1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

Technical Papers

3. DATES COVERED

4. TITLE AND SUBTITLE

5. AUTHOR(S)

6. CONTRACT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

18

19. NAME OF RESPONSIBLE PERSON

Leilani Richardson

19b. TELEPHONE NUMBER (include area code)

(661) 275-5015

20. NUMBER OF SEPARATE ITEMS ENCLOSED

18 separate items enclosed
MEMORANDUM FOR PR (On-Site Contractor/In-House Publication)

FROM: PROI (TI) (STINFO) 29 February 2000

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.

Comments:__

__

Signature _______________________________ Date ________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.

Comments:__

__

Signature _______________________________ Date ________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required

Comments:__

__

Signature _______________________________ Date ________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability

Comments:__

__

APPROVED/APPROVED AS AMENDED/DISAPPROVED

ROBERT C. CORLEY (Date)
Senior Scientist (Propulsion)
Propulsion Directorate
SUPREM DSMC: a New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

David H. Campbell, Dean Wadsworth
ERC, Inc.

Ingrid Wysong
Air Force Research Laboratory

Carolyn Kaplan
Naval Research Laboratory

An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional Direct Simulation Monte Carlo (DSMC) code for the DOD user community under the High Performance Computing Modernization Office (HPCMO) Common HPC Software Support Initiative (CHSSI). This paper will introduce the Exhaust Plume community to this three year development effort and present the overall goals, schedule, and present status of this new code.

The goal of this effort is to develop and transition to the DoD user community a modern, scalable DSMC code based on the integration of state-of-the-art collision models with advanced parallelization methods, gridding algorithms and data structures. While the paramount characteristics of the code will be robustness and ease of use, other goals include the following code capabilities:

- Parallel, scalable solution of CPU-intensive 3-D, unsteady, reacting flows
- Accurate representation of and resolution of highly nonequilibrium chemical and collisional processes by incorporating validated physical models
- Database of key reaction rates and molecular constants
- Automated grid adaptation and related capabilities to allow use by a broad range of nonexpert users
- Standardized and documented code operation and software-design methodology
- Easily extendable user interface and data structures to allow enduring use and continued code enhancement and customization

These code capabilities should provide a valuable tool for analysis of a wide range of exhaust plume problems, as well as find use in microelectro-mechanical device development, hypersonic flight and reentry vehicle analysis, and investigation of spacecraft environments.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited