Ultrasensitive Biosensors for Molecular Recognition and Manipulation

Abstract
See report.

Subject Terms
Biosensor, Molecular Recognition, Molecular Beacons, Nanomaterials
Ultrasensitive Biosensors for Molecular Recognition and Manipulation

Weihong Tan
University of Florida, Department of Chemistry and McKnight Brain Institute
Gainesville, FL 32611
Phone: 352-846-2410; Fax: 352-846-2410
E-mail: tan@chem.ufl.edu
Dr. Harold Bright (ONR)
N00014-98-1-0621

Abstract

Our objective is to develop novel biomolecule recognition mechanisms and ultrasensitive biosensors for direct, real-time biochemical imaging and sensing. These biosensors will provide a novel tool which permits major advances in the investigation and control of fundamental molecular and cellular physiological processes. There are three aspects of our approach: 1. Using nanotechnology and existing sensing mechanisms for nanometer level biosensor development; 2. Using molecular beacon DNA molecules for development of new biomolecule recognition mechanisms; 3. Using single molecule microscopy techniques for molecular interaction studies. Over the three years of this grant, we have published 20 papers and filed two patents (one granted and one pending). The grant also has helped us to train six graduate students, three postdoctoral researchers, five undergraduate students. Among all the students, there are two African American graduate students, one Hispanic graduate student and three minority undergraduate students. The grant has also enabled us to build a world class research laboratory in the area of biomolecular interaction and recognition studies.

Research achievements

1. Development of DNA/RNA biosensors. We have developed a variety of molecular beacon based DNA/RNA biosensors for ultrasensitive detection. We have prepared single point sensors as well as DNA sensor arrays for DNA/mRNA detection. We have also used nanoparticles for DNA biosensor development. A molecular beacon (MB) is an ssDNA probe for detection of nucleic acids and proteins. A MB possesses a loop and stem structure with a fluorophore and a quencher linked at either end of its stem. Its signal transduction mechanism for molecular recognition is based on fluorescence energy transfer (FRET). The MBs act like switches that are normally closed to bring the fluorophore/quencher pair together to turn fluorescence "off". Upon binding to the target molecules, they undergo conformational changes that open the hairpin structure and separate the fluorophore and quencher, thus turning "on" the fluorescence. This feature makes MBs an extremely useful probe in a variety of applications such as the monitoring of real time PCR processes and the detection and dynamic study of mRNA in living cells.

We have designed biotinylated ssDNA MBs for DNA hybridization studies at a solid surface. The biotinylated MB with tetramethylrhodamine (TMR) as the fluorophore and DABCYL as the quencher has been custom synthesized. This biotinylated MB can be immobilized onto a silica
surface and hybridized with its cDNA. Based on this surface immobilized MB, we have developed different DNA/RNA biosensors: a fiber optical evanescent wave sensor, a submicrometer optical fiber sensor, a nanoparticle based biosensor and biosensor arrays. The sensors are rapid, sensitive, stable, highly selective, reproducible and regenerable. They have been applied to detect specific DNA and mRNA sequences and to the study of DNA hybridization kinetics. The target DNA concentration detection limit of the MB biosensors is in the pico-Molar (10^{-12} M) range, and the smallest amount of DNA has been detected is in attomoles. Using an array imaging technique, we are able to detect ten DNA molecules. The microwell array was fabricated by photolithographic and wet chemical etching techniques. The volume of each well is about 28 femtoliters. The ultrasmall volume compared to the traditional DNA microarray techniques reduces the cost of sample, reagent and analysis time. We intend to use this array system for the determination of multiple cancer proteins and protein variants and thus for cancer cell proteomics studies with multiple parameters.

2. Single molecule reaction and interaction: We have studied single biomolecule interaction and reaction at an interface of liquid/solid. We have investigated single DNA molecule hybridization dynamics using surface immobilizable molecular beacons.

We have developed an ultrasensitive fluorescent microscopy technique for single molecule detection and imaging. The fluorophores were excited by an evanescent wave produced on an optical fiber probe surface. The fluorescent signals were detected by an Intensified CCD camera. Single fluorophore molecules have been imaged. The single molecule imaging capability realized by an optical fiber can be directly adopted for DNA/RNA detection in real-time. We have also directly observed single molecule reaction at a solid-liquid interface. The reaction between one surface immobilized molecule and one flowing molecule in the solution was studied. Time-lapse fluorescence images of single molecule products, excited by the evanescent field produced at a quartz-liquid interface, were recorded to follow the biochemical reaction. This approach offered a novel means to study single molecule interaction and reactions at the solid-liquid interface. It also enables biochemical mapping of surface heterogeneity at the single molecule level. Using this technique, we have also studied single DNA molecule hybridization kinetics using surface immobilizable MB on a silica plate. MB hybridization has been monitored after reacted with its target DNA. We are able to monitor the progression of the surface hybridization. Using this technique, we have studied molecular beacon hybridization dynamics. Better understanding has been achieved regarding the sometimes-high background signal for unhybridized surface bound MBs, and improvements in MB based biosensor development is achieved.

3. Development of molecular beacon DNA probes for protein recognition: Using MBs, we have studied nonspecific protein-DNA binding. We have also developed a novel approach for real-time protein detection by combining MB's excellent signal transduction with aptamer's specificity in protein binding. There is no technology available that can either identify or quantify proteins in real time and in a rapid method. MBs were originally developed for the detection of nucleic acids, but we found their promising application in the detection of DNA-binding proteins. We have attempted, using the novel MBs and the excellent biomolecular recognition capability of aptamers, to introduce a new approach for directly monitoring protein production in living cells. We started working with a nonspecific MB for single stranded DNA binding protein studies, continued with detailed protein-DNA binding investigation with enzymes such as lactate dehydrogenase, and then developed a MBA for a specific model protein, thrombin. We further continued this line of research by developing an aptamer MB for PDGF, a growth factor relevant to cancer diagnosis and mechanism studies.
4. **Living cell studies.** Using the tools developed during this grant, we have studied living cells with the biosensors developed above.

a. Single living cell calcium influx upon drug stimulation: We have utilized a microscope/CCD camera system to follow subcellular events in real time. The effects of a series of reagents, such as NMDA, glutamate and other drugs, on Ca\(^{2+}\) intracellular influx have been studied. Using near-field optics (NFO) probes and biosensors, we have carried out experiments, with much improved spatial resolution, to study ischemia and stroke at the cellular level. We introduced a NFO probe into live cultured vascular smooth muscle cells (VSMC) and NG108-15 neuroblastoma cells. The inserted probe can monitor Ca\(^{2+}\) influx through a Ca\(^{2+}\) dye. Ca\(^{2+}\) influx was initiated using a drug, Angetisen II. The probes can monitor intracellular events either on a cell’s membrane or inside the cell. Our studies of Ca\(^{2+}\) real-time monitoring have shown the potential of the NFO probe in monitoring ultrasmall regions of a living cell. The results demonstrate that NFO is useful for detecting resting [Ca\(^{2+}\)] and increases in [Ca\(^{2+}\)] after drug administration. Various response profiles have been observed among different cells, upon different drug administration. NFO enables the visualization of functional responses in living cells with subwavelength spatial resolution.

b. Real-time monitoring of neurotransmitter release using biosensors. We have studied single living cell and brain tissue neurotransmitter (glutamate, lactate and GABA) release using optical fiber glutamate and lactate sensors. A glutamate biosensor is positioned next to glutamate releasing neuron cell membrane by a micromanipulator. Glutamate release is induced by NMDA stimulation. Both ischemic-induced neurons and NG-108 neuroblastoma cells are used for glutamate monitoring by the glutamate sensor. Quantitative release of glutamate from single cells is followed. The released glutamate has a quick rise once the cell is stimulated. Neurotransmitter release has also been studied using spatially resolved two-dimensional (2D) imaging biosensors. Interesting results have been obtained with brain tissue samples. Real-time monitoring of lactate release from brain slice has been carried out with a 2D biosensor, which is prepared by direct immobilization of lactate dehydrogenase (LDH) molecules onto a flat silica quartz glass surface through a covalent binding mechanism. The biosensor is able to spatially differentiate lactate concentration variations with conventional optical microscopic spatial resolution. This biosensor has the capability to effectively detect lactate down to a concentration of 100 nM. With a rapid response time, this 2D biosensor is able to monitor many cells simultaneously in one image. Drug induced lactate release has been investigated in real-time. We found that different cellular areas have various amount of lactate released. We have studied the impact of nicotine and KCl on lactate release from the brain slices. The spatially resolved determination of the newly released lactate from the mouse brain slices clearly demonstrates the feasibility of real time imaging of lactate release from living specimen. The 2D biosensor will enable us to study cellular communications and possibly other biological processes that require simultaneous temporal and spatial resolutions.

Publications

Patents

STUDENTS, RESEARCH ASSOCIATES AND TRAINING

Graduate Students

Bernd Liesenfeld, Ph. D candidate, 1997 - now, *Biomedical Engineering*, Engineering an optical patch-clamp for single ion channel recording, on-going.

Marie Vicens, Ph. D candidate, 2000 - now, **Bioanalytical Chemistry**, Molecular design for cancer protein studies, on-going.

Undergraduate Students

Research Associates and Postdoctoral Researchers

Dr. Jon Dobson, 1998, 12 – 1999, 9, **Biomedical engineering and biophysics research**: Optical patch clamp development and two dimensional sensor application (Now a Professor at Department of Biomedical Engineering and Medical Physics at Keele University in England).

Dr. Xiaohong Fang, 1998, 4 - 2000, 8, **Bioanalytical chemistry and biophysics research**: Single molecule reaction study, molecular beacon design, immobilization and application, molecular beacon-protein interaction studies (Now a Professor at the Institute of Chemistry, Chinese Academy of Science).

Dr. Jianwei Jeffery Li, 1999, 3 – 2002, 7, **Biochemistry and biophysics research**: Molecular beacon-protein interaction studies, molecular beacon novel applications, molecular probe design, nanomotor using DNA probes (Now a Research Associate at the Department of Chemistry, Harvard University).

Dr. Swedeshmukul Santra, 1998, 11 – 2000, 11, **Bioanalytical chemistry and nanotechnology**: glutamate chemistry, photophysics and photochemistry of cyclodextrin encapsulated fluorophores, nanoparticle preparation and application (Now an Assistant Professor at the Department of Neuroscience, College of Medicine, University of Florida).
Dr. Tibor Zelles, 1997, 1 - 1998, 1, Neuroscience and biophysics research: Single cell studies using near-field optics (Now a Professor at the Hungry Academy of Science).

High school Students
Nathan Williams (High School Student), May, 1998 to March, 1999, worked on various tasks in the lab.

Alyse Zhang (High School Student), 2000, 7 – 2000, 8, worked on protein purification and its interaction with DNA probes.