF-C3. Further we also experimentally induced mouse mammary tumors using polyomavirus middle-T antigen. In none of these cases were we able to observe utilization of this novel ST6Gal promoter.

4. We examine mRNA derived from normal and lactating human breasts. After exhaustive search, using RT-PCR and 5'-RACE, we failed to detect an equivalent human form of the murine lactogenic ST6Gal mRNA form.

CONCLUSION

Our findings are not consistent with the utilization of a unique promoter in the over-expression of ST6Gal during breast cancer. So far, we have no evidence for the human equivalent of the novel transcription promoter documented in the mouse.

REFERENCES

APPENDICES

The sialyltransferase ST6Gal mediates the biosynthetic addition of sialic acid, via an α2,6 linkage, to the nonreducing end of terminal lactosamine structures. Transcription of the murine ST6Gal gene, *Siat1*, is regulated by the selective use of multiple promoters in a tissue- and development-specific manner. Here we report that *Siat1* mRNA expression is dramatically elevated in lactating (relative to virgin) mouse mammary gland. The predominant ST6Gal mRNA species expressed in lactating mammary gland is a herefore undocumented isofrom containing a unique 5' untranslated region originating from the mouse *Siat1* genetic region, now defined as Exon L, residing 549-bp 5' of the previously characterized Exon Xj. Thus, the novel ST6Gal mRNA form initiates transcription from the region designated as p4 and incorporates the unique sequence from Exon L in 5'-juxtaposition to commonly shared sequences encoded on Exon I to Exon VI. In contrast, cells derived from virgin mammary tissue expressed only the sequences encoded on Exon I to Exon VI. The Exon L-containing, p4 class of mRNA was also not detected in a survey of eight other mouse tissues.

Previous reports have indicated a strong correlation between mammary cancers and elevated ST6Gal expression in rats and in human patients. However, we uncovered neither elevated expression of ST6Gal mRNA nor appearance of p4 class in mouse breast carcinomas experimentally induced by transformation with the polyoma-middle T oncogene. A number of established breast carcinoma cell lines were also examined, with ST6Gal mRNA and activity generally low. Moreover, with the exception of the Shionogi cell line, p4 class of ST6Gal mRNA was not expressed in any of the mouse breast carcinoma specimens examined.

Taken together, our data indicate that murine ST6Gal induction during lactation is achieved by *de novo* recruitment of a normally silent promoter. Furthermore, the data provide no support for elevated *Siat1* expression on the mRNA level in association with murine mammary gland carcinogenesis. With the single exception of the Shionogi cell line, the p3 class remains the predominant ST6Gal mRNA expressed in all other murine mammary carcinoma cells examined.

Key words: lactation/mammary gland/mouse/sialyltransferase/ST6Gal

Introduction

The sialyltransferase ST6Gal (CMP-Neu5Ac:Galβ1,4GlcNAc-α2,6-sialyltransferase) (Tsui et al., 1996) is responsible for the biosynthetic addition of sialic acid (Sia) from CMP-Sia to the lactosamine termini (Galβ1,4GlcNAc) of glycoproteins in an α2,6 anomic linkage. Significant homology exists between cloned human, bovine, rat, and mouse genes coding for ST6Gal (Mercier et al., 1999). In mouse, this gene, *Siat1*, is located on chromosome 16 (Kalcheva et al., 1997) and is the only gene encoding a glycosyltransferase that synthesizes the SA(α2,6) to Galβ1,4GlcNAc-R structure (Henret et al., 1998). The *Siat1* encodes an open reading frame spanning five separate exons, and, in addition, a complex array of 5' untranslated exons exist upstream of these coding regions. These 5'UT exons are utilized in a tissue-specific manner as the result of usage of multiple promoter regions (Hu et al., 1997; Wuensch et al., 2000).

During lactation, sialyltransferase enzymatic activity is significantly elevated in the serum of rat (Bushway et al., 1979) and bovine (Sherbom et al., 1986) but not human (Rajan et al., 1983). In rat, high sialyltransferase activity in the mammary gland during proliferation and involution accompanies the high activity found in serum (Ip, 1980). Elevated serum and tumor sialyltransferase activity has been reported in human breast carcinoma (Abecassis et al., 1984; Dao et al., 1986), and high ST6Gal levels have been linked to a poor prognosis (Recchi et al., 1998b). Elevated serum and tumor sialyltransferase activity has also been experimentally reproduced in rat breast carcinomas (Fox et al., 1981).

We report here that ST6Gal is dramatically induced in the mouse mammary gland during lactation. This ST6Gal mRNA induction is mediated by recruitment of a novel 5'UT exon, exon L, probably driven by a lactogenic promoter, tentatively named P4.
Results

A novel ST6Gal mRNA isoform is expressed in mammary gland during lactation.

Members of the ST6Gal mRNA family differ only in their 5'-UT domains but share identical downstream sequences (including the protein coding domain) encoded on Exons I to VI (see Figure 1). A 5'-RACE (rapid amplification of CDNA ends) strategy was devised to qualitatively assess differential expression of the ST6Gal mRNA family. RNA from lactating mammary gland of a day 9 postpartum FVB × (FVB(C57 × CBA)) mouse (sample LM) was reverse-transcribed using mST1-P1, an anti-sense primer complementary to a region in the shared Exon II. The reverse-transcribed 5' ends to ST6Gal mRNAs were polymerase chain reaction (PCR) amplified using a nested primer, mST1-md1, complementary to a region in Exon I. The major product, visualized by ethidium bromide staining, migrated at around 300 bp (Figure 2, bottom, lane 1), consistent with a divergent region 5' of Exon I-encoded domain.

Eighteen clones representing the md11-derived PCR product were selected at random and sequence analyzed. All 18 clones were derived from ST6Gal mRNA as evidenced by the presence of Exon 1 sequence. The majority of these clones (15) contain a novel sequence immediately 5' of Exon I. This novel 5'-UT sequence originates from the mouse Stial genetic region, now defined as Exon L, located only 549 bp 5' of the previously charaterized Exon X2 (Wuensch et al., 2000). Exon

![Fig. 1. Genomic organization of the mouse ST6Gal gene, Stial, and summary of known ST6Gal mRNA forms. The top panel schematically represents the genomic organization of the mouse ST6Gal gene, Stial. Exon sequences are denoted by vertical bands. Invariant exons shared among all ST6Gal mRNA forms are labeled in roman numerals (I–VI); the remainder of the exons (Q, O, H, L, H, X1a, X1b, X2, X3) specify the divergent 5'-untranslated regions of the ST6Gal mRNA family. Curved arrows indicate the transcription initiation points and putative promoters regulating the differential expression of the ST6Gal mRNA forms. A summary of the known ST6Gal mRNA forms is shown in the middle panel. The lower panel summarizes the structure of the novel mRNA forms reported here.

![Fig. 2. Determination of transcription initiation of Exon L-containing mRNA form. The genomic sequence flanking the putative transcription initiation site for Exon L-containing ST6Gal mRNA form is shown. Sequence shown in capital letters denote the transcribed Exon L region; sequences in lowercase letters are the flanking 5'- and 3'-regions. The predicted transcription initiation point is the junction between the 5'-flanking sequence and the Exon L sequence. The EtBr visualized gel illustrated on the bottom is the 5'RACE and primer extension analysis of the Exon L–mRNA form. Lane 1 is the RACE analysis of Stial mRNA from day 9 lactating mammary gland (LM) using primers md11 and API (see Materials and methods), generating predominately a 300-bp product. The RACE product was sequence-analyzed after cloning into pCR22.1 and confirmed the dominant presence of Exon L as the Stial mRNA 5' leader region (see Table I). Lanes 2 and 3 are primer extension 5'RACE products using primers mST1-LP-1 and mST1-LP-2 on the LM sample (see Materials and methods). The products from primer extensions with primers mST1-LP-1 and mST1-LP-2 are 200 bp and 215 bp ± 5bp. are shown in lanes 2 and 3, respectively, and are consistent with the predicted transcription initiation point as shown in the genomic sequence above. The annealing sites for primers mST1-LP-1 and mST1-LP-2 are as shown.

X2 contributes to another 5'-UT motif in a B cell–specific ST6Gal mRNA species (see Figure 1). Exon L resides 48 kb 5' of Exon I and 18 kb 5' of the liver-specific Exon H. Among the three remaining RACE clones that do not contain Exon L, one contained the Exon O sequence found in the constitutively
expressed P3-mRNA form. Another clone specified an Exon X_0 sequence interrupting between Exon L and Exon I sequences. The last RACE clone contained another novel sequence of 86 nts 5' of Exon I, tentatively termed N_1. At present, the origin of the N_1 sequence is not known.

Three other RNA samples of mouse mammary epithelial origin were also subjected to the identical 5’-RACE procedure; the results are summarized in Table I. One of them, an immortalized cell line derived from normal mouse mammary gland (NMG), yielded 17 RACE clones. In striking contrast to RACE clones derived from lactating mammary gland, there were no Exon L forms among these 17 clones. Instead, the vast majority (12) were Exon O-containing P3 forms. Among the remaining five clones, four represented N_1 forms, and one represented the Exon H-containing PI (hepatic) form. Another RACE clone derived from lactating mammary gland, there talized cell Une derived from normal mouse mammary gland present, the origin of the Nj sequence is not known.

Xjb sequence interrupting between Exon L and Exon I expressed P3-mRNA form. Another clone specified an Exon P4-form of ST6Gal mRNA is restricted to mammary glands of virgin (lane 1), day 14 pregnant (lane 2), and day 5 postpartum (lane 3) strain CBA mice. Thirty micrograms of RNA is analyzed in each lane; the blot was hybridized using Siatl mRNA, the bulk of which are from de novo appearance of the P4-mRNA form. The level of ST6Gal mRNA during lactation is higher than that seen with resting liver and around two thirds of that seen in turpentine mediated acute phase liver (Dalziel et al., 1999).

A Northern blot panel of mouse tissues was used to assess the range of P4-mRNA expression (Figure 4). The level of overall ST6Gal mRNA expression, as measured by a probe against the shared Exon II, varied among tissues examined. The P4 form, as visualized by a probe against Exon L, was present only in lactating mammary gland (Figure 4). In contrast, the constitutively expressed P3 form, as visualized by

Table I. Composition of ST6Gal cDNA from 5’-RACE

<table>
<thead>
<tr>
<th>Type</th>
<th>LM</th>
<th>NMG</th>
<th>SHI</th>
<th>410.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>18</td>
<td>17</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>O-I</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L-I</td>
<td>15</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>L-x_{o-I}</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H-I</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N_{1-I}</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3. Regulated expression of Siatl in mammary gland during pregnancy and lactation. (A) A northern blot profile of ST6Gal mRNA expression in mammary glands of virgin (lane 1), day 14 pregnant (lane 2), and day 5 postpartum (lane 3) strain CBA mice. Thirty micrograms of RNA is analyzed in each lane; the blot was hybridized using Siatl 0.75 kb Exon II probe, which visualizes all ST6Gal mRNA forms. Migration points of the 28S and 18S rRNA bands are indicated. (B) is the same blot stripped and rehybridized with a mouse 18s cDNA probe to control for equal loading of the lanes. The same panel of mammary gland RNA was subjected to 5’RACE using mSTl-MDl 1 and API, the products of which were cloned and subjected to sequence analysis as described in Materials and methods. (C) summarizes the resultant 5’RACE clones based on sequence distribution of the region in 5’-juxtaposition to Exon I sequence.
Exon L

Exon Q

Exon II

Fig. 4. Tissue specificity of Exon L-containing ST6Gal mRNA forms. Multiple mouse tissue mRNA blots (Clontech Laboratories) were probed for sequences unique to (from top to bottom panels) Exon L, Exon Q, or Exon II. The right panels were parallel analysis of RNA from virgin and lactating mammary tissue mRNA blots (Clonetech Laboratories) were probed for sequences against PCR-generated fragments of the respective exon sequences and labeled unique to (from top to bottom panels) Exon L, Exon Q, or Exon E. The right panels were parallel analysis of RNA from virgin and lactating mammary glands. Differential probes for Exons L, Q, and Exon U were synthesized.

Tissue specificity of Exon L-containing ST6Gal mRNA forms. Multiple and independently operating transcription initiation sites. Here we report a novel form of ST6Gal mRNA expressed only in mouse mammary gland and only during late pregnancy and lactation. De novo accumulation of this mRNA form accounts for the elevated level of Stat1 expression in lactating mammary glands.

In contrast to a previous report of high levels of ST6Gal mRNA in mouse mammary gland (Takashima et al., 1999), our findings indicate that only a low basal level is present in virgin mammary glands (see Figures 3 and 4). This basal level is maintained by expression of the ubiquitously expressed P3 form. The novel mRNA form is not detectable in virgin mammary gland either by Northern blot or by the more sensitive reverse transcriptase PCR analysis (data not shown).

Table II summarizes a survey of ST6Gal expression in a number of mouse cell lines. Lactating mammary gland (LM) and the human hepatoma cell line, HepG2, were included as references. The normal mammary epithelial line, NMG, and the mouse breast carcinoma lines 410.4, SHI, N202-neu, and BF-C3 were examined. All mammary-derived cell lines except N202-neu expressed low levels of ST6Gal mRNA, as assessed by a probe for Exon II sequences. The measured ST6Gal enzymatic activity, in general, was commensurate with ST6Gal mRNA levels. The only deviation was NMG, exhibiting a higher enzymatic activity with only 28% of the mRNA level measured in N202-neu. It was also significant that none of the cell lines examined except for one (SHI) expressed the novel P4-mRNA form. Though the overall level of ST6Gal expression was unremarkable in SHI, the P4-mRNA form was the major constituent in SHI ST6Gal mRNA pool (see Table I).

To further explore the relationship between ST6Gal expression and mammary tumorigenesis, mouse mammary tumors were experimentally induced using polyomavirus middle T-antigen. Six separate tumors were harvested and analyzed on Northern blots and by 5'-RACE for ST6Gal mRNA expression. None of the six specimens exhibited elevated ST6Gal mRNA expression when probed for Exon L or for Exon II sequences (data not shown).

Discussion

Consistent with early reports of elevated mammary gland sialyltransferase activity accompanying lactation (Bushway et al., 1979; Ip, 1980), we document a dramatic elevation of ST6Gal mRNA expression in mouse mammary during late pregnancy and lactation. Tissue differences in ST6Gal expression can be attributed to a significant degree by differential usage of multiple and independently operating transcription initiation sites. Here we report a novel form of ST6Gal mRNA expressed only in mouse mammary gland and only during late pregnancy and lactation. De novo accumulation of this mRNA form accounts for the elevated level of Stat1 expression in lactating mammary glands.

Table II. Expression of ST6Gal mRNA and enzymatic activity in murine cells

<table>
<thead>
<tr>
<th>Cell line</th>
<th>ST6Gal mRNA (Exon II)</th>
<th>ST6Gal activity</th>
<th>Major mRNA form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMG</td>
<td>0.25</td>
<td>30,900</td>
<td>P3</td>
</tr>
<tr>
<td>410.4</td>
<td>0.15</td>
<td>10,040</td>
<td>P3</td>
</tr>
<tr>
<td>SHI</td>
<td>0.10</td>
<td>4,040</td>
<td>P4</td>
</tr>
<tr>
<td>N202</td>
<td>0.90</td>
<td>25,800</td>
<td>P3</td>
</tr>
<tr>
<td>TSA-MC</td>
<td>0.05</td>
<td>2,370</td>
<td>P3</td>
</tr>
<tr>
<td>BFC3 (undiff)</td>
<td>0.10</td>
<td>7,860</td>
<td>P3</td>
</tr>
<tr>
<td>BFC3 (diff)</td>
<td>0.10</td>
<td>7,250</td>
<td>P3</td>
</tr>
<tr>
<td>HepG2</td>
<td>ND^</td>
<td>154,340</td>
<td>P1*</td>
</tr>
<tr>
<td>LM"</td>
<td>(1.00)</td>
<td>ND</td>
<td>P4</td>
</tr>
</tbody>
</table>

^ Measured by northern blots probed for Exon II.
* Measured against asialotransferrin as exogenously supplied acceptor and expressed as dpm/h/mg protein.
"Assessed by 5'-RACE. P3, Exon L-containing; P4, Exon O-containing.
ND, not done.
* Previously reported in Dalziel et al. 1999.
"LM, RNA from whole lactating mammary gland used for reference.
unlikely to represent all normal and pathological states of mammary cells. In support of this, only one cell line, SHI, has been found to express the P4 form that predominates in vivo in lactating mammary glands. Moreover, the steady state level of ST6Gal mRNA in SHI is extremely low, measuring only one-tenth that observed in lactating mammary gland, and one-third to one-half that observed in the nonlactating mammary gland line, NMG.

An additional interesting observation arising from the survey of ST6Gal expression is the inconsistent correlation between ST6Gal mRNA level and the measurable enzymatic activity (see Table II). The cell line NMG, for example, exhibits enzymatic activity equivalent to that of N202-neu while maintaining a three- to fourfold lower steady-state ST6Gal mRNA level. Indeed, differential posttranscriptional regulation as a consequence of unique 5'-UTR domains in the mRNA isoforms has been proposed (Aasheim et al., 1993; Dall'Olio et al., 1999). However, this mechanism is unlikely to participate here because both N202-neu and NMG recruit the P3 form as the predominantly expressed ST6Gal mRNA. Considered together, the data suggest multiple mechanisms are operative in dictating ST6Gal expression in mammary glands.

The functional significance of ST6Gal elevation in the lactating mammary gland can only be speculated at this point. The obvious reason is to address demands for elevated synthesis of SAα2,6Galβ1,4GlcNAc structure, present both as free oligosaccharide in milk and also as covalent modifications in cellular and milk glycoproteins (Kobata et al., 1996). Moreover, ST6Gal may also be capable of elaborating the synthesis of SAα2,6GalNAcβ1,4GlcNAc-R (Nemansky and Van den Eijnden, 1992), another structure found in abundance in colos- trum (Coddeville et al., 1992; Nakata et al., 1993; Girardet et al., 1995). Moreover, the enzyme itself may be secreted into colos- trum (Paulson et al., 1977) in a manner analogous to enhanced deposition of ST6Gal enzyme from liver into serum during the hepatic inflammatory response (Kaplan et al., 1983; Jamieson et al., 1993).

Coincident with elevated ST6Gal expression in mammary gland of lactating animals, high levels of ST6Gal are also present in the intestinal epithelium of newborn animals while nursing, and weaning is concomitant with a conversion of terminal sialylation to fucosylation (Bioll et al., 1991; Hamr et al., 1993; Vertino-Bell et al., 1994). Although the physiologic significance of these events is far from clear, a tantalizing postulate is that this is an example of a contribution of milk and intestinal epithelial ST6Gal to innate immunity in the newborn animals. Many of the Sia-binding pathogens exhibit a preference for the α2,3-sialyl linkage (Karlsson, 1995), but the contribution of elevated α2,6-sialyl linkage to innate immunity may be as "decoys" or "smoke screens" to foil potential pathogens (Gagneux and Varki, 1999).

Cell lines and tissues

Cell lines NMG and SHI were obtained from central cell services, Imperial Cancer Research Fund. Cell line 410.4 was an established in-house line. All lines were grown in E4/10% fetal calf serum/pen/strep/0.5% Amphotericin B. LM was obtained from a day 9 postpartum FVB × [FVB(C57 × CBA)] mouse, sacrificed, with all four glands removed and snap frozen. CBA mammary gland tissue taken from virgin, day 14 pregnancy, and day 5 postpartum were provided by Clive Dickson, ICRF. Cell lines N202-neu (Nanni et al., 2000), TSA-MC and BFC3 were kindly provided by P. L. Lollini, Department of Experimental Pathology (University of Bologna, Italy). N202-neu cells over-express neu oncogene, TSA-MC are derived from spontaneous tumorigenesis in Balb/c mice, and BFC3 result from insertional mutagenesis of MMTV. The latter cell line can differentiate in vitro after postconfluent culture.

Mice bearing the MMTV LTR fused to the polyomavirus middle-T oncogene were generated by Guy et al. (1992). Mice were obtained from the Beaton Institute and crossed with Poly-T negative females (C57 × CBA) and progeny screened for Poly-T via PCR. Mammary gland tumors were isolated from Poly-T homozygotic animals and snap frozen.

RNA and enzymatic analysis

For 5'-RACE analysis unless otherwise stated, 1 μg of polyA+ RNA was annealed to the primer MST1-P1 (5'-GATGATGG-CAAACAGGAGAA-3') and reverse transcribed. MST1-P1 is complementary to a region in Exon II, such that authentic reverse transcription events of ST6Gal mRNA must span at least the Exon I-Exon II boundary. The resultant cDNA was ligated to the marathon adaptor sequence as per instructions and subjected to PCR on a Perkin Elmer thermo-cycler, using the Touchdown program as recommended by Clonetech (Oxford, UK), using the anchor primer API (5'-CCATCCCT-

Figure 2. 5'-RACE products were routinely cloned into the plasmid vector pCR2.1 (Invitrogen) and subjected to PCR on a Perkin Elmer thermo-cycler, using the Touchdown program as recommended by Clonetech (Oxford, UK), using the anchor primer API (5'-CCATCCCTCAATGCTCAGCTCACTATAAGGC-3') and the ST6Gal exon I anti-sense primer md11 (5'-CTGCTTCTGGCTAATCTTCT-

Materials and methods

Materials

α32P-dCTP was from ICN (UK). Mega Prime Kit was from Amersham. Plasmid pCR2.1 was from Invitrogen. Trizol was from Gibco BRL. Marathon RACE kit was from Clonetech. PolyA+ isolation kit and miniprep kits were from Qiagen.

DNA from contaminating genomic DNA is not possible because ST6Gal gene does not contain sequences that will specifically anneal the anchor primer. Touchdown PCR parameters are 94°C for 1 min, 5 cycles of 94°C for 30 s, 72°C for 4 min, 5 cycles of 94°C for 30 s, 70°C for 4 min, and finally 25 cycles of 94°C for 20 s, 68°C for 4 min. The PCR products were cloned into the plasmid vector pCR2.1 (Invitrogen) and sequenced.

For primer extension/5'-RACE analysis shown in Figure 2, primers mST1-LP-1 or mST1-LP-2 were used instead of mST1-P1 for reverse transcription. PCR amplification was achieved using the anchor primer API and either mST1-LP-1 or mST1-LP-2. The sequences for mST1-LP-1 and mST1-LP-2 are denoted in Figure 2. 5'-RACE products were routinely cloned into pCR2.1. Clones were selected at random and sequenced analyzed. For sialytransferase enzymatic assays, the activity of total cell homogenates toward asialotransferrin was determined in the range of linearity with respect to protein concentration, determined according to the Lowry method as previously described (Dall'Olio et al., 1996).
Acknowledgments

We are grateful to the technical support provided by Mark Dennis. We are especially grateful to Dr. Michelle Appenheimer for frequent and insightful discussions of this work. This work was supported by an ICRF fellowship awarded to MD and U.S. Army DAMD170010653 to JTYL, core grant CA16056–21 to Roswell Park Cancer Institute.

Abbreviations

LM, lactating mouse gland; NMG, normal mouse mammary gland; PCR, polymerase chain reaction; RACE, rapid amplification of CDNA ends; SHI, Shionogi; Sia, sialic acid.

References

Hennet, T., Chui, D., Paulson, J.C., and Marth, J.D. (1998) Immune regulation of CDNA ends; SHI, Shionogi; Sia, sialic acid.

412