AFRL-IF-RS-TR-2002-299

Final Technical Report
November 2002

COMPUTE-INTENSIVE METHODS
AND HYBRID APPROACHES FOR
COMBINATORIAL PROBLEMS

Cornell University

APPROVED FOR PUBLIC RELEASE,; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-299 has been reviewed and is approved for publication.

APPROVED: OJN“L-'D : m““"f"’

CHARLES G. MESSENGER
Project Engineer

oo g

MICHAEL L. TALBERT, Maj., USAF
Technical Advisor, Information Technology Division
Information Directorate

FOR THE DIRECTOR:

REPORT DOCUMENTATION PAGE oM o e ors8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
NOVEMBER 2002 Final Mar 99 — Jul 01

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
COMPUTE-INTENSIVE METHODS AND HYBRID APPROACHES C -F30602-99-1-0005 &
FOR COMBINATORIAL PROBLEMS F30602-99-1-0006

PE -62702F, 61102F

PR -2304
6. AUTHOR(S) TA - GC
Carla Gomes WU - P1, P2
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Cornell University REPORT NUMBER
120 Day Hall
Ithaca New York 14853
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Air Force Research Laboratory/IFTB AGENCY REPORT NUMBER
525 Brooks Road
Rome New York 13441-4505 AFRL-IF-RS-TR-2002-299

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Charles G. Messenger/IFTB/(315) 330-3528/ Charles.Messenger@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 Words)

Our research program focuses on techniques that lie at the intersection of Artificial Intelligence and Operations
Research. In particular, we study computational methods for large-scale combinatorial optimization. Our research
combines formal analysis and design of optimization techniques with the study of applications such as planning and
scheduling, autonomous distributed agents and combinatorial auctions. Central themes of our work are (1) the integration
of concepts from mathematical programming with constraint programming, (2) the study of the impact of structure on
problem hardness, and (3) the use of randomization techniques to improve the performance of exact (complete) search
methods.

This report highlights some of our research projects and accomplishments.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Combinatorial Optimization, Search, Integration of AI/OR Techniques, Randomized 56
Methods, Approximations, CSP, Distributed CSP 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Introduction

Integration of Methods from Artificial Intelligence and Operations Research

Randomized Complete Search Techniques and Heavy-Tailed Distributions

Synopsis of Papers in the Appendix

References

Appendix 1 The Promise of LP to Boost CSP Techniques for Combinatorial
Problems

Appendix 2 Formal Models of Heavy-Tailed Behavior in Combinatorial Search

Appendix 3 Communication and Computation in DisCSP Algorithms

A W —

[, T SN O QSR

38

goodelle
 i

Hybrid Compute-Intensive Approaches for
Combinatorial Problems

Carla P. Gomes
Computer Science Department
Cornell University
Ithaca, NY 14853
gomes@cs.cornell.edu

1 Introduction

This is the final report for contract F30602-99-1-0005 (Compute-Intensive Meth-
ods for Combinatorial Problems) and F30602-99-1-0006 (Hybrid Approaches
for Combinatorial Problems). Our research under these contracts focused on
techniques that lie at the intersection of Artificial Intelligence and Operations
Research. In particular, we considered computational methods for large-scale
combinatorial optimization. Our research combines formal analysis and design
of optimization techniques with the study of applications such as planning and
scheduling, autonomous distributed agents, and combinatorial auctions. Central
themes of our work are (1) the integration of concepts from mathematical pro-
gramming with constraint programming, (2) the study of the impact of structure
on problem hardness, and (3) the use of randomization techniques to improve
the performance of exact (complete) search methods.

We now highlight some of our research projects and research accomplish-
ments. As an appendix to this report we include three representative papers
that elaborate on the topics.

2 Integration of Methods from Artificial Intel-
ligence and Operations Research: Bridging
Constraint Programming and Mathematical
Programming

A key focus of our research program is on combining constraint programming

techniques with concepts from mathematical programming, drawing on the in-
dividual strengths of these paradigms. For example, in recent work, we have

developed a hybrid approach for combinatorial optimization, consisting of an
exact randomized complete search method that tightly couples constraint prop-
agation techniques with information obtained from randomized rounding of lin-
ear programming (LP) relaxations [7]. This hybrid strategy outperforms pure
constraint programming and LP strategies and other approaches. The hybrid
approach relies on the LP relaxation to provide good approximate solutions.
For the quasigroup completion problem, a combinatorial problem with struc-
tural properties similar to those of a variety real-world optimization problems,
we developed a new approximation that is within a factor of 1 — 1/e ~ 0.63
from optimal [6]. The best earlier approximations gave a factor of 0.5. Our
approximation uses randomized LP rounding, based on an LP relaxation of a
packing formulation of the problem.

More generally, we have shown tradeoffs between problem representations
based on constraint programming, logical representations (Boolean satisfiabil-
ity encodings), and mathematical programming formulations. Problem repre-
sentation is a key factor affecting the efficiency of combinatorial search. For
example, we have shown how one can substantially improve the performance
of search methods by using primal-dual encodings, by adding inferred (redun-
dant) constraints, as well as by exploiting the well-structured subcomponents
of problems with efficient propagation algorithms [3, 4, 5].

For a presentation covering recent results:

www.cs.cornell.edu/gomes/cpaior02.ppt

See also the paper in Appendix 1 for a description of the hybrid approach
for combinatorial optimization mentioned above, combining an exact random-
ized complete search method with constraint propagation techniques using the
information obtained from randomized rounding of linear programming (LP)
relaxations [7]. ’

3 Randomized complete search techniques and
heavy-tailed distributions

Randomized search strategies have been highly successful in local search (e.g.,
simulated annealing [14], tabu search (Glover 1989), and genetic algorithms
(Holland 1975). However, such methods are inherently incomplete, in that they
do not guarantee optimality of the solution. Optimality can be guaranteed us-
ing backtrack style methods such as branch-and-bound. These methods can
explore the full combinatorial space. Backtrack style search can be randomized
by introducing a random element in the variable choice and / or value selection
heuristics. With some minimal additional book keeping, one can still maintain
completeness of the search strategy. Researchers have observed that the per-
formance of backtrack search methods can vary considerably from instance to

instance. There have been some theoretical results showing that randomiza-
tion can improve the performance of complete search methods, e.g., [18, 15],
but randomization was not believed to provide significant practical benefits in a
complete search setting. For example, up to about five years ago state-of-the-art
Davis-Putnam style Boolean satisfiability solvers did not include randomization.
In our work on the study of the run time distribution of complete search meth-
ods, we have demonstrated that one can in fact obtain exponential speedups by
randomizing a complete search method [10]. Such speedups can be obtained by
taking advantage of the high variance in run time of randomized complete meth-
ods. In particular, we have shown that the extreme variance or unpredictability
in the run time of complete search procedures on combinatorial problems can of-
ten be explained by the phenomenon of heavy-tailed distributions. Heavy-tailed
distributions are highly non-standard probability distributions, capturing phe-
nomena with infinite moments, for example infinite variance or infinite mean.
Previously such distributions have been used to model erratic behavior in, for
example, weather patterns, stock market behavior, and time delays on the World
Wide Web. In more recent work, we have developed formal models of backtrack
search that provably exhibits heavy-tailed behavior [1]. The understanding of
the extreme variance that characterizes complete search algorithms on combi-
natorial problems has led to the introduction of novel strategies for the design
of algorithms based on “rapid restarts” and “portfolio” strategies [12, 10, 2].
In a restart strategy, one repeatedly restarts the search procedure with a new
random seed after a certain predefined number of backtracks; in an algorithm
portfolio, many copies of a randomized search procedure (each started with a
different random seed) or a mix of different search procedures are executed in
parallel or interleaved. Restarts and portfolio can significantly reduce the vari-
ance in run time and the probability of failure of the search procedures, resulting
in more robust and more efficient overall search methods. We have shown that
restarts provably eliminate heavy-tailed behavior. The results of this research
have changed the general view of randomization of complete search methods in,
for example, the Satisfiability and Constraint satisfaction community. Random-
ization and restart strategies have now been incorporated into state-of-the-art
solvers for the Boolean satisfiability problem (SAT solvers). In fact, the rapid
restarts technique is an integral component of the current world’s fastest SAT
solver, called Chaff [17]. (In Chaff, restarting is combined with clause learning,
another technique central to Chaff’s overall effectiveness. In clause learning,
certain derived clauses are carried over between restarts.) Chaff can handle
problem instances with over one million variables and four million constraints.
The solver has been used to verify correctness properties of the latest Alpha
chip design, which has a complexity comparable to that of the Pentium IV.
We have also demonstrated the effectiveness of randomization and restarts for
branch-and-bound search methods, distributed constraint satisfaction, and plan-
ning and scheduling problems. Randomized restarts have been demonstrated to
be effective for reducing total execution time on a wide variety of problems in

scheduling, theorem proving, circuit synthesis, planning, and hardware verifica-
tion [12, 10, 9, 2, 16, 17]. In our current research we are investigating optimal
policies for restart strategies [8, 11, 13].

4 Synopsis of the papers in the Appendix

In the Appendix we include three papers that elaborate on several issues dis-
cussed above. In this section we give a short synopsis of each paper.

The Promise of LP to Boost CSP techniques for Combinatorial Prob-
lems Inthis paper we propose a complete randomized backtrack search method
for combinatorial problems that tightly couples CSP propagation techniques
with randomized LP rounding. The approach draws on recent results on ap-
proximation algorithms with theoretical guarantees, based on LP relaxations
and randomized rounding techniques, as well on results that provide evidence
that the run time distributions of combinatorial search methods are often heavy-
tailed. We present experimental results that show that our hybrid CSP/LP
backtrack search method outperforms the pure CSP and pure LP strategies on
instances of a hard combinatorial problem.

Formal Models of Heavy-Tailed Behavior in Combinatorial Search
(with Hubie Chen and Bart Selman) In this paper we discuss formal
models of heavy-tailed behavior in combinatorial search.

Communication and Computation in DisCSP Algorithms In this pa-
per we introduce a distributed benchmark based on a real-world application
that arises in the context of networked distributed systems. In order to study
the performance of Distributed CSP algorithms (DisCSP) in a truly distributed
setting, we use a discrete-event network simulator, which allows us to model the
impact of different network traffic conditions on the performance of the algo-
rithms. We consider two complete DCSP algorithms: asynchronous backtrack-
ing (ABT) and asynchronous weak commitment search (AWC). In our study of
different network traffic distributions, we found that, random delays, in some
cases combined with a dynamic decentralized restart strategy, can improve the
performance of DCSP algorithms. More interestingly, we also found that the
active introduction of message delays by agents can improve performance and
robustness, while reducing the overall network load. Finally, our work confirms
that AWC performs better than ABT on satisfiable instances. However, on un-
satisfiable instances, the performance of AWC is considerably worse than ABT.

References

1]

H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior
in combinatorial search. In Proceedings of 7th Intl. Conference on the Prin-
ciples and Practice of Constraint Programming (CP-2001), Lecture Notes
in Computer Science, Vol. 2239, Springer-Verlag, pages 408-422, 2001.

C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126:43-62, 2001.

Carla Gomes. editor, The Knowledge Engineering Review. Special Issue
on the Integration of Artificial Intelligence and Operations Research Tech-
niques, Vol. 15 (1) and Vol. 16 (1). Cambridge Press, 2000-2001.

Carla Gomes. editor, The Knowledge Engineering Review. Special Issue on
the Integration of Artificial Intelligence and Operations Reasearch II, Vol.
16 (1). Cambridge Press, 2001.

Carla P. Gomes. Structure and Randomization: Common Themes in Al
and OR. In Proceedings of the Seventeenth National Conference on Artifi-
cial Intelligence (AAAI-00), New Providence, RI, 2000. AAAI Press.

Carla P. Gomes, Rommel G. Regis, and David B. Shmoys. An Improved
Approximation Algorithm for the Partial Latin Square Extension Prob-
lem. In To appear in Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA-03), 2003.

Carla P. Gomes and David Schmoys. The promise of LP to boost CSP
techniques for combinatorial problems. In Narendra Jussien and Frangois
Laburthe, editors, Proceedings of the Fourth International Workshop on In-
tegration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimisation Problems (CP-AI-OR’02), pages 291-305, Le Croisic,
France, March, 25-27 2002.

Carla P. Gomes and Bart Selman. Hybrid Search Strategies for Heteroge-
neous Search Spaces. International Journal on Artificial Intelligence Tools,
2000.

Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-
tailed phenomena in satisfiability and constraint satisfaction problems. J.
of Automated Reasoning, 24(1-2):67-100, 2000.

Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial
Search Through Randomization. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), New Providence, RI, 1998.
AAAI Press.

[11] E. Horvitz, Y. Ruan, C. Gomes, H. Kautzand B. Selman, and M. Chick-
ering. A Bayesian Approach to Tackling Hard Computational Problems.
In Proceedings of the Seventeenth Conference On Uncertainty in Artificial
Intelligence (UAI-01), 2001.

[12] B. Huberman, R. Lukose, and T. Hogg. An economics approach to hard
computational problems. Science, (265):51-54, 1993.

(13] H.Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic Restart
Policies. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-02), Edmonton, Canada, 2002. AAAI Press.

[14] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated an-
nealing. Science, (220):671-680, 1983.

[15] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas
algorithms. Information Process. Lett., pages 173-180, 1993.

[16] Andreas Meier, C. Gomes, and E. Mellis. An Application of Randomization
and Restarts to Proof Planning. In Proceedings of the Sixth European
Conference On Planning (ECP-01), 2001.

[17] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conference, pages 530-535, 2001.

[18] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge Univer-
sity Press, 1995.

Appendix 1

The Promise of LP to Boost CSP Techniques for Combinatorial
Problems*

goodelle
The Promise of LP to Boost CSP Techniques for Combinatorial

 Problems*

goodelle
1

Proceedings CPAIOR’02

The Promise of LP to Boost CSP
Techniques for Combinatorial Problems®

Carla P. Gomes
Dept. of Comp. Science
Cornell University

Ithaca, NY 14853, USA
email: gomes@cs.cornell.edu

David B. Shmoys
Dept. of Comp. Science
School of Operations Research and Industrial Engineering
Cornell University
Ithaca, NY 14853, USA
email: shmoys@cs.cornell.edu

Abstract

In recent years we have seen an increasing interest in cormbining Constraint
Satisfaction Problem (CSP) methods and Linear Programming (LP) techniques for
solving hard computational problems. While considerable progress has been made
in the integration of these techniques for solving problems that exhibit a mixture of
linear and combinatorial constraints, it has been surprisingly difficult to successfully
integrate LP-based and CSP-based methods in a purely combinatorial setting.

We propose a complete randomized backtrack search method for combinatorial
problems that tightly couples CSP propagation techniques with randomized LP
rounding. Our approach draws on recent results on approximation algorithms with
theoretical guarantees, based on LP relaxations and randomized rounding tech-
niques, as well on results that provide evidence that the run time distributions of
combinatorial search methods are often heavy-tailed. We present experimental re-
sults that show that our hybrid CSP/LP backtrack search method outperforms the
pure CSP and pure LP strategies on instances of a hard combinatorial problem.

*This research was partially funded by AFRL, grants F30602-99-1-0005 and F30602-99-1-0006,
AFOSR, grant F49620-01-1-0076 (Intelligent Information Systems Institute) and F49620-01-1-0361
(MURI grant on Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environ-
ments) and DARPA, F30602-00-2-0530 (Controlling Computational Cost: Structure, Phase Transitions
and Randomization) and F30602-00-2-0558 (Configuring Wireless Transmission and Decentralized Data
Processing for Generic Sensor Networks). The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the U.8. Government.

1 Introduction

In recent years we have seen the development of successful methods for solving opti-
mization problems by integrating techniques from Constraint Programming (CP) and
Operations Research (OR)(see e.g., [8]). Such hybrid approaches draw on the individual
strengths of these different paradigms: OR heavily relies on mathematical programming
formulations such as integer and linear programming, while CP uses constrained-based
search and inference methods. This is particularly true in domains where we have a
combination of linear constraints, well-suited for linear programming (LP) formulations,
and discrete constraints, suited for constraint satisfaction problem (CSP) formulations.
Nevertheless, in a purely combinatorial setting, so far it has been surprisingly difficult to
integrate LP-based and CSP-based techniques. For example, despite a significant amount
of work on using LP relaxations to solve Boolean satisfiability (SAT) problems (see e.g.,
[11, 12, 16, 23]), practical state-of-the-art solvers do not incorporate LP relaxation tech-
nigues. From a practical point of view, the challenge is how to integrate such techniques
into practical solvers. The basic idea is to use the information from LP relaxations to
guide the combinatorial search process. A key issue is whether the LP relaxation pro-
vides sufficient useful additional information — in particular, information that is not
easily uncovered by constraint propagation and inference techniques. Of course, also the
cost of solving the LP relaxation should not outweigh the benefits in the reduction of
search cost.

We propose a complete randomized backtrack search method that tightly couples
CSP propagation techniques with randomized LP rounding. Our approach draws on
recent results on some of the best approximation algorithms with theoretical guarantees
based on LP relaxations and randomized rounding techniques (see e.g., [4, 19]), as well
on results that uncovered the extreme variance or “unpredictability” in the run time
of complete search procedures, often explained by the phenomenon of heavy-tailed cost
distributions [10].

We use as a benchmark domain the quasigroup (or Latin square) completion problem
(QCP). Each instance consists of an n by n matrix with n? cells. A complete quasigroup
consists of a coloring of each cell with one of n colors in such a way that that there is
no repeated color in any row or column. Given a partial coloring of the n by n cells,
determining whether there is a valid completion into a full quasigroup is an NP-complete
problem [6]. The underlying structure of this benchmark is similar to that found in
a series of real-world applications, such as timetabling, experimental design, and fiber
optics routing problems [18, 17].

We present our preliminary experimental findings for our randomized hybrid CSP/LP
backtrack search method on hard combinatorial instances of the QCP domain. We com-
pare our results with a pure CSP strategy and with a pure LP strategy. Our results show
that a hybrid approach does improve over the pure strategies. In our hybrid approach,
the LP relaxation with rounding strategy provides global information about the values
to assign to the CSP variables. In effect, the randomized LP rounding provides powerful
heuristic guidance to the CSP search, at least at the top of the backtrack search tree.
With our hybrid CSP/LP strategy we were able to considerably improve the time perfor-
mance of the pure CSP strategy. Furthermore, the hybrid CSP/LP strategy could solve
several instances of QCP that could not be solved by the pure CSP strategy. Interest-
ingly, and contrarily to the experience in other domains that combine linear constraints

with a combinatorial component, we conjecture that the role of the LP relaxation in
detecting infeasibility for pure combinatorial problems is not as important as its role as
search heuristic. In particular, deeper down in the search tree, the information obtainable
via LP relaxations can be computed much faster via CSP techniques. This means that
during that part of the search process, the hybrid strategy should be avoided. A key issue
in making the hybrid strategy effective is to find the right balance between the amount
of work spent in solving the LP relaxations and the time spent on the CSP search. A
detailed empirical and theoretical evaluation is currently under way. Our approach also
uses restart strategies in order to combat the heavy-tailed nature of combinatorial search.
By using restart strategies we take advantage of any significant probability mass early
on in the distribution, reducing the variance in run time and the probability of failure of
the search procedure, resulting in a more robust overall search method.

The structure of the paper is as follows. In the next section, we describe the Quasi-
group Completion Problem (QCP). In section 3, we provide different formulations for the
problem and, in section 4, we discuss approximations for QCP based on LP randomized
rounding. In section 5, we present our hybrid CSP/LP randomized rounding backtrack
search procedure and, in section 6, we provide empirical results.

2 The Quasigroup Completion Problem

A quasigroup is an ordered pair (Q,-), where Q is a set of n symbols and (-) is a binary
operation on @ such that the equations a -z = b and y - @ = b are uniquely solvable for
every pair of elements a,b in Q. The order n of the quasigroup is the cardinality of the
set Q.

The best way to understand the structure of a quasigroup is to consider its n by n
multiplication table, as defined by its binary operation: The constraints of a quasigroup
are such that its multiplication table defines a Latin Square. A Latin Squareis ann xn
matrix on n symbols, such that each row/column is a permutation of its n symbols [18].
A partial latin square PLS is a partially filled n by n matrix such that no symbol occurs
twice in a row or a column. PLS; ; = k denotes that entry 4, j of PLS has symbol k. We
refer to the empty cells of the partial latin square as holes and to the non-empty cells
as pre-assigned cells. The number of holes in a PLS is denoted by h. The Quasigroup
Completion Problem (QCP) (or Latin Square Completion Problem)! is the problem of
determining whether the k holes of the corresponding partial latin square can be filled
in such a way that we obtain a complete latin square (i.e, a full multiplication table of
a quasigroup) (see Figure 1):

1213 41112 3
2 {401 1l3f4 1
4| |2 1143 2

1 3(201 4

Figure 1: Quasigroup Completion Problem of order 4, with 5 holes.

L¥or simplicity, in the remaining of the paper, we will use quasigroup and latin square and partial
quasigroup completion problem and partial latin square completion problem interchangeably.

10

QCP is an NP-complete problem [6]. We have identified a phase transition phe-
nomenon for the completion problem [9]. At the phase transition, problem instances
switch from being almost all solvable (“under-constrained”) to being almost all unsolvable
(“over-constrained”). The computationally hardest instances lie at the phase transition
boundary. Figure 2 shows the median computational cost and phase transition. Along
the horizontal axis we vary the ratio of pre-assigned cells.? We note that even though all
the instances are from an NP-complete problem, we clearly distinguish various regions of
problem difficulty. In particular, both at low ratios and high ratios of preassigned colors
the median solution cost is relatively small. However, in between these two regimes, the
complexity peaks and, in fact, exhibits strong exponential growth.3

1000 o B 08

108

log median number of backtracks
fraction of unsolvable cases

B . . . : L
8.3 9.4 .5 0.5 1% 5 el 62 03 04 05 9.8 2T 08 89
fraction of pre-assigned elenents fraction of pre-assigned elements

(a) (b)

Figure 2: (a) Cost profile, and (b) phase transition for the quasigroup completion problem
(up to order 15).

We identified the erratic behavior of the mean and the variance of different randomized
backtrack style procedures running on instances of QCP [10]. Figure 3 (a) depicts this
phenomenon, displaying the mean cost of a randomized backtrack style search procedure
calculated over an increasing number of runs, on the same QCP instance, an instance of
order 11 with 64% of holes. Despite the fact that this instance is easy, the median number
of backtracks for solution is 1, some runs take more the 108 backtracks. Figure 3 (b) plots
the log-log plot of the tail (i.e., (1-F(x))) of the runtime distributions of a randomized
backtrack search method on three QCP instances: one instance in the under-constrained
area (the same instance of order 11 with 64% of holes), one in the critically constrained
area, and one in the medium constrained area. The linear nature of the long tails in this
log-log plot directly reveals the phenomenon of heavy-tails.

The formal explanation for heavy-tailed behavior comes from the fact that there is a

2Note that the ratio of pre-assigned cells corresponds to the complement of the ratio of holes, i.e.,
1~ h/n2.

3The exact location of the phase transition appears to be characterized in terms of (1 —h)/nP), where
p is around 1.55. However, and given that for low orders of quasigroups p = 2 is a good approximation,
for simplification we talk about proportion of preassigned colors in terms of the total number of cells of
the matrix, i.e.,N? [1].

11

sample mean {number of backtracks)

4000 T T T T T T 3§ T T g

3500 |

3000 b

°

2500

2000 |

1500 |

{1+ cumuiative distribution function)
o
4

1060 |

o
8

s x X . " . .
a 100 200 300 509 &00 700 800 900 1000 0.0001

400
sequence of instances 1 1

(a) (b)

100 1000 10000
number of backiracks

Figure 3: (a) Erratic behavior of mean cost value. (b) Log-log plot of heavy-tailed
behavior.

non zero probability of entering a subtree of exponential size that has no solutions 13].
The phenomenon of heavy-tailed distributions suggests that a sequence of “short” runs
instead of a single long run may be a more effective use of our computational resources.
As a direct practical consequence of the heavy-tailed behavior of cost distributions, ran-
domized restarts of search procedures can dramatically reduce the variance in the search
behavior. In fact, restarts eliminate heavy-tail behavior [10].

The structure implicit in QCP is similar to that found in real-world domains: indeed,
many problems in scheduling and experimental design have a structure similar to the
structure of QCP. A particularly interesting application that directly maps onto the QCP
is the problem of assigning wavelengths to routes in fiber-optic networks, as performed by
Latin routers [17]. As the name suggests, Latin routers use the concept of Latin Squares
to capture the constraints required to achieve conflict-free routing: a given wavelength
cannot be assigned to a given input port more than once; a given wavelength cannot be
assigned to a given output port more than once.

3 Problem Formulations

3.1 CSP Formulation
Given a partial latin square of order n, PLS, the latin square completion problem can
be expressed as a CSP [9]:
zi;€{l,...,n} Vi, j
z;; =k Vi, jsuchthat PLS;; =k
alldiff (zs,1,Zi2,..,Zin} Vi=12,...,n
alldiff (z15,225,.--,%nj} Yi=12,...,n

The alldiff constraint states that all the variables involved in the constraint have to
have different values. It has been shown that a CSP approach solves QCP instances up

12

100000

to order around 33 relatively well [9, 22, 1]. However, for higher orders, instances in the
critically constrained area are beyond the reach of pure CSP solvers, given the highly
exponential behavior in this region.

3.2 Assignment Formulation

Given a partial latin square of order n, PLS, the latin square completion problem can
be expressed as an integer program [17]:

n T n

max E E E Ti,j,k

i=1 j=1 k=1

subject to

n
domije <1, Vik
ge=1

n
Zmi,j,k S 1, Vl,k
—y

7
Zx’i,j,k S 1) VZ)]
k=1

Ti gk = 1 VZ,],]C such that PLS” =k
zigk € {0,1} Vi, 5,k
i, k=1,2...,n

If PLS is completable, the optimal value of this integer program is h, i.e., the number
of holes in PLS. Kumar et al. [17] considered the design of approximation algorithms for
this optimization variant of the problem based on first solving the linear programming
relaxation of this integer programming formulation; that is, the conditions z; ;i € {0,1}
above are replaced by z; j,r > 0. Their algorithm repeatedly solves this linear program-
ming relaxation, focuses on the variable closest to 1 (among those not set to 1 by the
PLS conditions), and sets that variable to 1; this iterates until all variables are set. This
algorithm is shown to be a 1/3-approximation algorithm; that is, if PLS is completable,
then it manages to find an extension that fills at least h/3 holes. Kumar et al. also
provide a more sophisticated algorithm in which the colors are considered in turn; in the
iteration corresponding to color k, the algorithm finds the extension (of at most n cells)
for which the linear programming relaxation places the greatest total weight. This algo-
rithm is shown to be a 1/2-approximation algorithm; that is, if PLS is completable, then
the algorithm computes an extension that fills at least h/2 holes. In the experimental
evaluation of their algorithms, Kumar et al. solve problems up to order 9.

13

Figure 4: Families of compatible matchings for the partial latin square in the left upper corner.
For example, the family of compatible matchings for symbol 1 has three compatible matchings.

3.3 Packing Formulation

Alternate integer programming formulations of this problem can also be considered. The
packing formulation is one such formulation for which the linear programming relaxation
produces stronger lower bounds. For the given PLS input, consider one color k. If PLS
is completable, then there must be an extension of this solution with respect to this one
color; that is, there is a set of cells (i,) that can each be colored k so that there is
exactly one cell colored k in every row and column. We shall call one such collection
of cells a compatible matching for k. Furthermore, any subset of a compatible matching
shall be called a compatible partial matching; let My denote the family of all compatible
partial matchings.

With this notation in mind, then we can generate the following integer programming
formulation by introducing one variable yi,a for each compatible partial matching M in

My

maxz Z [M ke,

k=1 McM;

Z yeMm =1, VEk

MeMy

n
Z Z yem <1, Vi

k=1 MeM;:(i,j)eM
Ye,M € {0,1} Yk, M.

subject to

14

Once again, we can consider the linear programming relaxation of this formulation,
in which the binary constraints are relaxed to be merely non-negativity constraints. It is
significant to note that, for any feasible solution y to this linear programming relaxation,
one can generate a corresponding feasible solution x to the assignment formulation, by
simply computing Zs .k = > pre aq, Yk,M- This construction implies that the value of the
linear programming relaxation of the assignment formulation (which provides an upper
bound on the desired integer programming formulation) is at least the bound implied by
the LP relaxation of the packing formulation; that is, the packing formulation provides
a tighter upper bound. However, note that the size of this formulation is exponential in
n. In spite of this difficulty, one may apply column generation techniques (see, e.g., the
textbook by [5]) to compute an optimal solution relatively efficiently.

4 Approximations Based on Randomized Rounding

One important area of recent research has been the design of approximation algorithms
in which good solutions are computed for an integer programming problem in which the
variables are constrained to be 0 or 1 by solving its linear programming relaxation, and
(appropriately) interpreting the resulting fractional solution as providing a probability
distribution over which to set the variables to 1.

Consider the generic integer program max cz subject to Az = b, z € {0,1}", and solve
its linear relaxation to obtain z*. If each variable z; is then set to 1 with probability z;*,
then the expected value of the resulting integer solution is equal to LP optimal value,
and, for each constraint, the expected value of the left-hand side is equal to the right-
hand side. Of course, this does not mean that the resulting solution is feasible, but it
provides a powerful intuition for why such a randomized rounding is a useful algorithmic
tool.

This approach has led to striking results in a number of settings. For example, Goe-
mans and Williamson [7] have given a 3/4-approximation algorithm based on randomized
rounding for the problem of satisfying the maximum number of clauses for a boolean for-
mula in in conjunctive normal form. This algorithm outputs the better solution found by
two randomized rounding procedures, one that uses a fair coin to independently set the
variables, and another that randomly rounds based on the optimal solution to a natural
linear programming relaxation.

4.1 Assignment Formulation

The assignment formulation can be used as the basis for a randomized rounding proce-
dure in a variety of ways. Let z* denote an optimal solution to the linear programming
relaxation of this integer program. For any randomized procedure in which the proba-
bility that cell (i, j) is colored k is equal to z;;;, then we know that, in expectation, each
row i has at most one element of each color k, each column j has at most one element of
each color k, and each cell (¢,) is assigned at most one color k. However, having these
each hold “in expectation” is quite different than expecting that all of them will hold
simultaneously, which is extremely unlikely.

15

4.2 Packing Formulation

In contrast to the situation for the assignment formulation, there is an easy theoretical
justification for the randomized rounding of the fractional optimal solution, as we pro-
posed in {21]. Rather than the generic randomized rounding mentioned above, instead,
for each color k choose some compatible partial matching M with probability ye am (so
that some matching is therefore selected for each color). These selections are done as
independent random events. This independence implies there might be some cell (7, §)
included in the matching selected for two distinct colors. However, the constraints in the
linear program imply that the expected number of matchings in which a cell is included
is at most one. In fact, if PLS is completable, and hence the linear programming re-
laxation satisfies the inequality constraints with equality (and hence [M| = n whenever
Ye,p > 0), then it is straightforward to show that the expected number of cells for which
some such conflict exists is at most h/e; that is, at least (1 — 1/e)h holes can expected
to be filled by this technique.

5 Hybrid CSP/LP Randomized Rounding Backtrack
Search

‘We now describe a complete randomized backtrack search algorithm for the quasigroup
(latin square) completion problem.

A central feature of the algorithm is the fact that it maintains two different formula-
tions of the quasigroup completion problem: the CSP formulation, as described in section
3.1, and the relaxation of the LP formulation described in section 3.2.* The hybrid na-
ture of the algorithm results from the combination of strategies for variable and value
assignment, and propagation, based on the two underlying models.

The algorithm is initialized by populating the CSP model and propagating constraints
over this model. The CSP model is implemented in Ilog/Solver [14]. For the propagation
of the ALLDIFF constraint we use the extended version provided by llog [14, 20]. The
updated domain values are then used to populate the LP model. We solve the LP model
using llog/Cplex Barrier [13].

As we will see from our experiments below, the LP provides valuable search guidance
and pruning information for the CSP search. However, since solving the LP model
is relatively expensive compared to the inference steps in the CSP model, we have to
carefully manage the time spent on solving the LP model. The LP effort is controlled by
two parameters, as explained below.

At the top of the backtrack search tree, variable and value selection are based on
the LP rounding. After each value assignment based on the LP, full propagation is
performed on the CSP model. The percentage of variables set by the LP is controlled
by the parameter %LP. (So, with % LP = 0, we have a pure CSP strategy.) After this
initial phase, variable and value settings are based purely on the CSP model. Note that
deeper down in the search tree, the LP formulation continues to provide information on

4In the experiments reported here, we are using the assignment formulation for the LP. Even though
the packing formulation has stronger theoretical bounds, because we solve this formulation using column
generation, it is more difficult to show a concrete payoff of this approach, in practice. We are pursuing
further experiments with this approach.

16

variable settings. However, we have found that this information can be computed more
efficiently through the CSP model.

Ideally, in order to increase the accuracy of the variable assignments based on LP-
rounding, one would like to update and re-solve the LP model after each variable set-
ting. However, in practice, this is too expensive. We therefore introduce a parameter,
interleave-LP, which determines the frequency with which the LP model is updated and
re-solved. In our experiments, we found that updating the LP model after every ﬁve
variable settings (interleave-LP= 5) is a good compromise.

In our LP rounding strategy, we first rank the variables according to their LP values
(i.e., variables with LP values closest to 1 are ranked near the top). We then select the
highest ranked variable and set its value to 1 (i.e., set the color of the corresponding
cell) with a probability p given by its LP value. With probability 1 — p, we randomly
select a color for the cell from the colors still allowed according to the CSP model. After
each variable setting, we perform CSP propagation. The CSP propagation will set some
of the variables on our ranked variable list. We then consider the next highest ranked
variable that is not yet assigned. A total of interleave-LP variables is assigned this way,
before we update and re-solve the LP. In the search guided by the CSP model, we use a
variant of the Brelaz heuristic [2, 9] for the variable and value selections.

Backtracking can occur as a result of an inconsistency detected either by the CSP
model or the LP relaxation. It is interesting to note that backtracking based on in-
consistencies detected by the LP occurs rather frequently at the top of our search tree.
This means that the LP does indeed uncover global information not easily obtained via
CSP propagation, which is a more local inference process. Of course, as noted before,
lower down in the search tree, using the LP for pruning becomes ineffective since CSP
propagation with only a few additional bactracks can uncover the same information.

In this setting, we are effectively using the LP values as heuristic guidance, using a
randomized rounding approach inspired by the rounding schemes used in approximation
algorithms. As we discussed in section 3.3, for the packing formulation of the LP, we have
a clear theoretical basis for such a rounding scheme. For the assignment formulation,
the theoretical justification is less immediate — nevertheless, as we will see below, our
rounding scheme leads to a clear practical payoff.

Finally, we use a cutoff parameter to control our backtrack search. As mentioned in
section 2, backtrack search methods are characterized by heavy-tailed behavior. That
is, a backtrack search is quite likely to encounter extremely long runs. To avoid getting
stuck in such unproductive runs, we use a cutoff parameter. This parameter defines the
number of backtracks after which the search is restarted, at the beginning of the search
tree, with a different random seed. Note that in order to maintain the completeness of
the algorithm we just have to increase the cutoff. In the limit, we run the algorithm
without a cutoff.

6 Empirical Results

To investigate our hypothesis that the LP relaxation can provide useful search guidance,
we focused our empirical evaluation on solvable instances. To do so, we used a variant
of the QCP problem, in which we generate instances for which we are guaranteed that a
solution exists. To obtain such instances, we start with a randomly generated complete
latin square and uncolor a fraction of cells (randomly selected). The random complete

17

800000

800000
700000
6o0000 |-
500000
400000 +

300000 |-

Median Number of Backtracks

200000

100000

" Pure C§P ——t—
Hybrid CSPLP

o

[¢]
31

2500

2000 |

1500

Median Time (secs)

1000 |

500

! Pure CSP
Hybrid CSPALP

[
VI

31

% of Holes

39

Figure 5: Median run time (secs) for QWH instances of order 35. (100 instances per data

point)

latin square is generated using a Markov chain Monte Carlo shuffling process [15]. The
task again is to find a coloring for the empty cells that completes the Latin square. We
refer to this problem as the “quasigroup with holes” (QWH) problem.> We can again
finely tune the complexity of the completion task by varying the fraction of the uncolored

cells [1].

5The code for this generator is available by contacting Carla Gomes (gomes@cs.cornell.edu).

18

In Figure 5, we compare the performance of our hybrid CSP/LP strategy against the
pure CSP strategy. For the hybrid CSP/LP strategy we set %LP = 10 and interleave-
LP = 5. Each data point was obtained by running the randomized search procedures
on 100 different instances, with a cutoff of 10%, and computing the median in number
of backtracks (upper panel) and total run time (lower panel). From the figure, we again
see the easy-hard-easy pattern, both in the hybrid CSP/LP and the pure CSP strategy.
Moreover, the hybrid CSP/LP strategy significantly outperforms the pure CSP strategy,
both in terms of the number of backtracks and total run time. The relative payoff of our
hybrid strategy is largest for the hardest problem instances (around 33.6% holes).

‘We now consider more detailed performance data on three hard problem instances.
In Table 1 we show the performance of the CSP/LP strategy and the pure CSP strategy
on an instance of order 35 with 405 holes (33% holes). (This instance is medium hard
— somewhat before the phase transition region.) The pure CSP strategy can solve this
instance using a high cutoff of 10%, but only in 6% of the runs. On the other hand, the
CSP/LP strategy is much more effective. In fact, even with only %LP = 1, we can solve
the instance in 42% of the runs. With %LP > 10, we solve the instance on each run.
Looking at the overall run time as a function of %LP, we see that at some point further
use of LP relaxations becomes counterproductive. The best performance is obtained with
%LP around 20.

% LP | Cutoff | Num. | % Suce. Median | Median
Runs Runs | Backtracks Time

0 108 100 6% 474049 | 1312.58
1 108 100 42% 589438 | 1992.08
5 108 100 90% 188582 615.16
10 108 100 100% 26209 114.35
15 108 100 100% 22615 116.29
20 108 100 100% 17203 | 112.64
25 108 100 100% 21489 158.07
30 108 100 100% 24139 179.37
50 108 100 100% 19325 262.67
75 108 100 100% 17458 379.68

Table 1: Hybrid CSP/LP search on an instance of order 35 with 405 holes.

In Table 2 and Table 3, we consider, respectively, a critically constrained instance of
QWH of order 40, with 528 holes, and a medium constrained instance of QWH of order
40, with 544 holes. We were unable to solve these instances with a pure CSP strategy
using a cutoff of 10° (100 runs) and a cutoff of 10° (100 runs). Both instances can be
solved with the hybrid CSP/LP strategy. The success rate increases with a higher %LP.
From the median overall run time, we see that the best performance is obtained for %LP
around 25.

We have not found any instance that could be solved with the pure CSP strategy
and could not be solved with the CSP/LP strategy. Furthermore, hard instances of
QCP/QWH appear out of reach of a pure integer programming strategy (i.e., no inter-
leaved CSP propagation): The pruning power provided by the CSP component is critical
in this highly combinatorial domain.

19

Num. | % Succ. Median | Median

% LP | Cutoff | Runs Runs | Backtracks Time
0 10° 100 0% N.A. N.A.

10 105 100 1% 48387 245.54

25 10° 100 37% 17382 215.69

50 105 100 47% 21643 422.59

0 108 100 0% N.A. N.A.

10 108 100 8% 355362 | 1488.08

25 108 100 64% 123739 574.68

50 108 100 65.3% 128306 757.55

Table 2: Instance of order 40, with 528 holes.

Num. | % Succ. Median | Median

% LP | Cutoff | Runs Runs | Backtracks Time
0 10° 100 0% N.A. N.A.

10 108 100 1% 41771 264.96

25 105 100 34% 31386 287.72

50 108 100 38% 13266 395.31

0 108 100 0% N.A. N.A.

10 109 100 5% 167897 813.58

25 108 100 53% 110787 560.56

50 108 100 92% 75234 648.87

Table 3: Instance of order 40, with 544 holes.

Overall, our hybrid method significantly extends the range of QWH problems we can
solve. The hybrid strategy allows us to improve on the time performance of the pure
CSP strategy and reliably solve larger instances, up to order 40 to 45. We also solved
several hard instances of order 50. On our very hardest problem, we had to increase %LP
to around 50%. So, apparently, more guidance was required from the LP relaxation.

7 Conclusions

Constraint based search techniques have shown to be remarkably efficient on purely com-
binatorial problems. In many domains, such techniques outperform integer programming
based approaches. Nevertheless, LP relaxations may still provide useful information, for
example, in guiding constraint based search techniques.

We have demonstrated the promise of boosting CSP methods using LP relaxations
on hard, purely combinatorial problems. Our approach involves a randomized rounding
strategy inspired by recent rounding methods used in approximation algorithms. In
this setting, the LP provides powerful guidance in the CSP search. Randomization and
restarts in the backtrack process are needed to make the overall strategy robust and to
recover from possible early branching mistakes.

Essential to our approach is a tight coupling between the CSP and LP method. We

20

simultaneously maintain a CSP and an LP model of the problem. The local nature
and high efficiency of the CSP propagation methods enable us to call such methods
frequently. In particular, CSP propagation is performed after each variable assignment.
By frequently updating and resolving the LP model, our LP rounding decisions stay
accurate during the search process. The continuous interleaving of CSP propagation and
LP heuristic guidance using randomized rounding are key features of our approach. Also,
we carefully control the amount of time spent in solving the LP relaxations, by restricting
this process to the top half of the backtrack search tree and not solving the LP at every
node of the search tree.

In experiments, we were able to significantly extend the reach of CSP and LP tech-
niques for solving instances of the quasigroup completion problem. Our technique is
general and therefore holds promise for a range of combinatorial problems.

We believe there is still room for further improvement. For example, using differ-
ent CSP and LP formulations and different rounding strategies. In particular, we are
currently experimenting with the packing formulation which offers better theoretical
guarantees.

References

[1] D. Achlioptas, Carla Gomes, Henry Kautz, and Bart Selman. Generating Satisfi-
able Instances. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00), New Providence, RI, 2000. AAAI Press.

[2] D. Brelaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251-256, 1979,

[3] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in
combinatorial search. In Proceedings of 7th Intl. Conference on the Principles and
Practice of Constraint Programming (CP-2001), Lecture Notes in Computer Science,
Vol. 2239, Springer-Verlag, pages 408-422, 2001.

[4] F. Chudak and D. Shmoys. Improved approximation algorithms for the uncapac-
itated facility location problem. In Submitted for publication, 1999. Preliminary
version of this paper (with the same title) appeared in proceedings of the Sixth
Conference on Integer Programming and Combinatorial Optimization.

[5] Vasek Chvatal. Linear Programming. W.H.Freeman Company, 1983.

[6] C. Colbourn. The complexity of completing partial latin squares. Discrete Applied
Mathematics, (8):25-30, 1984.

[7] M. X. Goemans and D. P. Willianson. 0.878-approximation algorithms for max-cut
and max-sat. In Proceedings of the 26th Annual ACM-SIAM Symposium on Theory
of Computing, pages 422-431, 1994.

[8] Carla Gomes. editor, The Knowledge Engineering Review. Special Issue on the
Integration of Artificial Intelligence and Operations Research Technigques, Vol. 15
(1) and Vol. 16 (1). Cambridge Press, 2000-2001.

21

(9]

(10]

(18]

(19]

[20]

(21)

(22]

(23]

Carla Gomes and Bart Selman. Problem Structure in the Presence of Perturba-
tions. In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), pages 221-227, New Providence, RI, 1997. AAAI Press.

Carla Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfaction problems. J. of Automated Reasoning,
24(1-2):67-100, 2000.

John Hooker. Resolution vs. cutting plane solution of inference problems: Some
computational experience. Operations Research Letter, 7(1):1-7, 1988.

John Hocker. Resolution and the integrality of satisfiability problems. Mathematical
Programming, 74:1-10, 1996.

Ilog Inc. Tlog cplex 7.1. user’s manual., 2001.
Ilog Inc. Ilog solver 5.1. user’s manual., 2001.

M.T. Jacobson and P. Matthews. Generating uniformly distributed random latin
squares. J. of Combinatorial Designs, 4(6):405-437, 1996.

A.P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. A
continuous approach to inductive inference. Mathematical Programming, 57:215~
238, 1992.

S. R. Kumar, A. Russell, and R. Sundaram. Approximating latin square extensions.
Algorithmica, 24:128-138, 1999.

Charles Laywine and Gary Mullen. Discrete Mathematics using Latin Squares.
Wiley-Interscience Series in Discrete mathematics and Optimization, 1998.

Rajeev Motwani, Joseph Naor, and Prabhakar Raghavan. Randomized approx-
imation algorithms in combinatorial optimization. In Dorit S. Hochbaum, editor,
Approzimation Algorithms for NP-Hard Problems. PWS Publishing Company, 1997.

J. C. Regin. A filtering algorithm for constraints of difference in csp. In Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages 362—
367, Seattle, WA, 1994. AAAI Press.

R. Regis, C. Gomes, and D. Shmoys. An improvement performance guarantee for
the partial latin square problem. Manuscript in preparation, 2002.

P. Shaw, K. Stergiou, and T. Walsh. Arc consistency and quasigroup completion.
In Proceedings of ECAI-98, workshop on binary constraints, 1998.

Johannes Warners. Nonlinear approaches to satisfiability problems. PhD thesis,
Technische Universiteit Eindhoven, 1999.

22

In Proc. Constraint Programming, 2001.

Appendix 2

Formal Models of Heavy-Tailed Behavior in
Combinatorial Search*

Hubie Chen, Carla Gomes, and Bart Selman

Department of Computer Science, Cornell University, Ithaca, NY 14853, USA
{hubes,gomes, selman}@cs. cornell.edu

Abstract. Recently, it has been found that the cost distributions of
randomized backtrack search in combinatorial domains are often heavy-
tailed. Such heavy-tailed distributions explain the high variability ob-
served when using backtrack-style procedures. A good understanding
of this phenomenon can lead to better search techniques. For example,
restart strategies provide a good mechanism for eliminating the heavy-
tailed behavior and boosting the overall search performance. Several
state-of-the-art SAT solvers now incorporate such restart mechanisms.
The study of heavy-tailed phenomena in combinatorial search has so far
been been largely based on empirical data. We introduce several abstract
tree search models, and show formally how heavy-tailed cost distribution
can arise in backtrack search. We also discuss how these insights may fa-
cilitate the development of better combinatorial search methods.

1 Introduction

Recently there have been a series of new insights into the high variability ob-
served in the run time of backtrack search procedures. Empirical work has shown
that the run time distributions of backtrack style algorithms often exhibit so-
called heavy-tailed behavior [5]. Heavy-tailed probability distributions are highly
non-standard distributions that capture unusually erratic behavior and large
variations in random phenomena. The understanding of such phenomena in
backtrack search has provided new insights into the design of search algorithms
and led to new search strategies, in particular, restart strategies. Such strategies
avoid the long tails in the run time distributions and take advantage of the prob-
ability mass at the beginning of the distributions. Randomization and restart
strategies are now an integral part of several state-of-the-art SAT solvers, for
example, Chaff [12], GRASP [11}, Relsat [1], and Satz-rand (9, 4].

Research on heavy-tailed distributions and restart strategies in combinatorial
search has been largely based on empirical studies of run time distributions.
However, so far, a detailed rigorous understanding of such phenomena has been

* This research was partially funded by AFRL, grants F30602-99-1-0005 and F30602-
99-1-0006, AFOSR, grant F49620-01-1-0076 (I1ISI) and F49620-01-1-0361 and
DARPA, F30602-00-2-0530 and F30602-00-2-0558. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
U.S. Government.

23

goodelle
 Appendix 2

lacking. In this paper, we provide a formal characterization of several tree search
models and show under what conditions heavy-tailed distributions can arise.

Intuitively, heavy-tailed behavior in backtrack style search arises from the
fact that wrong branching decisions may lead the procedure to explore an expo-
nentially large subtree of the search space that contains no solutions. Depending
on the number of such “bad” branching choices, one can expect a large variabil-
ity in the time to find a solution on different runs. Our analysis will make this
intuition precise by providing a search tree model, for which we can formally
prove that the run time distribution is heavy-tailed. A key component of our
model is that it allows for highly irregular and imbalanced trees, which produce
search times that differ radically from run to run. We also analyze a tree search
model that leads to fully balanced search trees. The balanced tree model does
not exhibit heavy-tailed behavior, and restart strategies are provably ineffective
in this model. The contrast between the balanced and imbalanced models shows
that heavy-tailedness is not inherent to backtrack search in general but rather
emerges from backtrack searches through highly irregular search spaces.

Whether search trees encountered in practice correspond more closely to
balanced or imbalanced trees is determined by the combination of the character-
istics of the underlying problem instance and the search heuristics, pruning, and
propagation methods employed. Balanced trees occur when such techniques are
relatively ineffective in the problem domain under consideration. For example,
certain problem instances, such as the parity formulas [2], are specifically de-
signed to “fool” any clever search technique. (The parity problems were derived
using ideas from cryptography.) On such problem instances backtrack search
tends to degrade to a form of exhaustive search, and backtrack search trees
correspond to nearly fully balanced trees with a depth equal to the number
of independent variables in the problem. In this case, our balanced search tree
model captures the statistical properties of such search spaces.

Fortunately, most CSP or SAT problems from real-world applications have
much more structure, and branching heuristics, dynamic variable ordering, and
pruning techniques can be quite effective. When observing backtrack search on
such instances, one often observes highly imbalanced search trees. That is, there
can be very short subtrees, where the heuristics (combined with propagation)
quickly discover contradictions; or, at other times, the search procedure branches
deeply into large subtrees, making relatively little progress in exploring the over-
all search space. As a result, the overall search tree becomes highly irregular,
and, as our imbalanced search tree model shows, exhibits heavy-tailed behavior,
often making random restarts effective.

Before proceeding with the technical details of our analysis, we now give a
brief summary of our main technical results. For our balanced model, we will
show that the expected run time (measured in leaf nodes visited) scales expo-
nentially in the height of the search tree, which corresponds to the number of
independent variables in the problem instance. The underlying run time distri-
bution is not heavy-tailed, and a restart strategy will not improve the search
performance.

24

For our imbalanced search tree model, we will show that the run time of a
randomized backtrack search method is heavy-tailed, for a range of values of
the model parameter p, which characterizes the effectiveness of the branching
heuristics and pruning techniques. The heavy-tailedness leads to an infinite vari-
ance and sometimes an infinite mean of the run time. In this model, a restart
strategy will lead to a polynomial mean and a polynomial variance.

We subsequently refine our imbalanced model by taking into account that in
general we are dealing with finite-size search trees of size at most b™, where b is
the branching factor. As an immediate consequence, the run time distribution of
a backtrack search is bounded and therefore cannot, strictly speaking, be heavy-
tailed (which requires infinitely long “fat” tails). Our analysis shows, however,
that a so-called “bounded heavy-tailed” model provides a good framework for
studying the search behavior on such trees. The bounded distributions share
many properties with true heavy-tailed distributions. We will show how the
model gives rise to searches whose mean scales exponentially. Nevertheless, short
runs have sufficient probability mass to allow for an effective restart strategy,
with a mean run time that scales polynomially. These results closely mimic the
properties of empirically determined run time distributions on certain classes of
structured instances, and explain the practical effectiveness of restarts, as well
as the large observed variability between different backtrack runs.

The key components that lead to heavy-tailed behavior in backtrack search
are (1) an exponential search space and (2) effective branching heuristics with
propagation mechanisms. The second criteria is necessary to create a reasonable
probability mass for finding a solution early on in the search. Interestingly, our
analysis suggests that heuristics that create a large variability between runs may
be more effective than more uniform heuristics because a restart strategy can
take advantage of some of the short, but possibly relatively rare, runs.’

We should stress that although our imbalanced tree model results in heavy-
tailed behavior, we do not mean to suggest that this is the only such model
that would do so. In fact, our imbalanced model is just one possible search tree
model, and it is a topic for future research to explore other search models that
may also result in heavy-tailed behavior.

The paper is structured as follows. In section 2, we present our balanced tree
model. In section 3, we introduce the imbalanced search tree model, followed by
the bounded version in section 4. Section 5 gives the conclusions and discusses
directions for future work.

2 Balanced trees

We first consider the case of a backtrack search on a balanced tree. To obtain the
base-case for our analysis, we consider the most basic form of backtrack search.

! In an interesting study, Chu Min Li (1999) [8] argues that asymmetric heuristics may
indeed be quite powerful. The study shows that heuristics that lead to “skinny” but
deep search trees can be more effective that heuristics that uniformly try to minimize
the overall depth of the trees, thereby creating relative short but dense trees.

25

We will subsequently relax our assumptions and move on to more practical forms
of backtrack search. In our base model, we assume chronological backtracking,
fixed variable ordering, and random child selection with no propagation or prun-
ing. We consider a branching factor of two, although the analysis easily extends
to any constant branching factor.

successlul fesf successful leaf

@) ®

[N
N |

[N

- 1

suceessful feal

©

Fig. 1. Balanced tree model.

Figure 1 shows three examples of our basic setup. The full search space is a
complete binary tree of depth n with 2" leaf nodes at the bottom. We assume that
there is exactly a single successful leaf.? The bold-faced subtrees show the nodes
visited before the successful leaf is found. The figure is still only an abstraction
of the actual search process: there are still different ways to traverse the bold-
faced subtrees, referred to as “abstract search subtrees”. An abstract search tree
corresponds to the tree of all visited nodes, without specification of the order in
which the nodes are visited. Two different runs of a backtrack search can have
the same abstract tree but different concrete search trees in which the same
nodes are visited but in different order.

2.1 Probabilistic characterization of the balanced tree model

Our balanced tree search model has a number of interesting properties. For
example, each abstract search subtree is characterized by a unique number of
visited leaf nodes, ranging from 1 to 2". Moreover, once the successful leaf is
fixed, each abstract subtree occurs with probability (1/2)™. The number of leaf
nodes visited up to and including the successful leaf node is a discrete uniformly
distributed random variable: denoting this random variable by T'(n), we have
PlT(n)=i] =(1/2)", wheni=1,...,2™

2 Having multiple solutions does not qualitatively change our results. In the full version
of this paper, we will discuss this issue in more detail.

26

successful leaf successful leal

Fig. 2. Balanced tree model (detailed view).

As noted above, several runs of a backtrack search method can yield the
same abstract tree, because the runs may visit the same set of nodes, but in a
different order. It is useful, to also consider such actual traversals (or searches)
of an abstract subtree. See Figure 2. The figure shows two possible traversals
for the subtree from Figure 1(b). At each node, the figure gives the name of the
branching variable selected at the node, and the arrow indicates the first visited
child. The only possible variation in our search model is the order in which the
children of a node are visited. To obtain the bold-faced subtree in Figure 1(b),
we see that, at the top two nodes, we first need to branch to the left. Then we
reach a complete subtree below node z3, where we have a total of 4 possible ways
of traversing the subtree. In total, we have 6 possible searches that correspond
to the abstract subtree in Figure 1(b).

Note that the abstract subtree in Figures 1(a) has only one possible corre-
sponding traversal. Each possible traversal of a abstract search tree is equally
likely. Therefore, the probability of an actual search traversal is given by (1/2)"(1/K),
where K is the number of distinct traversals of the corresponding abstract sub-
tree.

We now give a brief derivation of the properties of our balanced tree search.
Consider the abstract binary search trees in Figure 1. Let “good” nodes be those
which are ancestors of the satisfying leaf, and let “bad” nodes be all others. Our
backtrack search starts at the root node; with probability 1/2, it descends to the
“bad” node at depth one, and incurs time 2"~! exploring all leaves below this
“bad” node. After all of these leaves have been explored, a random choice will
take place at the “good” node of depth one. At this node, there is again prob-
ability 1/2 of descending to a “good” node, and probability 1/2 of descending
to a “bad” node; in the latter case, all 2772 leaves below the “bad” node will
be explored. If we continue to reason in this manner, we see that the cost of the
search is

Tn)=X2" 4+ X2 L+ X2t X204

where each X is an indicator random variable, taking on the value 1 if the “bad”
node at depth j was selected, and the value O otherwise. For eachi =1,...,2%,
there is exactly one choice of zero-one assignments to the variables X; so that i
is equal to the above cost expression; any such assignment has probability 27"
of occurring, and so this is the probability that the cost is <.

27

Stated differently, once the satisfying leaf is fixed, the abstract subtree is
determined completely by the random variables X;: all descendants of the “bad”
sibling of the unique “good” node at depth j are explored if and only if X; = 1. In
Figure 1, we give the X; settings alongside each tree. A good choice at a level gets
label “0” and a bad choice gets label “1”7. Each possible binary setting uniquely
defines an abstract search tree and its number of leaf nodes. Hence, there are 2"
abstract subtrees, each occurring with probability 1/2". The overall search cost
distribution is therefore the uniform distribution over the range i =1,...,2™

This allows us to calculate the expectation and variance of the search cost
in terms of the number of visited leaves, denoted by T'(n). The expected value
is given by E[T(n)] = Ef:l iP[T(n) = i], which with P[T'(n) = 4] = 27" gives
us E[T(n)] = (1 +27)/2.

We also have E[T%(n)] = Y2, iP[T = i}, which equals (22**1 + 3.2% +
1)/(6). So, for the variance we obtain Var[T] = E[T?(n)] — E[T'(n)]?, which
equals (22" — 1)/(12).

These results show that both the expected run time and the variance of
chronological backtrack search on a complete balanced tree scale exponentially
in n. Of course, given that we assume that the leaf is located somewhere uni-
formly at random on the fringe of the tree, it makes intuitive sense that the
expected search time is of the order of half of the size of the fringe. However,
we have given a much more detailed analysis of the search process to provide
a better understanding of the full probability distribution over the search trees
and abstract search trees.

2.2 The effect of restarts

We conclude our analysis of the balanced case by considering whether a random-
ized restart strategy can be beneficial in this setting. As discussed earlier, restart
strategies for randomized backtrack search have shown to be quite effective in
practice [4]. However, in the balanced search tree model, a restart strategy is
not effective in reducing the run time to a polynomial.

In our analysis, we slightly relax the assumptions made about our search
model. We assume a branching factor of b > 2, and we make no assumptions
about the order in which the algorithm visits the children of an internal node,
other than that the first child is picked randomly. Indeed, our analysis applies
even if an arbitrarily intelligent heuristic is used to select among the remaining
unvisited children at a node. However, for the case of b = 2, this model is identical
to our previous model. As we will see, the mean of T'(n) is still exponential.

QOur first observation gives the probability that the number of visited leaf
nodes T'(n) does not exceed a power of b.

Lemma 1. For any integers n,k such that 0 < k < n and 1 < n, P[T'(n) <
bn—k] — b—nk_

Proof. Observe that T(n) < b"~% if and only if at least the first k guesses are
correct. The probability that the first k guesses are correct is b™*. O

28

It follows that the expected run time is exponential, as one would expect.

Theorem 1. The expectation of the run time, E[T(n)], for a balanced tree model
is exponential in n.

Proof. By Lemma 1, P[T(n) < 5”71 = b~1. Thus, E[T(n)] is bounded below
by b~ 1(1 — b~1), which is exponential in n.

We now refine Lemma 1 to obtain an upper bound on the probability that
T(n) is below f(n).*

Lemma 2. If f : NT — N* is a function such that f(n) < b (for alln > 1),
then P[T(n) < f(n)] < f(n)/b""* (for alln >1).

Proof. We have that 0 < logy f(n) < n. Set k(n) = n — log;, f(n), so that
log, f(n) = n — k(n). Then, 0 < n — k(n) < n, implying that 0 < k(n) < n.
Since 0 < |k(n)| < n, we can apply Lemma 1 to |k(n)| to obtain P[T'(n) <
pr—lk)]] = 1/plEM] So, we have P[T(n) < f(n)] = P[T(n) < blogs F(m)] <
P[T(n) < bn——tk(n)j] — l/b]_k'(n)j < 1/bn-logb fin)—-1 < f(n)/b‘"’_l. 0

This theorem implies that the probability of the search terminating in polynomial
time is exponentially small in n, as f(n)/b"~! is exponentially small in n for any
polynomial f. Using this observation, we can now show that there does not exist
a restart strategy that leads to expected polynomial time performance.

Formally, a restart strategy is a sequence of times t1(n),t2(n),ts(n),. ...
Given a randomized algorithm A and a problem instance I of size n, we can
run A under the restart strategy by first executing A on I for time t1(n), fol-
lowed by restarting A and running for time t2(n), and so on until a solution
is found. The expected time of A running under a restart strategy can be sub-
stantially different from the expected time of running A without restarts. In
particular, if the run time distribution of A is “heavy-tailed”, there is a good
chance of having very long runs. In this case, a restart strategy can be used
to cut off the long runs and dramatically reduce the expected run time and its
variance.

Luby et al. [10] show that optimal performance can be obtained by using a
purely uniform restart strategy. In a uniform strategy, each restart interval is
the same, i.e., t(n) = t;(n) = ta(n) = t3(n) = ..., where t(n) is the “uniform
restart time”.

Theorem 2. Backtrack search on the balanced tree model has no uniform restart
strategy with expected polynomial time.

Proof. We prove this by contradiction. Let t(n) be a uniform restart time yielding
expected polynomial time. Using a lemma proved in the long version of this
paper, we can assume £(n) to be a polynomial. If we let the algorithm run for

3 Note on notation: We let N* denote the set of positive integers, i.e., {1,2,3,... }.
We say that a function f : Nt — N* is exponential if there exist constants ¢ > 0
and b > 1 such that f(n) > ¢b™ for alln € NT.

29

time t(n), the probability that the algorithm finds a solution is P[T'(n) < t(n)},
which by Lemma 2 is bounded above by t(n)/ b1, Thus, the expected time of
the uniform restart strategy ¢(n) is bounded below by t(n)[t(n)/b""1]7! = "1,
a contradiction. O

3 The imbalanced tree model: Heavy-tails and restarts

Before we present a tree search model where a restart strategy does work, it
is useful to understand intuitively why restarts do not enhance the search on a
balanced tree: When we consider the cumulative run time distribution, there is
simply not enough probability mass for small search trees to obtain a polyno-
mial expected run time when using restarts. In other words, the probability of
encountering a small successful search tree is too low. This is of course a direct
consequence of the balanced nature of our trees, which means that in the search
all branches reach down to the maximum possible depth. This means that if one
follows a path down from the top, as soon as a branching decision is made that
deviates from a path to a solution, say at depth i, a full subtree of depth n — i
needs to be explored.

Assume that in our balanced model, our branching heuristics make an error
with probability p (for random branching, we have p = 1/2). The probability
of making the first incorrect branching choice at the i*® level from the top is
p(1 — p)*"1. As a consequence, with probability p, we need to explore half of
the full search tree, which leads directly to an exponential expected search cost.
There are only two ways to fix this problem. One way would be to have very
clever heuristics (p << 1) that manage to eliminate almost all branching errors
and have a reasonable chance of making the first wrong choice close to the fringe
of the search tree. However, it appears unlikely that such heuristics would exist
for any interesting search problem. (Such heuristics in effect almost need to solve
the problem.)

Another way to remedy the situation is by having a combination of non-
chronological backtracking, dynamic variable ordering, pruning, propagation,
clause or constraint learning, and variable selection that terminate branches
early on in a “bad subtree”.* Such techniques can substantially shrink the un-
successful subtrees. (Below, we will refer to the collection of such techniques as
“CSP techniques”.) The resulting search method will be allowed to make branch-
ing mistakes but the effect of those errors will not necessarily lead to subtrees
exponential in the full problem size. Of course, the resulting overall search trees
will be highly irregular and may vary dramatically from run to run. As noted
in the introduction, such large variations between runs have been observed in
practice for a range of state-of-the-art randomized backtrack search methods.

4 A particularly exciting recent development is the Chaff [12] SAT solver. In a variety
of structured domains, such as protocol verification, Chaff substantially extends the
range of solvable instances. Chaff combines a rapid restart strategy with clause learn-
ing. The learned clauses help in pruning branches and subtrees on future restarts.

30

The underlying distributions are often “heavy-tailed”, and in addition, restart
strategies can be highly effective.

Heavy-tailed probability distributions are formally characterized by tails that
have a power-law (polynomial) decay, i.e., distributions which asymptotically
have “heavy tails” — also called tails of the Pareto-Lévy form:

PX>z]~Cz™®, >0)

where 0 < o < 2 and C > 0 are constants. Some of the moments of heavy-tailed
distributions are infinite. In particular, if 0 < a < 1, the distribution has infinite
mean and infinite variance; with 1 < o < 2, the mean is finite but the variance
is infinite.

We now introduce an abstract probability model for the search tree size that,
depending on the choice of its characteristic parameter setting, leads to heavy-
tailed behavior with an effective restart strategy. Our model was inspired by the
analysis of methods for sequential decoding by Jacobs and Berlekamp [7].

Our imbalanced tree model assumes that the CSP techniques lead to an
overall probability of 1 — p of guiding the search directly to a solution.> With
probability p(1 — p), a search space of size b, with b > 2, needs to be explored. In
general, with probability p*(1—p), a search space of b* nodes needs to be explored.
Intuitively, p provides a probability that the overall amount of backtracking
increases geometrically by a factor of b. This increase in backtracking is modeled
as a global phenomenon.

More formally, our generative model leads to the following distribution. Let
p be a probability (0 < p < 1), and b > 2 be an integer. Let T be a random
variable taking on the value b® with probability (1 — p)p*, for all integers i > 0.
Note that for all 3, ,(1—p)p* = 1 for 0 < p < 1, so this is indeed a well-specified
probability distribution.

We will see that the larger b and p are, the “heavier” the tail. Indeed, when
b and p are sufficiently large, so that their product is greater than one, the
expectation of T is infinite. However, if the product of b and p is below one,
then the expectation of 7" is finite. Similarly, if the product of b? and p is greater
than one, the variance of T is infinite, otherwise it is finite. We now state these
results formally.

The expected run time can be calculated as E[T] = 35, P[T = b]b* =
Eizo(l - p)p't* = (1 -p) Eizo(pb)z'

Therefore, when p, the probability of the size of the search space increasing by
a factor of b, is sufficiently large, that is, p > 1/b, we get an infinite expected

search time: E[T] — oc. For p < 1/b (“better search control”), we obtain a finite
mean of E[T] = (1 - p)/(1 — pb).

5 Of course, the probability 1 — p can be close to zero. Moreover, in a straightforward
generalization, one can assume an additional polynomial number of backtracks, ¢(n),
before reaching a successful leaf. This generalization is given later for the bounded
case.

31

To compute the variance of the run time, we first compute E[T?] = Yo Pl =
bi](bz)z = Eizo(l —p)p'(8*)? = (1~p) Zigo(pbz)z-

Then, it can be derived from Var[T] = E[T?] - (E[T])? that (1) for p > 1/b%, the
variance becomes infinite, and (2) for smaller values of p, p < 1/b?, the variance

is finite with Var[T] = {=8; — (—11{—15’,—))2

Finally, we describe the asymptotics of the survival function of T'.
Lemma 3. For all integers k > 0, P[T > b¥] = p+1.

Proof. We have P[T' > b%] = 320, . P[T = b] = Y02, (1 —p)p' = (1~
PP b = (L p)p T 0 P = P D

Theorem 3. Let p be fized. For all real numbers L € (0,00), P{T > L} is
O(L%:). In particular, for L € (0,00), p?L'°%:P < P[T > L] < L'°&P,

Proof. We prove the second statement, which implies the first. To obtain the
lower bound, observe that P[T" > L] = P[T > b°& L] > P[T > blleesLl) =
pllogs L1+1 where the last equality follows from Lemma 3. Moreover, p/logs L1+1 >
ploss L+2 — p2plogy L — plrloes? We can upper bound the tail in a similar
manner: P[T > L] < P[T > bllose L1} = pliogy LI+1 < plogs L — [logyp,]

Theorem 3 shows that our imbalanced tree search model leads to a heavy-tailed
run time distribution whenever p > 1/b%. For such a p, the a of equation (x) is
less than 2.

power law decay power law decay
—
infinitely long tail exponentially long tail ¥ pounded
oS Rl

infinite moments exponential moments

infinite mean exponential mean in size of the input

infinite variance exporential variance in size of the input
finite expected run time for restart strategy polynomial expected run time for restart strategy

Heavy-Tailed Behavior Bounded Heavy-Tailed Behavior

(Unbounded search spaces) (Bounded search spaces)

Fig. 3. Correspondence of concepts for heavy-tailed distributions and bounded heavy-
tailed distributions.

4 Bounded Heavy-Tailed Behavior for Finite
Distributions

Our generative model for imbalanced tree search induces a single run time dis-
tribution, and does not put an apriori bound on the size of the search space.

32

However, in practice, there is a different run time distribution for each combina-
torial problem instance, and the run time of a backtrack search procedure on a
problem instance is generally bounded above by some exponential function in the
size of the instance. We can adjust our model by considering heavy-tailed distri-
butions with bounded support or so-called “bounded heavy-tailed distributions”,
for short [6]. Analogous to standard heavy-tailed distributions, the bounded ver-
sion has power-law decay of the tail of the distribution (see equation (*) over a
finite, but exponential range of values. Our analysis of the bounded search space
case shows that the main properties of the run time distribution observed for
the unbounded imbalanced search model have natural analogues when dealing
with finite but exponential size search spaces.

Figure 3 highlights the correspondence of concepts between the (unbounded)
heavy-tailed model and the bounded heavy-tailed model. The key issues are:
heavy-tailed distributions have infinitely long tails with power-law decay, while
bounded heavy-tailed distributions have exponentially long tails with power-law
decay; the concept of infinite mean in the context of a heavy-tailed distribution
translates into an exponential mean in the size of the input, when considering
bounded heavy-tailed distributions; a restart strategy applied to a backtrack
search procedure with heavy-tailed behavior has a finite expected run time,
while, in the case of bounded search spaces, we are interested in restart strate-
gies that lead to a polynomial expected run time, whereas the original search
algorithm (without restarts) exhibits bounded heavy-tailed behavior with an ex-
ponential expected run time. Furthermore, we should point out that exactly the
same phenomena that lead to heavy-tailed behavior in the imbalanced generative
model — the conjugation of an exponentially decreasing probability of a series
of “mistakes” with an exponentially increasing penalty in the size of the space
to search — cause bounded heavy-tailed behavior with an exponential mean in
the bounded case.

To make this discussion more concrete, we now consider the bounded version
of our imbalanced tree model. We put a bound of n on the depth of the generative
model and normalize the probabilities accordingly. The run time T'(n) for our
search model can take on values biq(n) with probability P[T'(n) = big(n)] =
Cpt, for i = 0,1,2,...,n. We renormalize this distribution using a sequence of
constants C,,, which is set equal to 1—’}—[)_;;”-;1- This guarantees that we obtain a
valid probability distribution, since EZ«;O C,p* = 1. Note that C,, < 1 for all
n > 1. We assume b > 1 and that g(n) is a polynomial in n.

33

For the expected run time we have E[T] = S o PIT = big(n)](biq(n)) =
Z;L:Q(CTLPZ)((’%Q(”» = Cng(n) Z?:o(pb)z-

We can distinguish two cases.

(1) For p < 1/b, we have E{T] < Cpg(n)(n+1).

(2) For p > 1/b, we obtain a mean that is exponential in n, because we have
E[T] = Crq(n)(pbh)".

i

We compute the variance as follows. First, we have E[Tz]. = Y. PIT
big(n)](bq(n))* = 307, Cup* (b7¢*(n)) = Cng?(n) 3i_o(pb?)". From Var(T]
E[T?] — (E[T))?, we can now derive the following.

Il

(1) If p < 1/b%, we obtain polynomial scaling for the variance, as Var[T] <
E[T? < Chg®(n)(n+1).
(2) For p > 1/b?, the variance scales exponentially in n. To prove this, we es-
tablish a lower bound for Var[T]. Var[T] > Cng?(n)(pb*)"—C2q?(n)[3 i o (pb)]? =
quz(n){(pbz)n"CH[Z?:O(pb)i]Z} > Cong?(n)[(ph*)" —Crn(n+1)2M7] = Cng®(n)(pb?)"[1-
Cn(n + 1)2M?2/(pb®)"], where M, is the maximum term in the summation
S o (pb)*. There are two cases: if p > 1/b, M,, = (pb)", and if 1/6* < p < 1/b,
M,, = 1. In either case, [1 — C,(n+1)2M2/(pb?)"] goes to 1 in the limit n — oo,
and Var[7T] is bounded below by (pb?)™ times a polynomial (for sufficiently large
n). Since p > 1/b% by assumption, we have an exponential lower bound.

Next, we establish that the probability distribution is bounded heavy-tailed when
p > 1/b. That is, the distribution exhibits power-law decay up to run time values
of b"™. Set € = (1 — p)/b. Then, C,p* > ¢/b'"?, since (1 — p) < Cy for all n and
bp > 1 by assumption. Now consider P[T'(n) > L], where L is a value such that
pi=t < L < b for some i = 1,...,n. It follows that P[T(n) > L] > P[I'(n) =
biq(n)] = Cnp' > €/L. Thus, we again have power-law decay up to L < b™.

Finally, we observe that we can obtain an expected polytime restart strategy.
This can be seen by considering a uniform restart strategy with restart time
q(n). We have P[T(n) = g(n)] = C,, so the expected run time is ¢(n)/C,. In
the limit n — oc, C), = 1 — p; so, the expected run time is polynomial in n.

5 Conclusions

Heavy-tailed phenomena in backtrack style combinatorial search provide a se-
ries of useful insights into the overall behavior of search methods. In particular,
such phenomena provide an explanation for the effectiveness of random restart
strategies in combinatorial search [3,5, 13]. Rapid restart strategies are now in-
corporated in a range of state-of-the-art SAT/CSP solvers [12,11,1,9]. So far,
the study of such phenomena in combinatorial search has been largely based on
the analysis of empirical data. In order to obtain a more rigorous understand-
ing of heavy-tailed phenomena in backtrack search, we have provided a formal
analysis of the statistical properties of a series of randomized backtrack search

34

s v » - -
s . bounded imbalance(y=
imbalanced p 0.
.. bounded imbalanced p X 75
0.1 Ry balal

0.0t

0.001

P(T >1) {log)

0.0001 |

1e-05

\X\

L : . 1 L .
10 100 1000 10000 100000 10406 1e+07
Curnulative Run time (visited leaf nodes) {log)

18-08
1

Fig. 4. Example distributions for the balanced, imbalanced and bounded imbalanced
models. Parameters: b = 2,n = 20,p = 0.5 and 0.75.

models: the balanced tree search model, the imbalanced tree model, and the
bounded imbalanced tree model. We also studied the effect of restart strategies.

Our analysis for the balanced tree model shows that a randomized backtrack
search leads to a uniform distribution of run times (7.e., not heavy-tailed), re-
quiring a search of half of the fringe of the tree on average. Random restarts are
not effective in this setting. For the (bounded) imbalanced model, we identified
(bounded) heavy-tailed behavior for a certain range of the model parameter,
p. The parameter p models “the (in)effectiveness” of the pruning power of the
search procedure. More specifically, with probability p, a branching or pruning
“mistake” occurs, thereby increasing the size of the subtree that requires traver-
sal by a constant factor, b > 1. When p > 1/b?%, heavy-tailed behavior occurs. In
general, heavy-tailedness arises from a conjugation of two factors: exponentially
growing subtrees occurring with an exponentially decreasing probability.

Figure 4 illustrates and contrasts the distributions for the various models.
We used a log-log plot of P(T > L), i.e., the tail of the distribution, to highlight
the differences between the distributions. The linear behavior over several orders
of magnitude for the imbalanced models is characteristic of heavy-tailed behav-
ior [5]. The drop-off at the end of the tail of the distribution for the bounded
case illustrates the effect of the boundedness of the search space. However, given
the relatively small deviation from the unbounded model (except for the end of
the distribution), we see that the boundary effect is relatively minor. The sharp
drop-off for the balanced model indicates the absence of heavy-tailedness.

Our bounded imbalanced model provides a good match to heavy-tailed be-
havior as observed in practice on a range of problems. In particular, depending
on the model parameter settings, the model captures the phenomenon of an ex-
ponential mean and variance combined with a polynomial expected time restart
strategy. The underlying distribution is bounded heavy-tailed.

The imbalanced model can give rise to an effective restart strategy. This
suggests some possible directions for future search methods. In particular, it
suggests that pruning and heuristic search guidance may be more effective when
behaving in a rather asymmetrical manner. The effectiveness of such asymmet-
ric methods would vary widely between different regions of the search space.
This would create highly imbalanced search tree, and restarts could be used to
eliminate those runs on which the heuristic or pruning methods are relatively
ineffective. In other words, instead of trying to shift the overall run time distri-
bution downwards, it may be better to create opportunities for some short runs,
even if this significantly increases the risk of additional longer runs.

As noted in the introduction, our imbalanced model is just one particular
search tree model leading to heavy-tailed behavior. An interesting direction for
future research is to explore other tree search models that exhibit heavy-tailed
phenomena.

In our current work, we are also exploring a set of general conditions under
which restarts are effective in randomized backtrack search. The long version of
the paper, gives a formal statement of such results.

We hope our analysis has shed some light on the intriguing heavy-tailed phe-
nomenon of backtrack search procedures, and may lead to further improvements
in the design of search methods.

References

1. R. Bayardo and R.Schrag. Using csp look-back techniques to solve real-world sat
instances. In Proc. of the 14th Natl. Conf. on Artificial Intelligence (AAAI-97),
pages 203208, New Providence, RI, 1997. AAAI Press.

2. J. M. Crawford, M. J. Kearns, and R. E. Schapire. The minimal disagreement
parity problem as a hard satisfiability problem. Technical report (also in dimacs
sat benchmark), CIRL, 1994.

3. C. Gomes, B. Selman, and N. Crato. Heavy-tailed Distributions in Combinatorial
Search. In G. Smolka, editor, Princp. and practice of Constraint Programming
(CP97). Lect. Notes in Comp. Sci., pages 121-135. Springer-Verlag, 1997.

4. C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through
Randomization. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), pages 431-438, New Providence, RI, 1998. AAAI Press.

5. C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. of Autornated Reasoning,
24(1-2):67-100, 2000.

6. M. Harchol-Balter, M. Crovella, and C. Murta. On choosing a task assignment
policy for a distributed server system. In Proceedings of Performance Tools 98,
pages 231-242. Springer-Verlag, 1998.

7. 1. Jacobs and E. Berlekamp. A lower bound to the distribution of computation for
sequential decoding. IEEE Trans. Inform. Theory, pages 167-174, 1963.

8. C. M. Li. A constrained-based approach to narrow search trees for satisfiability.
Information processing letters, 71:75-80, 1999.

9. C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiabil-
ity problems. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 366-371. AAAIT Pess, 1997.

36

10.

11.

12.

M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of las vegas algorithms.
Information Process. Letters, pages 173-180, 1993.

J. P. Marques-Silva and K. A. Sakallah. Grasp - a search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In Proc. of the 39th Design Automation Conf., 2001.

T. Walsh. Search in a small world. In IJCAI-99, 1999.

37

In Proceedings of CP-2002, Ithaca, New York, USA

Appendix 3 Communication and Computation
in DisCSP Algorithms*

Cesar Fernandez', Ramén Béjar!, Bhaskar Krishnamachari?, and
Carla Gomes?

Departament d’Informatica i Enginyeria Industrial, Universitat de Lleida
Jaume II, 69, E-25001 Lleida, Spain
{ramon, cesar}@eup.udl.es
2 Department of Computer Science, Cornell University
Ithaca, NY 14853, USA
{bhaskar, gomes}Qcs.cornell.edu

Abstract. We introduce SensorDCSP, a naturally distributed bench-
mark based on a real-world application that arises in the context of
networked distributed systems. In order to study the performance of
DisCSP algorithms in a truly distributed setting, we use a discrete-event
network simulator, which allows us to model the impact of different net-
work traffic conditions on the performance of the algorithms. We consider
two complete DisCSP algorithms: asynchronous backtracking (ABT) and
asynchronous weak commitment search (AWC). In our study of differ-
ent network traffic distributions, we found that, random delays, in some
cases combined with a dynamic decentralized restart strategy, can im-
prove the performance of DisCSP algorithms. More interestingly, we also
found that the active introduction of message delays by agents can im-
prove performance and robustness, while reducing the overall network
load. Finally, our work confirms that AWC performs better than ABT
on satisfiable instances. However, on unsatisfiable instances, the perfor-
mance of AWC is considerably worse than ABT.

1 Introduction

In recent years we have seen an increasing interest in Distributed Constraint
Satisfaction Problem (DisCSP) formulations to model combinatorial problems
arising in distributed, multi-agent environments [2, 14, 16-18,20]. There is a rich

* Research partially supported by AFRL, grants F30602-99-1-0005 and F30602-99-1-
0006, AFOSR, grant F49620-01-1-0076 (Intelligent Information Systems Institute)
and F49620-01-1-0361 (MURI grant on Cooperative Control of Distributed Au-
tonomous Vehicles in Adversarial Environments), CICYT, TIC2001-1577-C03-03
and DARPA, F30602-00-2-0530 (Controlling Computational Cost: Structure, Phase
Transitions and Randomization) and F30602-00-2-0558 (Configuring Wireless Trans-
mission and Decentralized Data Processing for Generic Sensor Networks). The views
and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of the U.S. Government.

38

goodelle
Appendix 3

set of real-world distributed applications, such as in the area of networked sys-
tems, for which the DisCSP paradigm is particularly useful. In such distributed
applications, constraints among agents, such as communication bandwidth and
privacy issues, preclude the adoption of a centralized approach.

We propose SensorDCSP, a benchmark inspired by one of such distributed
applications that arise in networked distributed systems [1,8]. SensorDCSP is
a truly distributed benchmark, a feature not present in many prior benchmark
problems used to study the performance of DisCSP algorithms, such as N-Queens
and Graph Coloring. SensorDCSP involves a network of distributed sensors si-
multaneously tracking multiple mobile nodes. The problem underlying SensorD-
CSP is NP-complete. We show that the SensorDCSP domain undergoes a phase
transition in satisfiability, with respect to two control parameters: the level of
sensor compatibility and the level of the sensor visibility. Standard DisCSP al-
gorithms on our SensorDCSP domain exhibit the easy-hard-easy profile in com-
plexity, peaking at the phase transition, similarly to the pattern observed in
centralized CSP algorithms. More interestingly, the relative strength of standard
DisCSP algorithms on SensorDCSP is highly dependent on the satisfiability of
the instances. This aspect has been overlooked in the literature due to the fact
that, so far, the performance of DisCSP algorithms has been based mainly on
satisfiable instances. We study the performance of two well known DisCSP algo-
rithms - asynchronous backtracking (ABT) [18], and asynchronous weak com-
mitment search (AWC) [17]- on SensorDCSP. Both ABT and AWC use agent
priority ordering during the search process. While these priorities are static in
ABT, AWC allows for dynamic changes in the ordering, and was originally pro-
posed as an improvement over ABT. One of our findings is that although AWC
does indeed perform better than ABT on satisfiable instances, its solution time
is not as good on unsatisfiable problem instances.

Our SensorDCSP benchmark also allows us to study other interesting as-
pects specific to DisCSPs that are dependent on the physical characteristics of
the distributed environment. For example, while the underlying infrastructure
or hardware is not critical in studying CSPs, we argue that this is not the case
for DisCSPs in communication networks. This is because the traffic patterns
and packet-level behavior of networks, which affect the order in which messages
from different agents are delivered to each other, can significantly impact the
distributed search process. To investigate these kinds of effects, we implemented
our DisCSP algorithms using a fully distributed discrete-event network simula-
tion environment with a complete set of communication oriented classes. The
network simulator allows us to realistically model the message delivery mecha-
nisms of varied distributed communication environments ranging from wide-area
computer networks to wireless sensor networks.

We study the impact of communication delays on the performance of DisCSP
algorithms. We consider different link delay distributions. Our results show that
the presence of a random element due to the delays can improve the performance
of AWC. For the basic ABT, even though link delay deteriorates the performance
of the standard algorithm, a decentralized restart strategy that we developed for

39

ABT improves its solution time dramatically, while also increasing the robustness
of solutions with respect to the variance of the network link delay distribution.
These results are consistent with results on successful randomization techniques
developed to improve the performance of CSP algorithms [4]. Another novel
aspect of our work is the introduction of a mechanism for actively delaying
messages. The active delay of messages decreases the communication load of the
system, and, somewhat counter-intuitively, can also decrease the overall solution
time.

The organization of the rest of the paper is as follows. In Section 2 we for-
malize our model of DisCSP. In Section 3 we describe SensorDCSP and model it
as a DisCSP. In Section 4 we describe two standard DisCSP algorithms and the
modifications we have incorporated into the algorithms. In Section 5 we present
our experimental results on the active introduction of randomization by the
agents and, in Section 6, we present results on delays caused by different traffic
conditions in the communication network. Finally, we present our conclusions in
Section 7.

2 Distributed CSPs

In a distributed CSP, variables and constraints are distributed among the differ-
ent autonomous agents that have to solve the problem. A DisCSP is defined as
follows: (1) A finite set of agents Ay, Ag, - - -, An; (2) A set of local (private) CSPs
Py, P, -, P,, where the CSP P; belongs to agent A;; A; is the only agent that
can modify the value assigned to the variables of P;; (3) A global CSP defined
among variables that belong to different agents.

In general in DisCSP algorithms each agent only controls one variable. We
extended the single-variable approach by making every agent consist of multiple
virtual agents, each corresponding to one local variable. In order to distinguish
between communication and computation costs in our discrete event simulator,
we use different delay distributions to distinguish between messages exchanged
between virtual agents of a single real agent (intra-agent messages) and those
between virtual agents of different real agents (inter-agent messages).

3 SensorDCSP - A Benchmark for DisCSP algorithms

The availability of a realistic benchmark of satisfiable and unsatisfiable instances,
with tunable complexity, is critical for the study and development of new search
algorithms. In the DisCSP literature one cannot find such a benchmark. Sen-
sorDCSP, the sensor-mobile problem, is inspired by a real distributed resource
allocation problem [13] and offers such desirable characteristics.

In SensorDCSP we have multiple sensors (s1,...s) and multiple mobiles
(t1,...tn) which are to be tracked by the sensors. The goal is to allocate three
distinct sensors to track each mobile node, subject to two sets of constraints:
visibility constraints and compatibility constraints. Figure 1 shows an example
with six sensors and two mobiles.

40

Fach mobile has a set of sensors that can possibly detect it, as depicted
by the bipartite visibility graph in the leftmost panel of Figure 1. Also, it is
required that each mobile be assigned three sensors that satisfy a compatibility
relation with each other; this compatibility relation is depicted by the graph in
the middle panel of Figure 1. Finally, it is required that each sensor only track
at most one mobile. A possible solution is shown in the right panel, where the
set of three sensors assigned to every mobile is indicated by connecting them to
the mobile with the light edges of the figure.

S1

82

17

Fig. 1. A SensorDCSP problem instance

This problem is NP-complete since we can reduce it from the problem of par-
titioning a graph into cliques of size three [1,6]. However, the boundary case
where every pair of sensors is compatible, is polynomially solvable, since we can
reduce that case to a feasible flow problem in a bipartite graph [7].

We define a random distribution of instances of SensorDCSP. An instance of
the problem is generated from two different random graphs, the visibility graph
and the compatibility graph. Apart from the parameters number of mobiles and
number of sensors, we also specify a parameter that controls the edge density of
the visibility graph (P,) and a second one that controls the edge density for the
compatibility graph (P.). These parameters specify the independent probability
of including a particular edge in the corresponding graph. As these two graphs
model the resources available to solve the problem, P, and P, control the number
of constraints in the generated instances.

We have developed an instance generator for these random distributions that
generates DisCSP-encoded instances. We believe that SensorDCSP is a good
benchmark problem because of the simplicity of the generator, and because,
as we shall show, one can easily generate easy/hard, unsatisfiable/satisfiable
instances by tuning the parameters P, and P. appropriately.

We encoded SensorDCSP as a DisCSP as follows: each mobile is associated
with a different agent. There are three different variables per agent, one for each
sensor that we need to allocate to the corresponding mobile. The value domain
of each variable is the set of sensors that can detect the corresponding mobile.
The intra-agent constraints between the variables of one agent are that the three
sensors assigned to the mobile must be different and must be pair-wise compat-
ible. The inter-agent constraints between the variables of different agents are

41

that a given sensor can be selected by at most one agent. In our implementation
of the DisCSP algorithms this encoding is translated to an equivalent formula-
tion where we have three virtual agents for every real agent, each virtual agent
handling a single variable.

4 DisCSP algorithms

In the work reported here we considered two specific DisCSP algorithms,
Asynchronous Backtracking Algorithm (ABT), and Asynchronous Weak-
Commitment Search Algorithm (AWC). We provide a brief overview of these
algorithms but refer the reader to [20] for a more comprehensive description.
We also describe the modifications that we introduced to these algorithms. As
mentioned before, we assume that each agent can only handle one variable. The
neighbors of an agent A; refer to the set of agents that share constraints with
A;.
The Asynchronous Backtracking Algorithm (ABT) is a distributed
asynchronous version of a classical backtracking algorithm. This algorithm needs
a static agent ordering that determines an ordering between the variables of the
problem. Agents use two kinds of messages for solving the problem — ok messages
and nogood messages. Agents initiate the search by assigning an initial value to
their variables. An agent changes its value when it detects that it is not consistent
with the assignments of higher priority neighbors, and so it maintains an agent
view, which consists of the variable assignments of its higher priority neighbors.

Each time an agent assigns a value to its variable, it issues the ok message
to inform its set of lower priority neighbors about this new assignment. When
an agent is not able to find an assignment consistent with its higher priority
neighbors, it sends a nogood message to the lowest priority agent among the
agents that have variables in the nogood. A nogood message consists of a subset
of the agent view that does not permit the agent to find a consistent assignment
for itself. A nogood message causes the receiver agent to record the received
nogood as a new constraint and to try to find an assignment consistent with its
higher priority neighbors and with all the recorded constraints. If the top-priority
agent is forced to backtrack, because it cannot fix the problem by asking a higher
priority neighbor to change its assignment, this means that the problem has no
solution. On the other hand, when the system reaches a state where all agents
are happy with their current assignments (no nogood messages are generated),
this means that the agents have found a solution.

The Asynchronous Weak-Commitment Search Algorithm (AWC)
can be seen as a modification of the ABT algorithm. The primary differences
are as follows. A priority value is determined for each variable, and the priority
value is communicated using the ok message. When the current assignment is
not consistent with the agent view, the agent selects a new consistent assignment
that minimizes the number of constraint violations with lower priority neighbors.
When an agent cannot find a consistent value and generates a new nogood, it
sends the nogood message to all its neighbors, and increases its priority one unit

42

over the maximal priority of its neighbors. Then, it finds a value consistent with
higher priority neighbors and informs its neighbors with ok messages. If no new
nogood can be generated, the agent waits for the next message.

The most obvious way of introducing randomization in DisCSP algorithms
is by randomizing the value selection strategy used by the agents. In the ABT
algorithm this is done by performing a uniform random value selection, among
the set of values consistent with the agent view and the nogood list, every time
the agent is forced to select a new value. In the AWC algorithm, we randomize
the selection of the value among the values consistent with the agent view and
the nogood list, and that minimize the number of violated constraints. This form
of randomization is analogous to the randomization techniques used in backtrack
search algorithms.

A novel way of randomizing the search, relevant in the context of DisCSP
algorithms, is by introducing forced delays in the delivery of messages. Delays
introduce randomization because the order in which messages arrive to the tar-
get agents determines the order in which the search space is traversed. More
concretely, every time an agent has to send a message, it follows the following
procedure:

1. With probability p:

d:=r;
else (with probability (1 — p))
d = 0;

2. deliver the message with delay d

By delivering a message with delay d we mean that the agent informs its com-
munication interface that it should wait d seconds before delivering the message
through the communication network. The parameter r is the fraction of the
mean communication delay added by the agent. In our implementation of the
algorithms, this strategy is performed by using the services of the discrete event
simulator that allow specific delays to be applied selectively in the delivery mes-
sage queue of each agent.

We have also developed the following decentralized restarting strategy suit-
able for the ABT algorithm: the highest priority agent uses a timeout mechanism
to decide when a restart should be performed. It performs the restart by changing
its value at random from the set of values consistent with the nogoods learned so
far. Then, it sends ok messages to its neighbors, thus producing a restart of the
search process, but without forgetting the nogoods learned. This restart strat-
egy is different from the restart strategy used in centralized procedures, such
as rand-satz [4], because the search is not restarted from scratch, but rather
benefits from prior mistakes since all agents retain the nogoods.

5 Complexity Profiles of DisCSP algorithms on
SensorDCSP

As mentioned earlier, when studying distributed algorithms it is important to
factor in the physical characteristics of the distributed environment. For exam-

43

ple, the traffic patterns and packet-level behavior of networks can affect the order
in which messages from different agents are delivered to each other, significantly
impacting the distributed search process. To investigate these kinds of effects,
we have developed an implementation of the algorithms ABT and AWC using
the Communication Networks Class Library (CNCL) [5]. This library provides a
discrete-event network simulation environment with a complete set of communi-
cation oriented classes. The network simulator allows us to realistically model the
message delivery mechanisms of varied distributed communication environments
ranging from wide-area computer networks to wireless sensor networks.

The results shown in this section have been obtained according to the follow-
ing scenario. The communication links used for communication between virtual
agents of different real agents (inter-agent communication) are modeled as ran-
dom negative exponential distributed delay links, with a mean delay of 1 time
unit. The communication links used by the virtual agents of a real agent (intra-
agent communication) are modeled as fixed delay links, with a delay of 102 time
units. We use fixed delay links because we consider that a set of virtual agents
work inside a private computation node that allows them to communicate with
each other with dedicated communication links. This scenario could correspond
to a heavy load network situation where inter-agent delay fluctuations obey to
the queuing time process on intermediate systems. The factor of 1000 difference
between the two delays reflects that usually intra-agent computation is less ex-
pensive that inter-agent communication. In the last section of the paper we will
see how different delay distribution models over the inter-agent communication
links can impact the performance of the algorithms.

Fig. 2. Ratio of satisfiable instances depending on the density parameter for the visi-
bility graph (P,) and the density parameter for the compatibility graph (P.)

For our experimental results, we considered different sets of instances with 3
mobiles and 15 sensors, with every set generated with different values for the
parameters P, and P,, ranging from 0.1 to 0.9. Every set contains 19 instances,
giving a total number of 81 data points. Each instance has been executed 9 times
with different random seeds. The results reported in this section were obtained
using a sequential value selection function for the different algorithms.

Figure 2 shows the ratio of satisfiable instances as a function of P, and P,,.
When both probabilities are low, the instances generated are mostly unsatisfi-
able. On the other hand, for high probabilities most of the instances are sat-

44

isfiable. The transition between the satisfiable and unsatisfiable regions occurs
within a relatively narrow range of these control parameters, analogous to the
phase transition in CSP problems, e.g., in SAT [10].

Also consistent with general CSP problems, we observe that the phase transi-
tion coincides with the region where the hardest instances occur. Figure 3 shows
the mean solution time with respect to the parameters P, and P,. As can be
noted, the hardest instances lie on the diagonal that defines the phase transition
zone, with a peak for instances with a low P, value. The dark and light solid
lines overlaid on the mesh depict the location of the iso-lines for Py = 0.2
and P, = 0.8, respectively, as per the phase transition surface of Figure 2.
As mentioned before, the SensorDCSP problem is NP-complete only when not
all the sensors are compatible between them (P. < 1) [7], so the parameter P,
could separate regions of different mean computational complexity, as in other
mixed P/NP-complete problems like 2+p-SAT [{10] and 2+p-COL [15]. This is
particularly visible in the mean time distribution for AWC in Figure 3.

Time units

400
300 e n
0 £ ‘\i\ \55":‘ :‘0\
100 NN .: 'l»‘\
o N0 hh- “,.,if¢ \\\
S e
0.2 P,
Time units AWC
6000
4000
2000 I' ...:.q, / "
SN,
0 e:f.. “Mﬁ‘\\ LT
0.8)

% o:‘:: 2 owi"\ AN

Fig. 3. Mean solution time with respect to P, and P, for ABT and AWC algorithms

‘We observe that the mean times to solve an instance appear to be larger by an
order of magnitude for AWC than for ABT. At first glance, this is a surprising
result considering that the AWC algorithm is a refinement of ABT and results
reported for satisfiable instances in the literature {19,20] conclude on a better
performance for AWC. The explanation for such a discrepancy is the fact that
our results deal with both satisfiable and unsatisfiable instances. Our further in-
vestigations showed that while AWC does indeed outperform ABT on satisfiable

45

instances, it is much slower on unsatisfiable instances. This result seems consis-
tent with the fact that the agent hierarchy on ABT is static, while for AWC,
such a hierarchy changes during problem solving, taking more time to inspect
all the search space when unsatisfiable instances are considered.

5.1 Randomization and restart strategies

In this section we describe experimental results that demonstrate the effect of
adding a restart strategy to ABT. The introduction of a randomized value se-
lection function was directly assumed in [19]. In extensive experiments we have
performed with our test instances, we noticed that the randomized selection
function is indeed better than a fixed selection function. However, as the ran-
domization can introduce more variability in the performance, ABT should be
equipped with a restart strategy. We have not defined a restart strategy for
AWC, because, as we will see in the last section, the dynamic priority strat-
egy of AWC can be viewed as a kind of built-in partial restart strategy. In the
results reported in the rest of the paper both ABT and AWC use randomized
value selection functions.

To study the benefits of the proposed restart strategy for ABT, we have
solved hard satisfiable instances with ABT with restarts, using different cutoff
times. Figure 4 shows the mean time needed to solve a hard satisfiable instance
with the corresponding 95% confidence intervals for different cutoff times. We
observe clearly that there is an optimal restart cutoff time that gives the best
performance. As we will discuss in the last section, when considering the delays
of real communication networks, the use of restart strategies becomes a require-
ment, given the high variance in the solution time due to randomness of link
delays in the communication network.

3 mobiles, 15 sensors
120 T

Time units

Cutoff time units

Fig.4. Mean time to solve a hard satisflable instance by ABT using restarts with
different cutoff times

5.2 Active Delaying of Messages

A novel way of randomizing a DisCSP algorithm corresponds to introducing
delays in the delivery of the agents’ outgoing messages, as we described in Sec-

46

tion 4. In this section we describe our experimental results using AWC, where
the amount of delay added by the agents is a fraction r (from 0 to 1) of the
fixed delay on the inter-agent communication links. In other words, we consider
that all the inter-agent communication links have fixed delays, of 1 time unit, in
contrast to what we did in the previous sections, because we want to isolate the
effect of the delay added by the agents.

Figure 5 shows the results for a hard satisfiable instance from our Sensor-
DCSP domain, for different values of p, the probability of adding a delay, and
7, the fraction of delay added with respect to the delay of the link. We have
that the difference in performance in number of messages can be as high as 3
times between the best case and the worst case. The horizontal plane cutting
the surface shows the median time needed by the algorithm when we consider
no added random delays (p = 0,7 = 0). We see that agents can indeed improve
the performance by actively introducing some additional random delays, when
exchanging messages. We also observe that the performance in number of mes-

Time units Number of messages

90 900

80 800

70 700

60 600 H

50 500 Rl BTty

40 400 | o \k\\“?:r”ﬁ\\\& 4 i

30 300 1y ’
0.9 2.9 0.9 >0.9

Fig. 5. Median time and number of messages to solve a hard satisfiable instance when
agents add random delays in outgoing messages. The horizontal plane represents the
median time when no delay is added (p = 0)

sages is almost always improved when agents add random delays. Perhaps more
surprisingly, in terms of the total solution time, the performance can also im-
prove, if the increase in delay r is not too high. The reason could be the ability
of AWC to exploit randomization during the search process due to its inherent
restarting strategy.

6 The effect of the communication network data load

As described in the previous section, when working on a communication network
with fixed delays, the performance of AWC can be improved, depending on the
amount of random delay addition that the agents introduce into the message
delivery system. However, in real networks, the conditions of data load present
in the communication links used by the agents cannot always be modeled with
fixed delay links. It is worthwhile understanding how different communication
network environments can impact the performance of the algorithms. In this

47

section we study the effect produced in the performance of DisCSP algorithms
by considering delay distributions corresponding to different traffic conditions.

For the results of Section 5.2 we considered inter-agent communication links
with random exponentially distributed delays. To study how exponentially dis-
tributed delays affect the performance with respect to fixed delays, we can con-
sider intermediate situations in which some of the inter-agent links have a fixed
delay and the rest are exponentially distributed.

Figure 6 shows the median number of messages and time needed by AWC for
solving a hard satisfiable instance with 4 mobiles and 15 sensors, when we vary
the percentage of inter-agent communication links with a fixed delay. The rest of
the inter-agent communication links are assumed to have random exponentially
distributed delays.

4 mobiles, 15 sensors 4 mobiles, 15 sensors
0.16 T T T T 4500 Y T T T
0.1 § 4000
0.14 P
2 013 2 3500
F 012 B 2000
0.11 é
0.1 Z ¥
0.09 2000
0 20 40 60 80 100 0 20 40 60 80 100
% of communication links with fixed delay % of communication links with fixed delay

Fig. 6. Median number of messages and time exchanged to solve a hard satisfiable
instance by AWC when the data load is not homogeneous among all the inter-agent
communication links

The performance of AWC is worst when 100% of the links have a fixed delay,
indicating that the conditions of the network clearly affect the performance of the
algorithm: a element of randomness in the delay distributions clearly improves
the performance of AWC. Observe that we have a clear correlation between the
number of messages and time needed, meaning that the increase or decrease
in the time needed is mainly because of the change in the number of messages
exchanged.

We now examine various link delay distributions that can be used to model
communication network traffic. Traditionally, exponential negative distributed
inter-arrival times have been used to model data traffic due to their attractive
theoretical properties, but in the past decade it has been shown that, although
these models are able to capture single user sessions properties, they are no
longer suitable for modeling aggregate data links in local or wide area network
scenarios[3, 9, 11]. Facing this fact, we simulate network delays according to three
different models for the inter-arrival time distribution; the above mentioned ex-
ponential negative distribution, the log-normal distribution and the Fractional
Gaussian Noise (FGN)[12].

48

The log-normal distribution is useful to obtain distributions with any desired
variance, whereas FGN processes are able to capture crucial characteristics of
the Internet traffic as long-range dependence and self-similarity that are not
suited by other models. We synthesize FGN from a-stable distributions with
parameters H = 0.75 and d = 0.4,

Figure 7 shows the cumulative density functions (CDF) of time required to
solve hard instances for AWC, ABT, and ABT with restarts, when all the inter-
agent communication links have delays modeled as fixed, negative exponential,
and log-normal, with identical mean and different variances.

Table 1 and 2 show the estimated mean and variance of the number of mes-
sages exchanged as well as the solution time for the different cases when the
same instance is used for three algorithms.

Delay distribution Mean Variance
ABT TABT-rst|] AWC ABT [ABT-rst| AWC
Fixed 1.8-10°/1.2-10°]8.2 - 107[|3.6 - 10™°[1.3 - 10'"] 3.10°

Negative expon. (o2 = 1)||1.7-10%| 1.5 - 10%|3.5 - 10?|{2.8 - 10'°10.9 - 10*°|4.5 - 10°
Log-normal (o2 = 5) 2.2-10% 1.3-10%|3.5 - 102(|5.0 - 10*°]1.7 - 10*°|4.8 - 10°
Log-normal (o2 = 10) 2.6-10° 1.6 -10°|3.5 - 102{|7.1 - 10'°{2.4 - 10'°{4.9 - 10°

Table 1. Statistics estimated from the distributions of number of messages with dif-
ferent inter-agent link delay models

Delay distribution Mean Variance
ABT|ABT-rst | AWCj| ABT |ABT-rst[AWC
Fixed 98 69| 53|l 8562 3600] 1230
Negative expon. (02 = 1) 111 71] 281110945 3947, 266
Log-normal (02 = 5) 157 103] 28{]|21601 8438| 288
Log-normal (0?2 = 10) 188 131 28(|30472] 13423 402

Table 2. Statistics estimated from the distributions of time to solve in time units with
different inter-agent link delay models

The results in Figure 7 and Tables 1 and 2 show that the delay distributions
have an algorithm-specific impact on the performance of the basic ABT and on
AWC,

For the basic ABT, on hard instances, the solution time becomes worse when
channel delays are modeled by random distributions as opposed to the fixed
delay case. The greater the variance of the link delay, the worse ABT performs.
However, introducing the restart strategy has the desirable effect of improving
the performance of ABT. Furthermore, ABT with restarts is fairly robust and
insensitive to the variance in the link delays.

AWC behaves differently from the basic ABT. On hard instances, having
randomization in the link delays improves the solution time compared to the
fixed delay channel. Further, the mean solution time for AWC is extremely robust
to the variance in communication link delays, although the variance of solution
time is affected a little bit by this.

49

bk L

0.1 =
e 1
a 3
3) 4
01 . =
00 E Fixed 3
T - - - — Negative Exponential (¢ = 1)]
SRR Log-normal (2 = 10) 4]
| — — — Neg. Exp. with restart (¢* = 1) .
------ Log-normal with restart (02 = 10) 7
0.001 P
10 100
Tirne units
AWC
L - ¥ 3
0.1 =
I o]
A C]
Q - 4
— N 4
001 E -
- Fixed &]
L - - - - Negative Exponential (¢% = 1) N\ 4
RREEE Log-normal (o2 = 5) =]
— — — Log-normal (¢? = 10) vy
0.001 1 1 i] N
5 10 20 50 100 200
Time units

Fig. 7. Cumulative density functions (CDF) of time to solve hard instances for their
respective algorithms, AWC, ABT and ABT with restarts under different link delay
models

Experiments run with FGN delay models show no significant differences in
performance for the three algorithms in relation to other traffic models with the
same variance.

In general, we found that on satisfiable instances, AWC always performs
significantly better than ABT, even ABT with restart. Thus AWC appears to be
a better candidate in situations when most instances are likely to be satisfiable.

7 Conclusions

We introduce SensorDCSP, a benchmark that captures some of the characteris-
tics of real-world distributed applications that arise in the context of distributed
networked systems. The two control parameters of our SensorDCSP generator,
sensor compatibility (P.) and sensor visibility (P,), result in a zero-one phase
transition in satisfiability.

We tested two complete DisCSP algorithms, synchronous backtracking
(ABT) and asynchronous weak commitment search (AWC). We show that the
phase transition region of SensorDCSP induces an easy-hard-easy profile in the
solution time, both for ABT and AWC, which is consistent with CSPs. We found
that AWC performs much better than ABT on satisfiable instances, but worse
on unsatisfiable instances. This differential in performance is most likely due to
the fact that on unsatisfiable instances, the dynamic priority ordering of AWC
slows the completion of the search process.

In order to study the impact of different network traffic conditions on the
performance of the algorithms, we used a discrete-event network simulator. We
found that random delays can improve the performance and robustness of AWC.
In contrast, on hard satisfiable instances, the performance of the basic ABT
deteriorates dramatically when subject to random link delays. However, we de-
veloped a decentralized dynamic restart strategy for ABT, which results in an
improvement and shows robustness with respect to the variance in link delays.
More interestingly, our results also show that the active introduction of message
delays by agents can improve performance and robustness, while reducing the
overall network load.

These results validate our thesis that when considering networking appli-
cations of DisCSP, one cannot afford to neglect the characteristics of the un-
derlying network conditions. The network-level behavior can have an impor-
tant, algorithm-specific, impact on solution time. Our study makes it clear that
DisCSP algorithms are best tested and validated on benchmarks based on real-
world problems, using network simulators. We hope our benchmark domain will
be of use for the further analysis and development of DisCSP methods.

References

1. R. Béjar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Con-
straint Reasoning, International Joint Conference on Artificial Intelligence, Seat-
tle, Washington, August 2001. http://liawww.epfl.ch/ silaghi/proc_wsijcaiOl.html.

51

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. S. E. Conry, K. Kuwabara, V. R. Lesser, and R. A. Meyer. Multistage negotiation

for distributed constraint satisfaction. IEEE Transactions on Systems, Man, and

Cybernetics (Special Section on DAI), 21(6):1462-1477, 1991.

M. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence

and Possible Causes. JEEE Transactions on Networking, 5(6):835-846, December

1997.

C. P. Gomes, B. Selman, and H. A. Kautz. Boosting combinatorial search through

randomization. In AAAI/IAAI pages 431-437, 1998.

M. Junius, M. Biiter, D. Pesch, et al. CNCL. Communication Networks Class

Library. Aachen University of Technology. 1996.

. D. Kirkpatrick and P. Hell. On the complexity of general graph factor problems.
SIAM Journal of Computing, 12(3):601-608, 1983.

. B. Krishnamachari. Phase Transitions, Structure, and Complexity in Wireless

Networks. PhD thesis, Electrical Engineering, Cornell University, Ithaca, NY, May

2002.

B. Krishnamachari, R. Béjar, and S. B. Wicker. Distributed problem solving and

the boundaries of self-configuration in multi-hop wireless networks. In Hawaii

International Conference on System Sciences (HICSS-35), January 2002.

W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-Similar Nature of

Ethernet Traffic (Extended Version). IEEE Transactions on Networking, 2(1):1-15,

February 1994.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-

mining computational complexity from characteristic ’phase transitions’. Nature,

400:133-137, July 1999.

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/

ACM Transactions on Networking, 3(3):226-244, 1995,

G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes.

Chapman & Hall, 1994.

Sanders and Air Force Research Lab. ANTs challenge problem.

http: / /www.sanders.com/ants/overview-05-09.pdf, 2000.

K. Sycara, S. Roth, N.Sadeh, and M. Fox. Distributed constrained heuristic search.

IEEE Transactions on Systems, Man and Cybernetics, 21(6):1446-1461, 1991.

T. Walsh. The interface between P and NP: COL, XOR, NAE, 1-in-k, and Horn

SAT. APES Report, APES-37-2002, 2002.

M. Yokoo. Weak-commitment search for solving constraint satisfaction problems.

In Proceedings of the 12th Conference on Artificial Intelligence (AAAI-94), pages

313-318, 1994.

M. Yokoo. Asynchronous weak-commiment search for solving distributed con-

straint satisfaction problems. In Proccedings of the First International Conference

on Principles and Practice of Constraint Programming (CP-95), pages 88-102,

1995.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-

isfaction for formalizing distributed problem solving. In Proccedings of the Twelfth

IEEE International Conference on Distributed Computing Systems, pages 614-621,

1992.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint

satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowl-

edge Data Engineering, 10(5):673-685, 1998.

M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A

review. Autonomous Agents and Multi-Agent Systems, 3(2):198-212, 2000.

52

