
 

 

Abstract- The analysis of intramuscular EMG signals is based on 
the decomposition of the signals into basic units. Existing 
decomposition software only supports short registration periods 
or single-channel recordings of signals of constant muscle effort. 
In this paper, we present the decomposition software EMG-
LODEC (ElectroMyoGram LOng-term DEComposition) that is 
especially designed for multi-channel long-term recordings of 
signals of slight muscle movements. Based on experiments on 
simulated and recorded EMG signals, our software is capable of 
providing reliable decompositions with satisfying accuracy. 
EMG-LODEC is suitable for the study of motor-unit discharge 
patterns and recruitment order in healthy subjects and patients. 

 
I. INTRODUCTION 

 
Long-term analysis of neuro-muscular systems, such as the 
analysis of the development of chronic muscle pain, requires 
intramuscular electromyogram (EMG) recordings of several 
minutes to several hours duration. The analysis of the 
measured signals is based on the decomposition of the signals 
into basic signal units called motor-unit action potentials 
(MUAPs). Existing decomposition software only support 
short registration periods (about 10 seconds) and often is 
limited to single channel recordings of signals of constant 
muscle effort recorded by needle electrodes. A well-written 
review of several decomposition algorithms is given in [3]. 
Most automated EMG analysis techniques are developed for 
clinical short decomposition, where recorded EMG signals of 
constant muscle effort guarantee small shape-changes and 
regular activation patterns [2], [6], [7]. Most algorithms 
require only single-channel measurements. An algorithm that 
uses multi-channel measurements is De Luca�s algorithm [5], 
which is based on measurements with the quadrifillar-needle 
electrode during non-dynamic muscle conditions. However, 
to analyze work-related musculoskeletal disorders [4], the 
study of muscle fibre groups, named motor-units (MUs), 
under dynamic conditions has become of great interest in 
neurology and ergonomics. For this reason we considered 
algorithms, which are based on discrete Wavelet coefficients, 
clustering, supervised classification, and template matching. 

In this paper the concept of the decomposition software is 
outlined. Furthermore we present evaluation results for both 
simulated and real EMG signals. 
 

II. METHODOLOGY 
 
A. Decomposition Concept 

EMG signal decomposition is usually divided in to several 
processing stages. First, the EMG signal is bandpass filtered. 
After this filtering, the EMG signal is divided into so called 
inactive segments with low activity and active segments 
containing MUAPs. The beginning and the end of the active 

segments are detected by thresholding based on the estimated 
signal noise power. Only the active segments serve as a basis 
for the following classification. In Fig. 1 the classification 
concept for active EMG segments is shown.  
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Fig. 1. Classification concept for EMG segments. 
 
To estimate the number of classes, to determine the 
templates, i.e. class-mean signals, and to detect MUAP 
overlap, a wavelet based hierarchical cluster analysis is 
applied first, which is based on a modified single linkage-
clustering concept [9].  

Then each active segment is compared to the set of 
templates and classified by the supervised classifier. The 
supervised classifier is based on the discriminant wavelet 
coefficients, multi-channel signal information, and the 
weighted averaging method [11], in order to track action-
potential shape changes. Finally, the last stage is the 
decomposition phase, in which we separate overlapping 
action potentials into their units using class-mean signals in 
order to obtain the complete activation pattern. 
 
B. Segmentation 

The goal of the segmentation is to divide the EMG signals 
into inactive and active segments. After bandpass-filtering 
the EMG signal, the signal noise power of the inactive 
segments is estimated. The estimation of the bandpass 
filtered and discrete EMG signals sEMG[k] is done 
automatically. The positions of the inactive segments are 
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unknown. The estimated signal power is computed according 
to 
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where LR is the length of a window )( ZLR ∈ . Assuming 
that for the minimum of σi

2 the window borders on an 
inactive segment, the following equation for the noise power 
is used 
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where σn
2 is the noise power and σi

2 is the signal power of the 
ith segment. With the estimated noise power and the signal 
samples, the active segments can be determined (Fig. 2). 

 
Fig. 2. Segmentation of an active segment. The starting point is detected 
before the program determines the start and end of the active segments. λS,1 
and λS,2 define the start and end points of the active segments and are 
specified by the user. 

 
C. Classification 

The aim of the classification stage is to estimate the number 
of classes, to determine the templates, and to detect overlaps. 
The classification of active segments is one of the most 
demanding parts of the decomposition algorithm due to a 
number of factors such as the low SNR (signal to noise ratio), 
the MUAP changes due to muscle fatigue and electrode or 
muscle movement. Furthermore, the MUAP waveforms of 
different MUs, which can be very similar, the small distances 
between the class-means, and the alignment error of time-
triggered waveforms caused by time offsets, make the 
classification difficult. This is shown in Fig. 3, where time 
triggered MUAPs of five different MUs are shown.  
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Fig. 3. Time triggered MUAPs of five MUs. 

Wavelet coefficients 
For the clustering and the supervised classification of active 

segments we are using extracted wavelet coefficients. The 
use of wavelet coefficients from selected frequency bands 
can improve the clustering performance, as shown in [10]. 
Given the definition of the multiresolution analysis in [8], the 
wavelet coefficients Fc[m,n] of a finite energy signal c(t) are 
defined as 
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where ψ(t) denotes the wavelet basis function, n the shift 
parameter and m the scaling number. Using the Fourier 
transform of ψm,n(t) the wavelet coefficients can be described 
by 
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where C(ω) is the Fourier transform of c(t) and ψ(ω ) is the 
Fourier transform of ψ(t). Defining e(t) as the difference 
signal between f(t) and g(t)=f(t-τ), with ∈τ [-T/2,T/2] and 
using the Parseval theorem, we can write 
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                (6) 
This means that most of the energy of e(t), depending on the 
Fourier transform, is concentrated in the highest frequency 
band of the signal. Thus, the wavelet coefficients of the 
highest band should be avoided for classification. For 
physiological reasons the power density spectrum of MUAP 
waveforms is mainly concentrated in the frequency range 
between 200 Hz and 2 kHz. Therefore, we extract the wavelet 
coefficients for the classification from this frequency range, 
which improves the classification performance. Outliers can 
be more easily detected, clusters can be better separated, and 
the SNR can be increased, according to this wavelet �based 
distance measure. 

Another advantage of using the wavelet-based measure is 
that the number of features can be significantly reduced 
compared to a minimum distance classifier using all time 
samples [9]. This reduction in features improves the accuracy 
and the processing time compare to previously published 
classification methods. For the classification, the features, 
which distinguish the different classes best, are of great 
importance. As a quality parameter, the Fisher criterion is 
used 
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where µj,l is the mean and σj,l
2 the variance of the lth features 

of the jth classes and J is the number of classes. The criterion 
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parameters became high, if the clusters among themselves are 
well separated.  
 
Clustering of detected MUAPs 

Several different clustering techniques were tested for EMG 
segment classification [2]. Simulations have shown that the 
single-linkage nearest-neighbor cluster method, which is a 
hierarchical clustering algorithm, is best suited for EMG 
clustering [9]. The method extracts wavelet features from 
certain frequency bands to calculate the distance between the 
segments. In the following we describe the modified single-
linkage algorithm that we used. 

The single-linkage algorithm permits a simple graph-
theoretical interpretation, namely the minimum spanning tree 
(MST) method [11]. This is illustrated in Fig. 4, where the 
space of wavelet coefficients is represented. Each segment is 
denoted by a dot. The lines between the dots are the distances 
between two connected segments. Given the distances 
between all segments, and by removing those lines whose 
distances are greater than a given threshold, groups of 
clusters, i.e. MUs, are formed and outliers can be found. The 
distances between the clusters and the largest distances 
within the cluster influence the grouping of the clusters. 

 
Fig. 4. A minimum spanning tree. 

 
The distance dij

SL between two clusters (Gi, Gj) can be 
expressed by  

   ),,(min , jigp
SL
ij GqGpdd ∈∈=    (8) 

 
where p is an element from cluster i (Gi) and q an element 
from cluster j (Gj). The Euclidean distances between the MST 
vectors are stored in a distances matrix. The size of the 
matrix, i.e. the number of segments considered in the 
clustering part, depends on the activity of the EMG signal 
and changes during the decomposition. To detect MUAP 
overlaps or outliers, which influence the estimation of the 
number of classes, we use the definition of the distance 
measure. The commonly used criterion for an active segment 
belonging to a MU is that at least five other segments belong 
to the same MU, i.e. have a distance smaller than a threshold. 
In contrast to other algorithms, we use this criterion to detect 
overlap and outliers before grouping clusters. With the 
MUAP waveforms of the different clusters, the class-means 
were determined. 
 
Supervised classification of MUAPs 

To classify non-overlapping MUAPs, to follow MUAP 
shape changes, and to reduce the calculation complexity and 
the misclassification rate, we use supervised classification 
techniques. The supervised classifier is based on the most 
discriminant wavelet coefficients, which are determined by 

the Fisher criterion (7), and the clustering results. Due to 
muscle fatigue and electrode or muscle movements, the 
MUAP shapes change over time. To overcome this problem 
the class means are adapted during the decomposition. We 
used weighted averaging techniques to adapt the class-means 
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where jix ,1� +  denotes the class-mean of the time point i+1 of 

the jth MU, jix ,  the last classified signal and β the forgetting 
factor. The adaptation is completed when: 

       ,12 DD α≥      (11) 
 
where D2 is the Euclidean distance to the second nearest 
template, and D1 the Euclidean distance to the nearest 
template. 
 
D. Complete decomposition 

Finally, non-classified segments, i.e. detected outliers, e.g. 
segments containing overlapping action potentials, are 
decomposed into their units using class-mean signals. For the 
exact determination of the activation patterns, the 
decomposition of those segments is based on the 
classification results, such as the number of classes, the 
prototype waveform of a class, and the variance within a 
class.  
 

III. RESULTS 
 

To evaluate our decomposition algorithms we tested it both 
with clinically measured and with artificially generated 
multi-channel long-term EMG signals.  

 
A. Evaluation using simulated EMG signals 

To create artificial intramuscular EMG signals, we used 
Farina�s model for the generation of synthetic intramuscular 
EMG signals [1]. The simulated EMG signal provides known 
features that serve as a basis for comparison. In this study, 
the performance of our algorithm was evaluated with 4 
simulated EMG signals with 3 channels. Each signal was 10 
seconds long and corrupted with Gausian white noise at the 
level of 20 dB SNR. The sampling frequency was 10 kHz. 
Additional characteristics of the simulated signals are given 
in Table I.  

 
TABLE I 

CHARACTERISTIC FEATURES OF THE ARTIFICIALLY INTRAMUSCULAR EMG SIGNAL 
 

EMG M N fi N%S NS,max αmax vW1 vS2 
1 4 390 5, 6,5,6 0 0 0 0.02 0.05 
2 5 342 8,9,7,8,9 10 2 0.1 0.01 0.01 
3 5 244 12,9,5,10,9 10 3 0.6 0.01 0.01 
4 8 553 12,9,12,10.9,5,5 10 2 0.4 0.01 0.01 

where M denotes the number of MUs, N the total number of MUAPs, fi the 
firing frequencies of the M MUs, N%,S the percentage of superimposed 
MUAPs, NS,max the maximum number of MUAPs in a superposition, α%max 
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the maximum degree of superposition, vW1 the random shape variability and 
vS2 the random scale variability [1]. 
 

To evaluate the performance of our software package, the 4 
artificially generated signals were also decomposed with the 
software package MAPQuest [2]. 
 
B. Evaluation with measured long-term EMG signals 

Measured EMG signals from 6 healthy subjects during 
different computer tasks, such as tapping, tracking, and 
number inputting were used. Each task had a duration of 10 
minutes. To make measurements under dynamic muscle 
conditions we used fine wire electrodes (stainless steel with 
Teflon insulation, diameter 80 µm). When the muscle is 
moving this procedure is much less painful compared to 
common techniques, and the baseline levels of the EMG 
signals are less influenced by the muscle movements. Six 
channels of intramuscular EMG were picked up from the 
trapezius muscle. The recording was carried out at a sampling 
rate of 20 kHz. 

 
IV. DISCUSSION 

 
The decomposition of the 4 artificially generated signals 

with our software package leads in the mean to 96.48 % 
correctly detected, 0.65 % wrongly detected, and 3.53 % non-
detected MUAPs. Compared to the results with MAPQuest 
we achieved a better performance. The recognition rates 
depend on the signal quality. The EMG signal 4 had high 
activity, 553 segments, and MUAPs with small energy, 
which influenced the results of the correct recognition rate 
and the rate of non-detected MUAPs. In Table II, the results 
for the 4 artificially generated EMG signals are given.  
 

TABLE II 
ACHIEVED DECOMPOSITION ACCURACY WITH ARTIFICIALLY GENERATED EMG 

SIGNALS 
 

Percentage of correctly 
detected MUAPs  

Percentage of wrongly 
detected MUAPs  

Percentage of non-
detected MUAPs  

EMG 

EMG-
LODEC 

MAPQuest* EMG-
LODEC 

MAPQuest* EMG-
LODEC 

MAPQuest* 

1 98.5 % 100 % 0.8 % 1.53 % 1.5 % 0 % 
2 100 % 99.1 % 0 % 1.17 % 0 % 0.9 % 
3 95.5 % 89.6 % 0.4 % 5.2 % 4.5 % 10.4 % 
4 91.9 % 82.9 % 1.4 % 14.8 % 8.1 % 17.2 % 

Mean 96.5 % 92.9 % 0.6% 5.7 % 3.5% 7.1 % 
Std 3.6 % 8.2 % 0.6% 6.4 % 3.6% 8.2 % 

*Each channel is separately decomposed and the mean of the results of the 
three channels are calculated and shown. 

 
The decomposition of the 6 measured multi-channel long-

term recordings leads to the following conclusion. Our 
decomposition algorithm was capable of detecting and 
tracking the long-term motor unit activity of those signals 
with a high degree of accuracy. MUAPs� shape changes 
could be observed over time and the program was capable of 
tracking most of them. The analysis of the 10 minutes 
measured EMG signals takes between 20 to 60 minutes 
depending on the activity of the signals. 

The results of the decomposition seem to be reliable, but a 
quantitative analysis still needs to be done. 

 

V. CONCLUSION 
 

We have developed a decomposition concept, which allows 
a relatively fast and accurate analysis of multi-channel long-
term recordings. Both simulated and observed EMG signals 
were used to test our technique. The performance of this 
technique was very good in terms of achievable accuracy. 
Based on the decomposition concept, a decomposition 
software package (EMG-LODEC) [9] has been written, 
which suits for the study of motor unit discharge patterns and 
recruitment order in both healthy and ailing subjects. 
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