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Abstract--The Genomation Laboratory at the University of
Washington is developing an automated fluid handling
system called ""Acapella™ to prepare microliter reactions
for genome analysis. The system prepares 5,000 samples in
8 hours for general-purpose chemistry analysis including
DNA sequencing reaction preparation.
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I.  INTRODUCTION

Motivated by the Human Genome Project (HGP) and the
biotechnology revolution, an exponential growth in genome
automation has occurred over the past several years [1].
Solutions include robots that mimic manual procedures in the
laboratory, automated systems that improve performance for
specific tasks, to microfabricated chips that perform
microfluidic analysis of DNA samples. For a review of
genome automation, see [2][3]. For an introduction to DNA
sequencing and the automation of it, see [4].

In the Genomation Laboratory at the Univ. of Washington
(http://rcs.ee.washington.edu/GNL/genomation.html) and
with Orca Photonic Systems, Inc. (Redmond, WA), an
automated submicroliter fluid sample preparation system
called ACAPELLA is being developed. Reactions such as
restriction enzyme digests, polymerase chain reactions
(PCRs), and sequencing reactions are prepared in glass
capillaries, one per sample, with an automated system that can
process 5,000 samples in 8 hours. On-going development
includes new, fully automated modules for thermal processing
of capillaries, real-time DNA quantitation, and purification of
DNA inside of capillaries to prepare the samples for DNA
sequencing. Applications of the technology include minimal
residual disease quantification and sample preparation for
DNA. Preliminary work on the ACAPELLA is presented in
[4][5]. This paper presents the current development on the
ACAPELLA core processor and the thermal cycling module.

Il.  SIGNIFICANCE

The goals of the ACAPELLA system are 1) to develop a very
high-throughput (5000 samples in 8 hours) fluid handling
system with minimal recurring labor costs, 2) to reduce by
tenfold the typical DNA sample volumes for Polymerase
Chain Reaction (PCR) and sequencing reactions over current

practice, with a proportionate reduction in reagent costs, and
3) to develop a closed sample-processing pipeline. The core
technology comprises a system capable of mixing an
incoming DNA sample with appropriate reagents in a
capillary under full automation.

In [5] the significance of the throughput, cost reduction,
process benefits, and cost/benefit analysis of the ACAPELLA
system is described. In short, the system prepares small 0.5 -
2 I reaction volumes, maintains a 100 to 300 picoliter
reagent dispense resolution, retains high mixing precision and
quality in small volumes, and demonstrates the ability to
achieve high quality, reproducible biology without
contamination. The high throughput capability is competitive
with large scale robotic batch processing.

I1l. INSTRUMENTATION AND METHODS

The core ACAPELLA sample processor embodies two
essential concepts: (1) ACAPELLA uses glass capillary tubes
to reduce sample size, minimize evaporation, automate the
handling of small fluid samples, reduce thermal cycling times,
and minimize the disposables needed to perform DNA
sequencing. All processing steps are performed within these
capillaries. Sample volumes are readily scalable from small
(<1pL) to moderate (8 pL) sizes. (2) ACAPELLA uses
piezoelectric subnanoliter dispensers (Engineering Arts,
Mercer Island, WA) to add reagents to the capillary with high
precision, essentially arbitrary low volume, and without any
contact that might cause contamination.

A. ACAPELLA-5K Core Processor

The ACAPELLA-5K was designed with experience gained in
the development and testing of the first generation
ACAPELLA-1K system [5]. It extends the throughput of the
1K to higher throughput, while incorporating architectural
changes that substantially improve the reliability and
reproducibility of sample preparation. A photo of the
ACAPELLA-5K is shown in Figure 1 and a functional
schematic is shown in Figure 3. The ACAPELLA-5K has a
circular architecture that drastically reduces the number of
handoffs present in the ACAPELLA-1K system.
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In the ACAPELLA-5K design (Figures 1,3), capillary
handoffs are limited to the very beginning and very end of the
process. Empty capillaries are dispensed from a “hopper,"
with integral fiber optic sensors to minimize mishandling and
to provide feedback for error handling. From the hopper,
each capillary is immediately inserted into a chuck, where it
remains throughout the rest of the fluid dispensing and
measurement process. Only at the final stage is it removed
from the chuck, and transferred to the next step of the
processing pipeline.

To process a DNA sample in the core processor, the sample is
aspirated from a microplate well with a novel piezoelectric
aspirator/mixer actuator, reagents are dispensed into the end
of the capillary with piezoelectric reagent dispensers
(Engineering Arts, Mercer Island, WA), all fluids inside the
capillary are mixed with the piezoelectric aspirator/mixer
actuator, and the capillary is off-loaded to a capillary cassette
for further processing.

For details of the specific subsystems on ACAPELLA, see
[6]. One important difference to note is that the aspirator and
mixer in the ACAPELLA-1K system have been combined
into one device on the ACAPELLA-5K system. This chuck is
a novel device with a piezoelectric disk scavenged from a
tweeter speaker. The fluid is aspirated or moved back and
forth by air volume displacement driven by the piezoelectric
actuator. (see [7] for a model of a version of this device).
Currently the aspirator/mixer chuck operates in open-loop; a
sensor is being integrated for precise feedback control.

For serial, pipelined processing, each step in the
ACAPELLA-5K system must be under 5.76 seconds. Mixing
of reagents can take from 3 to 15 seconds depending on the
volumes and viscosities of the fluids being mixed [7]. Thus,
in the ACAPELLA-5K system, mixing has been parallelized;
mixing can occur while a capillary is held in an
aspirator/mixer chuck and moved through three stations or up
to 17.28 seconds (see Figure 3).

For DNA sequencing applications, the next steps are typically
thermal cycling, DNA purification, and then loading of the
samples to electrophoresis systems for analysis. Automated
modules for these processes are currently under development.

B. THERMAL CYCLING MODULE

For reactions such as the Polymerase Chain Reaction (PCR)
and sequencing reactions, it is necessary to cycle DNA
samples typically through 3 temperature ranges (e.g. 94, 72,
and 55 degrees C) per cycle, for 30 cycles total. Standard
commercially available thermal cyclers take 2 to 4 hours for
this process [2]. To accommodate the 5,000 sample/8-hour
throughput of the ACAPELLA-5K, a faster thermal cycler is
being developed in-house.  Two small thermoelectric
heater/cooler devices or Peltiers sandwich 48 capillaries held
in a cassette (Figure 2). The low mass of the glass capillaries
combined with the fast heating/cooling of the Peltier elements
enable thermal cycling times on the order of 15 minutes total

for 30 cycles. To maintain the 5K rate, 12 of these peltier-
based thermal cyclers will cycle cassettes in parallel. A
robotic arm will take cassettes from the off-loading station of
the ACAPELLA-5K core processor and load them into 1 of
12 available thermal cyclers. After thermal cycling the
capillary cassettes will move on a track to the purification
module.

IV. DISCUSSION

In this paper we report on the on-going development of an
automated fluid processing system for biotechnology and
chemistry. The initial concepts and proof-of-concept for this
system were presented in [4] and the first generation
ACAPELLA-1K processor was presented in [6]. The
ACAPELLA-5K processor presented here, capable of
processing 5,000 samples in 8 hours, has been built and is
undergoing initial testing. New modules for thermal cycling
and DNA purification will be integrated with the main
processor for increased automated capability.
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Figure 1. ACAPELLA-5K automated fluid sample handling system that processes 5,000 samples in 8 hours.

Figure 2. Peltier thermal cycler for handling cassette-sized batches of 48 glass capillaries with samples.
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Figure 3. Functional schematic of fluid sample handling with the ACAPELLA-5K automated system.
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