<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Papers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2303</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
<td>M2.68</td>
<td>345709</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
</tbody>
</table>

**DISTRIBUTION / AVAILABILITY STATEMENT**

Approved for public release; distribution unlimited.

**14. ABSTRACT**

20030129 217

**15. SUBJECT TERMS**

Please see attached

**16. SECURITY CLASSIFICATION OF:**

- a. REPORT: Unclassified
- b. ABSTRACT: Unclassified
- c. THIS PAGE: Unclassified

**17. LIMITATION OF ABSTRACT**

A

**18. NUMBER OF PAGES**

1

**19a. NAME OF RESPONSIBLE PERSON**

Leilani Richardson

**19b. TELEPHONE NUMBER (include area code)**

(661) 275-5015
MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO) 06 Sep 2001

Robert J. Hinde (Univ. of Tennessee); David T. Anderson (Univ. of Wyoming); Simon Tam; Mario E. Fajardo, "Probing Quantum Solvation W/ IR Spec.: IR Activity Induced in Solid pH2 by N2 and Ar Dopants"

Physical Review Letters
(Deadline: ASAP)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

Signature ____________________________ Date __________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.
Comments:

Signature ____________________________ Date __________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required
Comments:

Signature ____________________________ Date __________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments:

PHILIP A. KESSEL Date
Technical Advisor
Space and Missile Propulsion Division

Best Available Copy
Probing quantum solvation with infrared spectroscopy: 
infrared activity induced in solid parahydrogen by N2 and Ar dopants

Robert J. Hinde* 
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600

David T. Anderson 
Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071-3838

Simon Tarn* and Mario E. Fajardo 
U.S. Air Force Research Laboratory, AFRL/PRSP, Edwards Air Force Base, California 93524-7680

We present high-resolution infrared absorption spectra of solid parahydrogen matrices containing low concentrations of N2 or Ar impurities. The spectra reveal dopant-induced absorption features that acquire infrared activity through short-range isotropic vibrational transition dipole moments arising from dopant–H2 intermolecular interactions. These dopant-induced features provide new insights into the perturbation of the vibron bands of the H2 matrix by chemical impurities, and thus into the physics of solvation in a quantum solid.

DOI: fauxPRL.doc

PACS numbers: 33.20.Ea, 67.80.-s, 78.30.-j

Solid hydrogen and its isotopomers (HD and D2) have long been recognized as unique cryogenic media for high-resolution spectroscopic studies of molecular rovibrational dynamics in condensed phases [1,2]. In the lowest energy state of the solid H2 crystal, solid parahydrogen (pH2), each H2 molecule is in its j=0 rotational state and is therefore a spherically symmetric object with no electrostatic multipole moments. Consequently, the pH2 crystal is bound together only by weak pH2–pH2 dispersion interactions, making solid pH2 a very "soft" and nearly non-perturbing environment for molecular impurities. This has motivated recent high-resolution infrared (IR) absorption studies [2-4] of the rovibrational spectra and dynamics of dopants embedded in solid pH2 matrices. Analysis of these spectra within the framework of crystal field theory provides valuable information on dopant–pH2 interactions and on the microscopic nature of dopant trapping sites in the pH2 matrix.

Complementary information can be obtained by investigating the impurity-induced changes in the IR absorption spectrum of the pH2 matrix itself. For instance, pH2 solids containing low concentrations of j=1 orthohydrogen (oH2) rotational “impurities” exhibit an IR absorption feature near 4153 cm⁻¹ that is assigned to the pure vibrational Q1(0) transition (v=1 → 0, j=0 → 0) of pH2 molecules in the matrix [5]. Although this transition is strictly IR inactive in isolated gas phase pH2 molecules and in pure solid pH2, orientational transitions of the oH2 dopant's permanent quadrupole moment provide a mechanism for inducing nonzero Q1(0) transition moments in pH2 molecules within the doped solid [6]. This oH2-induced absorption feature has a characteristic asymmetric lineshape arising from “vibron hopping,” or delocalization of the v = 1 vibrational excitation throughout the pH2 matrix. Analysis of this lineshape provided important information on the vibrational dependence of the H2–H2 potential before the era of ab initio and molecular beam studies of intermolecular potentials [6-8].

Spherical dopants such as alkali metal and rare gas atoms can also induce IR activity in solid pH2 matrices [9], although via a qualitatively different mechanism that originates in short-range isotropic overlap-induced transition dipole moments [10] arising from intermolecular exchange interactions. The effectiveness of this induction mechanism stems from the fact that a chemical impurity breaks the local symmetry of the pH2 lattice; hence this mechanism is truly general, and applies to atomic and molecular impurities alike. Because the net transition moment for these induced transitions depends sensitively on the microscopic structure of the dopant trapping site [10], careful study of these spectral features can provide new insights into the nature of impurity solvation in the pH2 quantum solid.

In this Letter, we report high-resolution investigations of the IR spectra of solid pH2 matrices doped with N2 impurities. Because both j=0 and j=1 N2 rotational levels are populated in the cryogenic solid pH2 environment, these doped matrices turn out to be good model systems for comparing the newly-identified isotropic induction mechanism with previously studied mechanisms based on transition dipoles induced by the electrostatic fields of impurity species. This is because the j=0 N2 dopants are spherical objects with no multipolar electrostatic field, and thus act only via the short-range isotropic mechanism to induce IR activity in adjacent H2 molecules, while the j=1 N2 dopants (like oH2 molecules) induce transition dipoles...
in both nearby and distant PH2 molecules by virtue of their permanent quadrupole moments. Hence two distinct induction mechanisms are active in a single sample.

We prepare millimeters-thick doped solid PH2 samples by rapid vapor deposition [9] of flows of precooled H2 gas and room temperature dopant gas onto a BaF2 substrate cooled to T = 2 K by a liquid helium bath cryostat. The precooled H2 gas emerges from a variable temperature ortho/para H2 converter [11] typically operated at T = 15 K to produce nearly pure PH2 gas flows with approximately 100 parts per million (ppm) of residual OH2. In some cases we operate the converter at elevated temperatures to produce OH2-enriched samples.

The absorption spectra of the doped PH2 samples are recorded along the substrate normal using a Fourier transform IR spectrometer. As-deposited spectra are recorded immediately after deposition at a substrate temperature of T = 2.4 K. We then anneal the samples by raising the substrate temperature to T = 4.8 K, and record some spectra at this temperature as well. Sample thicknesses are measured to within ± 10 % (95 % confidence level) using the approach described in Ref. 12. The impurity concentrations cited here are ratios of the quantities of dopant and H2 entering the sample chamber. These values may differ from the actual impurity concentrations in the solid (due to varying sticking efficiencies of PH2 and dopant molecules, among other reasons) but are estimated to be within ± 40 % of the in situ concentrations.

Figure 1 shows the IR absorption spectra of four as-deposited PH2 samples. Trace (a) depicts the spectrum of a PH2 sample containing 10 ppm of CH4, which is included in each sample as a structural tracer for monitoring the morphology of the as-deposited samples [3,4]. No detectable IR activity in the PH2 Q1(0) region is induced either by the CH4 dopant (at this concentration) or by the residual OH2 molecules present in the sample.

Trace (b) shows the absorption spectrum of solid PH2 containing 2500 ppm of OH2, and displays both the OH2-induced PH2 Q1(0) feature between 4152 and 4153.2 cm⁻¹ and the narrow Q1(1) transition of the dopants themselves at 4146.6 cm⁻¹. The Q1(0) feature exhibits the asymmetric vibron hopping lineshape mentioned previously. This characteristic lineshape maps out the subset of delocalized Q0(0) vibrations whose spatial wave functions achieve nonzero overlap with the quadrupolar electrostatic field of the OH2 dopant [6], and therefore indicates the presence of an induction mechanism based on quadrupole-induced transition moments.

Trace (c) depicts the spectrum of a PH2 sample containing 1000 ppm of natural isotopic abundance N2; it shows a broad, asymmetric absorption feature from about 4150 to 4154 cm⁻¹. The position of this feature coincides closely with that of the PH2 Q1(0) transition observed in mixed OH2/PH2 samples, and we assign this feature to N2-induced Q1(0) transitions of PH2 molecules in the doped solid.

The lineshape of this feature shares some common aspects with the OH2-induced Q1(0) feature shown in trace (b), including a relatively steep blue edge and a gently sloping red edge that meet at an absorption maximum at 4153.1 cm⁻¹. Despite these similarities, we can rule out any possibility that the feature shown in trace (c) may arise from residual OH2 impurities, because the residual OH2 concentration in the N2-doped sample is too low to produce the Q1(1) feature seen at 4146.6 cm⁻¹ in the OH2-enriched sample. Furthermore, the feature shown in trace (c) is much broader at the baseline than is the OH2-induced Q1(0) transition shown in trace (b). We therefore attribute the N2-induced feature in trace (c) to the superposition of two distinct N2-induced PH2 Q1(0) transitions: a quadrupole-generated feature induced by j=1 N2 dopants, which gives the central portion of the peak its characteristic shape, and a broader, unstructured feature induced by spherical j=0 N2 dopants.

Support for this interpretation is provided by trace (d) in Fig. 1, which depicts the IR spectrum of a PH2 sample containing 1000 ppm of Ar. The spherical Ar dopants induce a broad, structureless PH2 Q1(0) feature visible from

FIG. 1. Absorption spectra of four as-deposited doped PH2 solids at T = 2.4 K. Trace (a) is for a sample containing 10 ppm of CH4; trace (b) is for a sample containing 10 ppm of CH4 and 2500 ppm of OH2; trace (c) is for a sample containing 10 ppm of CH4 and 1000 ppm of N2; trace (d) is for a sample containing 10 ppm of CH4 and 1000 ppm of Ar. Sample thicknesses are 2.7, 4.0, 3.1, and 2.9 mm for traces (a) through (d) respectively. Trace (b) has been scaled by a multiplicative factor of 0.3 to compensate for the higher dopant concentration and thickness of this sample. Traces (a) through (d) are presented at respective resolutions of 0.0075, 0.008, 0.01, and 0.008 cm⁻¹ and have been displaced vertically for ease of presentation.
4150 to 4153 cm\(^{-1}\), much like the underlying broad feature in trace (c) that we have attributed to \(j=0\) N\(_2\) molecules. As we explain in more detail below, the lineshapes of spectral features attributed to the isotropic overlap induction mechanism differ from those of features arising from quadrupole induction because different subsets of the pH\(_2\) crystal's Q\(_1(0)\) vibrons are rendered IR active by the two mechanisms. This shows that careful study of these dopant-induced features can shed new light on the fundamental physics of the host pH\(_2\) matrix.

The Q\(_1(0)\) features we have attributed to the symmetry breaking isotropic induction mechanism originate in (vibrational) transition dipole moments induced by short-range intermolecular exchange interactions \[10\]. The same transition moments lead to collision-induced Q\(_1(0)\) H\(_2\) IR absorption in pure H\(_2\) \[13,14\] and in gaseous mixtures of H\(_2\) with other atomic and molecular species \[15\], and the Q\(_1(0)\) pH\(_2\) features induced by Ar and j=0 N\(_2\) dopants thus represent solid-phase analogues of collision-induced absorption. The “collisions” which generate overlap-induced transition moments in the pH\(_2\) matrix are simply intimate, short-range interactions between nearest-neighbor molecules in the solid. These nearest-neighbor interactions play an especially prominent role in solid pH\(_2\) matrices because the individual pH\(_2\) molecules in the solid undergo large-amplitude zero point motions about their nominal lattice sites \[17\]; this in turn amplifies the effects of overlap-induced transition dipole moments, which decrease rapidly with increasing intermolecular distance \[16\].

Because these overlap-induced Q\(_1(0)\) transition moments depend strongly on the dopant–pH\(_2\) distance, the transitions rendered IR active by spherical dopants are those in which the final state's Q\(_1(0)\) vibron has substantial amplitude on one or more of the twelve pH\(_2\) molecules which are adjacent to the dopant. (In addition, the final state's vibron wave function must have appropriate symmetry, so that the transition moment vectors associated with these twelve pH\(_2\) molecules do not sum to zero.) In contrast, the electrostatic field of OH\(_2\) and j=1 N\(_2\) dopants decays rather slowly with increasing distance (as \(1/R^4\)), and the quadrupole induction mechanism therefore also activates vibrons with substantial amplitudes on non-nearest-neighbor pH\(_2\) molecules. Consequently, the spectral features induced by spherical dopants give us unique insight into the perturbation of the host crystal's vibron bands by chemical impurities, making them important tools for studying solvation in the pH\(_2\) matrix environment.

Our interpretation of trace (c) in Fig. 1 assumes that N\(_2\) dopants in solid pH\(_2\) retain good rotational quantum numbers. Evidence that this is so is provided in Fig. 2, which shows the temperature dependence of four satellite IR absorption features in the vicinity of the N\(_2\)-induced Q\(_1(0)\) feature. The strongest of these features is a multiplet that decreases in intensity upon heating, consisting of three peaks at 4162.3, 4163.2, and 4164.9 cm\(^{-1}\), each 0.9 cm\(^{-1}\) wide. A weak structureless feature whose intensity is independent of temperature appears centered at 4170.6 cm\(^{-1}\) and is 1.3 cm\(^{-1}\) wide. Two very weak features, each about 4.2 cm\(^{-1}\) wide, appear when the sample is heated to T \(\approx\) 4.8 K: one is a doublet centered at 4142.1 cm\(^{-1}\) and the other is a shoulder centered at 4178.5 cm\(^{-1}\) superimposed on the the pH\(_2\) Q\(_R\) phonon sideband. The spectral changes produced by heating the doped pH\(_2\) sample are fully reversible.

As we show next, the observed temperature dependence of these satellite features, and their positions relative to the sharp maximum of the Q\(_1(0)\) peak, indicate that they arise from cooperative transitions in which the pH\(_2\) Q\(_1(0)\) transition is accompanied by a pure rotational \(\Delta j = 2\) transition of the N\(_2\) dopant. This demonstrates that N\(_2\) dopants rotate nearly freely in the pH\(_2\) matrix.

The homonuclear N\(_2\) molecule exists in ortho and para nuclear spin modifications associated with even and odd rotational quantum numbers, respectively \[18\]. In the absence of a catalyst, interconversion between orthonitrogen and pararnitrogen is very slow; hence the even and odd j levels of N\(_2\) achieve thermal equilibrium independently in the cryogenic pH\(_2\) matrix. Although the rotational constant of N\(_2\) dopants in the matrix environment differs slightly from that of isolated gas phase N\(_2\) molecules (see below), this difference is small enough that we can esti-
mate the rotational level populations of \( \text{N}_2 \) dopants reasonably well using the gas phase rotational constant \( B_{\text{gas}} = 1.99 \text{ cm}^{-1} \) [19]. At \( T \approx 2.4 \text{ K} \) only the \( j=0 \) and \( j=1 \) levels of \( \text{N}_2 \) are appreciably populated, with fewer than 0.5% of the \( \text{N}_2 \) molecules in levels with \( j \geq 2 \). Heating the sample to 4.8 K promotes approximately 15% of the \( j=0 \) molecules to the \( j=2 \) level, but excites fewer than 1% of the \( j=1 \) molecules to the \( j=3 \) level.

Consequently, the triplet feature shown in Fig. 2, which decreases in intensity by roughly 20% upon heating, can be assigned to cooperative transitions which combine the \( Q_1(0) \) \( \text{pH}_2 \) excitation with \( S_0(0) \) \( \Delta j = 2 \) transitions of the \( \text{N}_2 \) dopant from its \( j=0 \) level. The relative intensities of the three peaks remain constant during the annealing cycle, confirming that the peaks arise from a common initial state that is depopulated upon heating. The triplet nature of this feature suggests that interactions between the \( \text{pH}_2 \) vibron and the \( \text{N}_2 \) dopant’s \( j=2 \) rotational wave function lift the orientational degeneracy of the \( j=2 \) state. Given the approximate \( 1:2:2 \) intensity ratio of the three components of the triplet, we assign the peaks at 4162.3, 4163.2, and 4164.9 cm\(^{-1} \) to transitions to the \( m_j = 0, \pm 1 \), and \( \pm 2 \) levels of the \( j=2 \) state, respectively.

The weak features that appear only in the spectrum of the heated sample can be assigned to cooperative transitions involving \( \Delta j = \pm 2 \) transitions from the \( \text{N}_2 \) \( j=2 \) level, as indicated by the \( O_0(2) \) and \( S_0(2) \) labels in Fig. 2. This \( \text{N}_2 \) rotational level becomes populated (at the expense of the \( \text{N}_2 \) \( j=0 \) level) when the sample is heated to \( T \approx 4.8 \text{ K} \). Conversely, the temperature-independent feature at 4170.6 cm\(^{-1} \) arises from cooperative transitions involving \( S_0(1) \) \( \Delta j = 2 \) transitions from the \( \text{N}_2 \) \( j=1 \) level; the population of this \( \text{N}_2 \) level is unaffected by the thermal cycling depicted in Fig. 2.

To confirm these rotational assignments, we note that the center of gravity of the \( \text{pH}_2 \)-induced \( Q_1(0) \) feature [trace (b) in Fig. 1], at 4152.8 cm\(^{-1} \), marks the vibron-free origin of the quadrupole-induced \( Q_1(0) \) vibron band in solid \( \text{pH}_2 \) [6]; this represents the energy required to excite a \( Q_1(0) \) transition localized on a single \( \text{pH}_2 \) molecule in the solid. The centers of gravity of the \( \text{N}_2 \)-induced satellite features are shifted from this band origin by amounts corresponding to the energies of the appropriate \( \text{N}_2 \) \( \Delta j = \pm 2 \) rotational transitions, which are simply integer multiples of the \( \text{N}_2 \) rotational constant \( B \) in the matrix environment: 6 \( B \) for the \( S_0(0) \) and \( O_0(2) \) transitions, 10 \( B \) for the \( S_0(1) \) transition, and 14 \( B \) for the \( S_0(2) \) transition. Applying this analysis to the features shown in Fig. 2 yields \( B = 1.79 \pm 0.04 \text{ cm}^{-1} \), which is reduced by 10% from \( B_{\text{gas}} = 1.99 \text{ cm}^{-1} \) by crystal field effects. The good agreement among the rotational constants derived from the four satellite features indicates that the rotational assignments in Fig. 2 are internally consistent.

To summarize, we have presented high-resolution IR absorption spectra of \( \text{N}_2 \) - and \( \text{Ar} \)-doped solid \( \text{pH}_2 \). The dopant-induced features observed in the spectra provide information about the solvation of small dopants in the \( \text{pH}_2 \) matrix and about the symmetry requirements and length scale of the induction mechanism generating the IR activity. In particular, the lineshapes of the dopant-induced features tell us which vibrations of the \( \text{pH}_2 \) crystal are rendered active by a particular dopant, and how the crystal’s vibron bands may be perturbed by the dopant’s presence.

The information encoded in these dopant-induced IR absorption spectra can be extracted with the help of quantum Monte Carlo simulations [10] which account for the highly correlated, large-amplitude zero point motions of the \( \text{pH}_2 \) solute molecules. Simulations of \( \text{N}_2 \)-doped \( \text{pH}_2 \) should enable a comprehensive analysis of the lineshapes and multiplet splittings of the \( \text{N}_2 \)-induced spectral features, thereby shedding light on the rotational dynamics and solvation of chemical impurities in a highly quantum solid. Further work in this direction is in progress.

This work was supported while R.J.H. and D.T.A. were visitors at the Air Force Research Laboratory’s Propulsion Sciences Division (Edwards AFB), supported through contracts administered by ERC, Inc. R.J.H. acknowledges additional support from the Air Force Office of Scientific Research (contract F-49620-01-1-0068) and from the Petroleum Research Fund.

*Corresponding author. E-mail: rhinde@utk.edu

*Present address: KLA-Tencor Corporation,
1 Technology Drive, Milpitas, CA 95035.