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Abstract- The use of contrast medium allows joining the 
high-resolution anatomical information provided by standard 
magnetic resonance with functional information obtained by 
means of the diffusion of contrast agent in tissues or in the 
vascular net. To effectively use this kind of images for medical 
diagnosis, quantitative analysis should be performed. We 
propose an automatic registration procedure based on 
maximization of the mutual information that address the 
requirement of fast and automatic tools for quantitative analysis 
of contrast medium enhanced MR images. Two optimization 
algorithms for maximization of the mutual information are 
discussed, taking into account both time performance and 
registration quality. We present also preliminary results on 
cardiac and wrist MR images showing that misalignments and 
artifacts introduced by patient movement during the 
examination are greatly reduced by our application.  
 
Keywords -  Magnetic Resonance, Image Registration, Mutual 
Information, Contrast Enhanced MRI 

 
I. INTRODUCTION 

 
The use of contrast medium (CM) to enhance the 

information provided by Magnetic Resonance is a growing 
technique. In fact, the use of contrast  enhanced images 
allows to join the high-resolution anatomical information 
provided by standard MR with functional information 
obtained by means of the diffusion of contrast medium in 
tissues or in vascular net. The way in which the contrast 
medium evolve during time can provide information about 
the tissue functionality and perfusion. 

 In order to follow the diffusion of contrast medium, 
several images of the same anatomical district are acquired  
during time, starting from the injection of contrast medium. 
The so called time/intensity (T/I) curve can be evaluated 
measuring the intensity value of  each image pixel during 
time. An example of the use of perfusion analysis in MRI is 
myocardial perfusion imaging with Gadolinium-DTPA as 
contrast agent, that allows to assess the extent and type of 
tissue injury after myocardial infarction. Contrast  enhanced 
MR images can be also useful in medical examination of 
other districts, such as extremities (knees, ankles, wrists and 
elbows) and brain.  

Quantitative evaluation of  the contrast agent distibution 
during time implies to find the corresponding pixels in all 
temporal frames. Usually, the acquisition protocol is made to 
obtain spatial alignment of all frames. Therefore, each pixel 
in a image frame should correspond to the pixels in the other 
frames with the same geometrical coordinates. So that, the 
segmentation of the district of interest can be done on the 
best image, i.e. the one with the best contrast to noise ratio. 

This surely enhances both the reliability and the performance 
of the analysis.  

Unfortunate, obtaining spatially aligned images is a 
difficult task, mainly due to the movement of the anatomical 
district under examination. Therefore, a misalignment 
correction, also named image registration, is needed in post-
processing phase. A lot of methods were proposed to address 
the general medical image registration problem [1,2]. About 
the present problem, Yang et alt. proposed to extract some 
geometrical features from each frame and to perform the 
image registration by registering the extracted geometrical 
features [3]. Because a single multiphase 3D study can 
consist of hundreds of images, manual or semi-automatic 
segmentation of a so large data set is a time-consuming task 
and is affected by intra-observer and inter-observer 
variability. So that, automatic tools should be used. On the 
other hand, most of the automatic image segmentation 
algorithms are very sensitive to noise. Although the 
acquisition parameters can be optimized regarding SNR and 
contrast, such methods usually result in a significant increase 
in the overall acquisition time. This is absolutely unreliable 
when we need high temporal resolution. Moreover, many 
automatic segmentation algorithm are model-based and can 
be used only to segment a specific anatomical district .  

We prefer to apply voxel-based methods that operate 
directly on the image gray values, and are effective in our 
problem due to the high degree of similarity between 
involved images. Moreover, this kind of algorithm can be 
applied without modifications to images representing every 
organs. Along voxel-based methods we select mutual 
information as registration parameter, because this was 
demonstrated effective in a large set of applications.  

The goal of this study is to apply a new automatic analysis 
procedure starting from contrast enhanced MR images in 
order to correct the images misalignment in post-processing 
phase. The method has been tested on clinical MR images 
data of the heart and the wrist.   
 

II. METHODOLOGY 
 
A. Mutual Information 
 

The Mutual Information (MI) concept comes from 
information theory, measuring the dependence between two 
variables or, in other words, the amount of information that 
one variable contains about the other [4]. The mutual 
information MI between two data set X and Y can be defined 
as:  
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where H(.) is the entropy of a random variable, and is defined 
as: 
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The join entropy of two random variables X and Y is: 
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Entropy can be interpreted as a measure of the information 
associated with the variable. The mutual information 
measures the relationship between two random variables: if 
the two variables are independent, ( ) ( )YHXHYXH +=),(  
and MI=0. If one variable provides some information about 
the second one, the MI becomes greater then zero. 

 
B. Registration Algorithm 
 

The MI registration criterion states that the MI of the 
image intensity values of corresponding voxel pair is 
maximal if the images are geometrically aligned. Because no 
assumption is made about the nature of the relation between 
the image intensities, this criterion is very general and 
powerful [5, 6]; so that, it can be applied automatically at any 
image in the sequence also during contrast medium transit. 
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Fig. 1: Flow chart of the registration algorithm 
 

Say u(X) as the reference image data set; X represents the 
pixels (or voxels) coordinates and u(X) the intensity value. 
Say v(X) as the image data set that have to be registered with 
the reference data set u(X). The better rigid transformation T 
can be found maximizing the mutual information between  
u(X) and v(T(X)). 
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Finding the T matrix that maximize the value of MI implies 
the solution of an optimization problem with three (in case of 
2D images) or six (in case of 3D images) variables.  

In our problem, we have to find the best alignment not 
only between two images, but along all frames in the 
temporal sequence. In order to reduce the algorithm 
complexity and the related processing time, we choose to 
reduce the problem to a sequence of MI maximization 
between image pairs. The way in which we choose the pairs 
will be shown in the following, now we can illustrate the 
registration algorithm between two images, as showed in Fig 
1. First, the MI between the reference image and the image 
under examination is evaluated. An optimization algorithm is 
used in order to estimate the best roto-translation matrix T; 
the matrix is used to rotate and translate the image. An 
interpolation operation is also required. If the result is 
satisfactory, the procedure ends; if not, a new roto-translation 
matrix is evaluated and a new loop is executed. The whole 
process is automatically executed.  

About image interpolation, a lot of work was done in order 
to find the best interpolation method [7]: we use two 
solutions: a simple linear interpolation method during the MI 
maximum research to obtain the best time performance and 
an interpolation algorithm optimized for MR images [8] in 
the last step to compute the final image.     

 
C. Optimization methods 

 
The problem of finding the parameters set that maximize a 

multi-variable function is called optimization problem. The 
optimization algorithm should find the rotation and 
translation parameters that will maximize the MI. The main 
troubles are the presence of MI local maxima and the long 
processing time required by a lot of optimization algorithms.  
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Fig. 2. Performance of simplex and Powell optimization methods 
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We have tested two optimization algorithms, the simplex 

algorithm and the Powell algorithm. The main advantage of 
the downhill simplex method [9] is about time performance, 
because the simplex method requires only function 
evaluations - not derivatives – and so may be more reliable 
than other optimization methods. The Powell  method [10]  is 
more effective respect to the simplex method, especially for 
avoiding local maxima. On the other hand, it requires a long 
computation time. Fig. 2 shows  the results of the two 
optimization methods applied to two test images. The Powell 
method leads to best results (i.e. greater MI), the simplex 
method is less computationally expensive. 

In order to obtain a effective image registration, an 
important aspect is the way to choose the pair of images to be 
registered. The first idea is to register each image with the 
previous one. Because the CM diffuses in continuous 
manner, two consecutive images are almost similar in the 
sequence, so the registration algorithm can better correct the 
misalignment. On the other hand, an error in the registration 
of one image pair will affect the alignment of the whole 
temporal sequence. A second approach is to register all 
frames respect to one image in the sequence. This one is 
selected by the user as the image that has to be used to 
perform the segmentation, i.e. the image in which the district 
of interest is best delineated. We have used the following 
approach: first, all frames are registered using the simplex 
algorithm respect to the image in the sequence selected by the 
user. After, a more accurate registration using the Powell 
method is performed registering each image with the 
previous one. The search range for the T matrix elements is 
reduced in this second step to reduce the prcessing time. This 
approach leads in many cases to the best results.  
 

III. RESULTS 
 

The method has been tested on two image data sets. The 
first one is a set of Gd-DTPA contrast enhanced cine cardiac 
MRI acquired using a GE Signa Horizon LX System 1.5T. A 
cardiac array coil has been used, with cardiac-gated fast 
gradient echo – echo train (FGRET) sequence.  
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Fig. 3: OA index before and after registration for cardiac images 
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Fig. 4: OA index before and after registration for wrist images 

 
A total of 320 images were acquired, consisting on 8 short 

axis slices, each one with 40 temporal frames. For each 
temporal image and for each spatial slice, the endocardial 
contour has been manually traced before and after the 
registration procedure; we used the overlapping area index 
(OA) as an index of image registration degree. Overlapping 
area is the common area between the region selected in the 
developing image and the reference one, normalized by the 
reference area.  

In order to quantitatively evaluate the effectiveness of the 
MI-based registration technique, images corresponding to a 
normal volunteer were firstly analyzed: because such images 
have been acquired during breath-hold, we can consider them 
as already spatially aligned. For normal aligned images, the 
mean OA value was equal to 0.98, with SD = 0.094. The 
same OA index evaluation procedure has been performed on 
the patients images, before and after registration procedure. 
Fig. 3 shows the value of OA index for each frame before 
and after registration.   

The second data set is a set of wrist images acquired by an 
ESAOTE Artoscan MR acquisition device. ESAOTE 
Artoscan is an office-size scanner which provides high-
quality images of the extremities only (knees, ankles, wrists 
and elbows). It includes a permanent magnet with an 0.18 T 
field.  
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Fig. 5: Frames misalignment (normalized) for cardiac and wrist images 
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Fig. 6: Time/Intensity curves before (1) and after (2)  
registration for myocardial perfusion images. 

 
The SE (T1=16ms, T2=100ms) sequence was used to 

acquire 3 sections of the wrist during the diffusion of a CM. 
A total of 21 frames was acquired for each slice. The OA 
index was evaluated as in the previous data set, manually 
tracing the anatomical district under examination before and 
after  application of the registration procedure. Fig. 4 shows 
the OA index before and after registration for wrist images. 
It is interesting to note that in order to improve the 
registration algorithm, some a-priori information about the 
misalignment can be included in the procedure. As it is 
shown in Fig. 5, the misalignment value in wrist images is 
randomly distributed respect to the acquisition time. Instead, 
in cardiac perfusion images, until the patient is able to hold 
his breath, the misalignment value is small. After that, the 
misalignment increases. The misalignment is measured 
respect to the image 1 for the wrist and the image 8 for the 
myocardium. This kind of a-priori information can be used to 
limit the research range of the optimization algorithm, 
improving both the speed and the effectiveness of the 
registration procedure.     
Fig. 6 shows an example of a time/intensity curve extracted 
from a myocardium region before and after application of the 
registration algorithm. The artifacts present in the T/I curve 
before registration are greatly reduced with the application of 
the MI based registration algorithm. 
 

IV. DISCUSSION AND CONCLUSIONS  
 

The use of an automatic registration procedure based on 
maximization of the mutual information seems to be effective 
in order to address the requirement of fast and automatic 
tools for quantitative analysis of CM enhanced MR images. 

The quantitative index OA (Overlapping Area) was 
introduced in order to measure in quantitative way the 
algorithm effectiveness. Preliminary results on cardiac and 
wrist images show that misalignments and artefacts 
introduced by patient movement during the examination are 
greatly reduced.  

Different approaches about the choice of the optimization 
algorithm for maximization of the mutual information 
between to images are  discussed, taking in account both time 
performance and registration quality. Some preliminary 
results are also presented about the use of a-priori 
information to improve the registration procedure.  

Contemporary registration of several temporal frames is 
still an open problem. In this work, our approach was to 
reduce the problem to a lot of registration operations between 
image pairs. The development of a global registration 
algorithm should improve the registration quality. Perhaps, 
the development of a dedicated optimization methods based 
on new techniques such as evolutionary computing and the 
use of parallel computing will needed in order to obtain an 
effective global registration algorithm.           
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