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1 Introduction 
This report describes the collaborative research in the area of intrusion 
detection performed by Odyssey Research Associates in collaboration with 
Stephanie Forrest at the University of New Mexico.   

Our approach to intrusion detection is based on Forrest’s pioneering work in 
computational immunology, that is, the design of computer defense systems 
inspired by the vertebrate immune system.  (An introduction to 
computational immunology can be found in [4].)  Although vertebrate 
immune systems offer many promising features, the research in this project 
focuses on the following three properties: anomaly-based intrusion-detection 
systems that characterize programs by their behavior, which is determined 
empirically.  We adopt this approach because it is unrealistic to require the 
application developer either to include checks for intrusions in the 
application code or to write specifications for how he expects the code to be 
used.  In our opinion, approaches that require extra work from the 
application developer—work that is not directly concerned with application 
functionality—are bound to fail. 

In the current project, we are particularly interested in applying the 
computational immunology approach to distributed object systems, a 
relatively new and increasingly popular technology for building applications.  
Intrusion detection at the application level can complement traditional 
intrusion detection and other computer defenses such as access controls 
that protect host machines and networks.  In particular, application-level 
intrusion detection may have a special role in fighting insider attacks, or 
misuse of the application; such attacks are more common than external 
attacks and pose a significant threat to our military and industrial 
infrastructure.  In this report, the term “intrusion detection” also includes 
“intrusions” in the form of insider attacks. 

 We are interested particularly in two kinds of attack on distributed object 
systems.  These are the rogue client attack and misuse attacks.  Modern 
distributed object systems, with well-documented interfaces, give attackers 
access to the “insides” of an application.  For example, a complex business 
application might consist of a front-end user interface, which establishes the 
user’s identity and determines what functionality he is allowed to exercise, 
and a back-end, which is a database server.  The correct functioning of the 
application depends on the back end being able to assume that requests 
from the front end are legitimate.  Such an assumption is unwarranted if the 
user can write his own front end, which we call a rogue client, and use that 
instead of the authorized one.  One might imagine that it is too difficult to 



 

 

 

2

write a new front end, but that is not the case.  A rogue client can easily be 
generated either by modifying the normal front end or by using a simple 
testing tool that exercises the back end. 

Our hypothesis was that we could characterize normal behavior of the 
application itself in terms of interobject messages, and use that 
characterization to successfully detect rogue client attacks on the 
application.  In the example case, an “immune system” would be able to 
distinguish between the legitimate front end and unauthorized ones, and 
could reject requests from the latter. 

We further hypothesized that the same mechanism could be helpful in 
detecting misuse attacks, which occurs when an authorized user of the 
system has legitimate access but uses it in ways that exceed his authority.  
For example, consider a parts-planning application.  A parts planner may 
have access to the central parts-planning database, but is expected only to 
review and manage those parts entrusted to him.  Entering spurious orders 
for parts managed by a co-worker is not authorized.  

The goals of our research project have been, in brief, 
• To test/demonstrate the feasibility of intrusion detection at the 

application level in distributed object systems.  In particular, we 
worked with applications built on the Common Object Resource Broker 
Architecture (CORBA) [12] as a typical platform for building distributed 
object applications. 

• To verify that immune-style anomaly detection is a reasonable way to 
detect intrusions at the application level.   

In this report, we describe the work that we did and our results to date.  Our 
major results are described in Section 1.  Briefly, we 

• showed that the computational immunology approach reliably detects 
attacks on the Domain Name Server that seriously disrupt Internet 
service; 

• analyzed the components required for a definition of self that is 
applicable to computer programs and reported the analysis in 
Communications of the ACM [15]; 

• conducted experiments that show that a straightforward definition of 
self can detect rogue client attacks on CORBA systems;  

• built a prototype system to aid in the analysis of experimental data and 
generate descriptions of normal application behavior;  

• built a prototype intrusion detection system for CORBA that can be 
used with a broad class of definitions of self; and 

• participated in a successful demonstration of intrusion detection 
systems communicating by means of the Common Intrusion Detection 
Framework (CIDF) protocol [14]. 
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Additionally, in cooperation with other researchers in the area of intrusion 
detection, we worked on the CIDF definition and promoted the concept of 
standards for cooperation among intrusion detection systems. 

The remainder of this report is organized as follows.  Section 2 summarizes 
the lessons we learned from this research effort.  Section 3 describes our 
ongoing experiments on the definition of self at Odyssey Research 
Associates; Section 4, the work at the University of New Mexico.  Section 5 
describes the design of the CORBA Immune System, our system for 
intrusion detection for CORBA applications.  Section 6 describes our work 
on the CIDF standard.  An appendix contains the results of a survey of 
intrusion detection vendors, undertaken as part of the CIDF promotion 
effort. 

2 Lessons Learned 
We applied intrusion detection techniques to the problem of protecting 
distributed applications.  Our experiments showed that the computational 
immunology approach can effectively protect a large class of such 
applications against certain important kinds of attacks.  By implementing a 
system based on computational immunology, we also learned about the 
obstacles that remain before practical immunology systems are feasible.  

2.1 The Threat of a Rogue Client Attack  
Distributed object systems with published interfaces support the 
development of open, modular applications.  However, some applications are 
designed with close cooperation between their parts.  The application 
designer often finds it advantageous to create one module that maintains 
certain invariants, on which other modules then rely.  (In fact, this kind of 
design is commonplace.)  For example, module M may maintain the invariant 
that the value of debits submitted equals the value of credits.  A program 
masquerading as M can compromise the entire application by submitting 
unbalanced credits or debits.  We call such a module a rogue client. 

Security features for distributed applications typically include encryption 
and (user and/or host) authentication, but do not ensure that the client 
sending a message is actually executing the expected code.  For example, 
such assurance is not part of the CORBASEC security standard for CORBA 
[13].  Behavioral-based intrusion detection, such as the CORBA Immune 
System, can provide such supplementary assurance. 
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2.2 Computational Immunology Detects Rogue Client Attacks 
Our experiments showed that the computational immunology approach 
(detect anomalies by comparing actual behavior against an empirically 
derived norm) detects rogue clients.  We performed the experiments using 
the Orbix implementation of CORBA, but the results apply to any distributed 
object-oriented platform. 

The CORBA Immune System detects anomalies based solely on the request 
method; parameters to the requests are ignored.  Because it detects 
anomalies based on the sequence of requests from client to server, it is 
effective with applications that support a sufficiently rich set of methods.  We 
encountered one (military) application that supported a single method (which 
might be called “do_all_work”); all information about the work to be done 
was encoded in the parameters to that operation.  Our method could be 
extended to include parameters to the requests.  Whether it is worth doing 
so depends on the number of applications that employ a similar encoding. 

2.3 Local vs. Statistical Anomaly Detection 
Our first attempts at anomaly detection measured the percentage of 
anomalous events in the entire sequence of requests from client to (server) 
object.  We abandoned this attempt, and we are convinced that it is 
unworkable.  Any attempt to characterize a client based on the entire 
sequence of its requests to a given server is doomed to fail.  It may well be 
that only a small portion of a rogue client is anomalous.  For example, it 
would be a simple matter for an insider to modify a legitimate client program 
so that most of the program would behave in a normal way.  Only a small 
part would be anomalous.  By running the program normally for a long time, 
an attacker could make the percentage of abnormality arbitrarily small. 

2.4 Defining “Self” in Computational Immunology 
Computational immunology is based on a definition of self, or “normal.”  We 
have found that any such definition has four components: focus, data 
stream, projection, and detector algorithm.  Focus describes what entity can 
be either normal or anomalous.  In our case, the focus is the client that 
sends requests to a distributed object.  Data stream is the source of data 
used to differentiate between normal and anomalous (or self and non-self).  
Abstraction describes how the data stream can be divided into equivalence 
classes that discriminate between normal and anomalous.  The detector 
algorithm describes how to decide when an entity is sufficiently anomalous 
that it can be considered an attack. 

Most research efforts in computational immunology to date have focused on 
the last two of these four components.  However, the first two are the most 
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important.  Once we had identified the data stream of client/server requests, 
no great ingenuity was required to find a projection and a detection 
algorithm.  In our CORBA system, we experimented with the sliding window 
algorithm, varying the width N of the window.  Since CORBA requests are 
fairly coarse-grained, we could detect anomalies for all values of N greater 
than 1.  Values larger than 3 simply made it harder to collect enough 
training data to cover all normal behavior.  Given the right data stream, 
surprisingly weak algorithms are sufficient [16]. 

2.5 Issues In Empirically Creating A Self Database 
The great challenge in developing an empirical self database is creating the 
description of “normal,” which we call the self database.  The self database 
problem has two parts: ensuring that the training data covers all normal 
behavior, and maintaining the self database.   

First is the difficulty of collecting enough training data to cover all normal 
behavior—we call this obtaining coverage.  Normal data can be generated 
either synthetically (by a program or script) or empirically by users going 
about their normal activity.  Each method has its inherent difficulties.  
Synthetic normal is a guessing game as to what is normal.  Empirical normal 
also has its risks.  Suppose training is conducted during a time when work 
is focused on a relatively small subset of legitimate activity.  The result is 
reminiscent of the joke about the man with 20 years experience; 
unfortunately, it was the same year of experience repeated 20 times.  The 
test users must exercise the system doing a broad spectrum of real tasks.  
However, with both methods, there is always the question, “What normal 
activity has been left out?”  Empirical normal also poses the risk that an 
attack might occur during training—it is difficult to ensure that this will not 
happen. 

The second problem is that both methods are labor intensive.  Gathering 
empirical data and evaluating whether the normal has been obtained 
requires significant input from a highly trained person.  More research is 
needed on how to automate the generation and maintenance of the self 
database.  This problem is exacerbated by the fact that the self database 
needs to be recomputed with every release and every installation (the actual 
database content depends in general on installation parameters). 

One possible solution to the problem of maintaining the self database is 
incrementally aging and modifying it as new releases appear and standard 
usage behaviors change.  It is, of course, desirable to do this without having 
to recompute the entire database. 
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2.6 Efficient Implementation Of A Self Database 
The sliding window algorithm for program behavior combines conceptual 
simplicity with effectiveness.  Recent work at the University of New Mexico 
has shown that more complicated algorithms are not needed [16].  On the 
other hand, researchers have experimented with even simpler algorithms in 
the search for increased efficiency.  The risk is that such simple algorithms 
may increase the likelihood of false negatives, much as very small values of 
N do.  

We show in Section 5.1.4 that the sliding window database can be 
constructed in the form of a finite state machine (FSM).  Given the next item 
in the data stream, the FSM declares the window ending at that element 
normal or anomalous; it then proceeds to the next state.  This provides a 
very efficient implementation of the sliding window algorithm.   

Previously, it was thought that an FSM implementation was infeasible, 
because of the explosion of states that seemed to be required to recover from 
inputs that are not in the self database (e.g., see [6]). 

Furthermore, the FSM can be constructed on the fly as training data is 
entered, thus making feasible an automatic switch between training mode 
(building the self database) and detection mode (testing data against the self 
database).  This on-the-fly training should enable the system to adapt to new 
behaviors.   

2.7 Negative vs. Positive Detection 
Our approach catches rogue attacks, but it does not give any further 
information about the attack.  All that the detector “knows” about the rogue 
client is that it is not the normal client.  The vertebrate immune system is 
smarter.  It would be possible for the CORBA Immune System (or any 
anomaly-based intrusion detection system) to capture the identifying 
markers for the rogue client and store them in a “rogues’ gallery,” for future 
identification.  Rogues’ gallery information could be shared with other 
servers, much as virus information is today, and some form of positive 
detection could be used for known rogues. 

3 Research at ORA: Applying Computational Immunology to 
Distributed Object Applications 

The central idea of “computational immunology” is anomaly detection based 
on a concept of “self” and distinguishing self from other.  We spent some 
time examining the notion of a definition of self in a computational 
environment.  “Self” has been defined for a variety of different entities.  What 
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constitutes a definition of self in general, and for distributed applications in 
particular?  This work, summarized in Section 3.1, was published in 
Communications of the ACM [15]. 

Testing our definition of self was not a trivial task.  Networks and operating 
systems “enjoy” an established body of known exploits, against which an 
intrusion detection system can be tested.  There is no such collection of 
attacks on distributed applications.  Therefore, we had to find and/or create 
an application, as well as attacks against it.  This proved to be easier for 
rogue client attacks than for misuse attacks.   

We experimented with a large commercial application and with a small 
application that we wrote ourselves.  The experiments that we performed are 
described in Section 3.2.  The results are in Section 3.3.  We discuss them 
further in Section 3.4. 

3.1 A Definition of Self For CORBA Applications 
To define “self” (or normal behavior) for distributed object applications, we 
first formulated essential characteristics of Stephanie Forrest’s definition of 
self for Unix processes and then applied that understanding to CORBA 
applications.  

There are several examples of definitions of self.  Vertebrate immune systems 
are (of course) examples, and Stephanie Forrest’s work on a definition of self 
for Unix processes is well known.  Other work by Forrest has produced 
successful definitions of self in quite different areas, such as detection of 
computer viruses and novelty detection in time-series data.  In all of these 
cases, we generally observe some empirically-formed characterization of 
normal, together with an algorithm for comparing observations “in the field” 
with that characterization.   

We abstracted the concept of a definition of self in order to isolate its 
components.  A paper describing this work appeared in the July 1999, issue 
of Communications of the ACM [15].  To use the immunological technique, 
details of how that characterization is formed and how that comparison is 
made must be settled.  These choices are what we call the “definition of self.”  
The following discussion assumes some familiarity with Forrest’s work on 
computer immunology, e.g. [4]. 

Here we briefly describe the components of a definition of self and use as an 
example our current definition of self for CORBA applications, a definition 
that is analogous to Forrest’s definition of self for Unix processes.  The four 
components are focus, data stream, abstraction, and detection algorithm. 

Focus.  The first component of a definition of self is the entity whose “self” 
we are describing.  Using biological terms, we need to define the organism to 
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be defended—in this case, a CORBA application—and the “cell”—that is, that 
entity within the application that we will examine to ascertain if it is normal.  
CORBA applications use a client/server model of communication: clients are 
programs that invoke the operations of objects, while servers are processes 
that own and manage objects.  An application might have one or more 
servers.  Each server manages objects of a specific type or types.  As 
discussed earlier, we decided to focus on application clients as seen from the 
vantage point of application servers. We want to instrument those 
application servers that manage important resources, so that we can detect 
malicious client actions.  In particular, we focus on each client/server pair, 
which is called a connection.  

Data collection.  The second component of a definition of self is defining 
what observable aspect of the “cell” we can use to distinguish normal from 
abnormal behavior.  We chose to look at the message traffic between clients 
and servers within the application.  CORBA defines the conventions of that 
traffic and ways for us to monitor it, so it is possible to construct a generally 
applicable system based on that communication.  In addition, the traffic is 
essential to getting things done, and so should tend to expose misuse of the 
application. 

We used the Orbix Object Request Broker (ORB) [9] for our experiments.  
Orbix provides a general facility for intercepting messages called filters.  A 
filter is a C++ class that the user subclasses and instantiates within a server 
or client program.  Orbix interposes the instantiated filter in the message 
path, where it can observe and act on each message.  Our experimental 
setup records information about the requests in a file.  Many other ORBs 
provide a facility similar to filters.  Interceptors are a standard for such 
facilities that has recently been adopted by the OMG.  Note that filters (and 
eventually interceptors) are also used by our CORBA Immune System 
prototype to detect messages as part of an operational intrusion detection 
system (see Section 5.1.3 and [11]). 

It is essential to be able to instrument the application in a non-intrusive way 
so as not to require a lot of work on the part of application developers, who 
have scant free time to devote to intrusion detection.  As discussed earlier, 
CORBA in general and Orbix in particular provide convenient ways to 
monitor message traffic between client and server.  Thus, for example, in the 
experiments described later (see Section 3.2), we were able to collect traffic 
data for a commercial application at the developer’s office without interfering 
with the developers’ work. 

Abstraction.  Messages are extremely diverse, and thus not readily 
comparable.  A definition of self includes a way to define equivalence classes 
on the message data that are useful in discriminating between normal and 



 

 

 

9

abnormal usage.  The equivalence class of a sequence of messages is 
discernable from (and defined by) its signature, an abstraction (or projection) 
of the message data.  By extension, we speak of the “signature of a 
connection.” 

The abstraction we are currently investigating depends only on the sequence 
of requested methods from the client to the server, and ignores such details 
as the arguments, the time of the request, and so on.  Furthermore, this 
abstraction only preserves local sequentiality: The signature of the 
connection is the set of all substrings of length N of this sequence, as 
obtained by a sliding window algorithm (as described in [5]).  Following 
Forrest, we define the self database as the union of all signatures (i.e., of 
those sets) encountered during normal operation. 

In practice, as with all anomaly-based intrusion detection systems, we posit 
a training period, during which we collect data from presumably normal 
connections.  Their signatures comprise the self database. 

Note that although our definition of self is closely modeled on Forrest’s 
definition for Unix processes, there is at least one important difference.  Unix 
kernel calls are relatively fine-grained.  CORBA operations (methods on 
distributed objects), by contrast, tend to be coarser-grained.  This is because 
in a distributed system, developers know that a request to an object may 
involve interhost communication, which is much more expensive than a 
Unix kernel call.  One way to look at our research is that we are studying 
how to use shorter sequences of more powerful requests for computer 
immunology. 

An important variable in the sliding window algorithm is the size of the 
window, since this has a dramatic effect on both the size of the self database 
and the effectiveness of anomaly detection.  See Section 3.3.1.1 for a 
discussion of the effect of window size in our experiments. 

Detection algorithm.  The first stage of detection is to see if each of the 
substrings obtained at runtime from a connection is in the self database.  
The result is a sequence1 of yes/no values.  A fast finite state machine 
algorithm for computing this Boolean sequence is described as part of the 
architecture of the CORBA Immune System (see Section 5.1.4). 

It is necessary to obtain from the yes/no sequence some overall anomaly 
measure for the connection that at any one time can tell us how closely the 
connection as a whole conforms to the self database.  Attacks tend to be 

                                       
1 The sequence preserves the order in which these substrings occur on the 
connection, as the events are viewed through a sliding window. 
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characterized by many anomalies bunched together.  We used Forrest’s 
locality frame measure so that our measure would be sensitive to bunching.  
The locality frame measure is computed as follows.  Consider a sequence of 
events, e1, e2, e3, ….  Events e1 through eN define the first window of 
values.  If that sequence is not in the self database, then the sequence is 
anomalous.  Sliding the window, we consider e2, …, e(N + 1).  Again, it may 
be anomalous or not.  Looking at the first L anomaly values (where L is the 
locality frame size), we can count how many of them are anomalous—this 
number is the locality frame measure.  A high locality frame measure 
indicates that a large number of anomalies occur together, making an attack 
more probable.  In this section, we use a locality frame size of 20. 

In practice, even after extensive training, we can expect a certain number of 
mismatches between connections encountered in operation and the self 
database that we obtain from training.  The question is, how bad does the 
mismatch have to be before we suspect an intrusion?  We postulate a 
threshold value for the anomaly measure that can distinguish between 
normal variation and the degree of anomaly that characterizes an intrusion.  
When attack connections have clearly different anomaly values from normal 
connections, it should be possible to define good distinguishing threshold 
values. 

In summary, our candidate definition of self for CORBA applications can be 
characterized by the following choices in the above four categories. 

• We focus on the clients of certain important servers, which we call the 
instrumented servers. 

• We collect data about requests from clients to the instrumented 
servers.  

• We examine in particular the method being requested.  The sequence of 
requested methods between each client/server pair is scanned through 
a sliding window to extract all fixed-length substrings.  The sequence of 
substrings is our abstraction (signature) of the client/server pair. 

• Our detection algorithm is as follows.  Each of these substrings is 
compared with a database of substrings found during a training period, 
during which we assume that no intrusions are occurring.  If the 
substring exactly matches an entry in the database, it is considered 
normal and its anomaly value equals zero.  Otherwise, the substring is 
considered anomalous, and its anomaly value is 1.  The sequence of 
anomaly values for each client/server pair is aggregated continuously 
into a running anomaly measure, sensitive to both the number of 
anomalies seen and how recently (in the sequence) they occurred.  We 
are ultimately concerned with local values of the anomaly measure for 
each connection, and whether those values exceed a threshold. 
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3.2 Experimental Design 
In this section, we discuss the experiments we performed to test our 
candidate definition of self for CORBA applications. 

For any intrusion detection system, two primary concerns are detection 
efficiency and false alarm rate: Given that an intrusion occurs, what is the 
likelihood that it will be detected?  What fraction of IDS alarms corresponds 
to real intrusions?  Our experiments, therefore, are of two types:   

• Running the IDS algorithm with data that definitely contains an 
intrusion to see if it is detected.  

• Running the IDS algorithm with data that does not contain any 
intrusions to see if false alarms are raised. 

The system operates in two phases: During the training phase, message 
traffic is collected and characterized concisely.  This characterization serves 
as a standard of normal behavior during the detection phase, when similar 
data, possibly reflecting an intrusion, is collected. 

Our IDS is intended to work with CORBA applications—to detect when those 
applications have been compromised or are being abused.  We therefore 
tested the IDS algorithm with two CORBA applications, a large commercial 
application called LPA Vision [10] and a small application developed at ORA 
called PersonnelTracker.  Both applications are hosted on the Orbix ORB.2  

LPA Vision, developed by LPA Software of Rochester, New York, is widely 
used by parts planners to predict and control the inventory of parts for a 
company.  Typical activities for a planner include 

• extrapolating demand and supply of parts into the future, 
• ordering more parts, or adjusting existing orders, to correct anticipated 

imbalances, 
• reconciling differences between projected and actual demand, 

considering alternative forecasting methods, and 
• generating reports on the current state of the parts inventory and 

planning system. 

Working with LPA Software, we instrumented the LPA Vision servers and 
clients, as described earlier.  In several sessions, the software was then 

                                       
2 Attempts to obtain a suitable military application did not succeed.  Two 
applications that were available to us proved to be unsuitable because the request 
vocabulary of the servers was very small.  In one case, there was a single request, 
on the order of “do all work.”  All pertinent information was in the arguments to the 
requests—unfortunately, the Orbix implementation we were working with did not 
permit examination of the arguments by our interceptor. 
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exercised in a manner similar to its intended use.  LPA Vision is driven by a 
database of parts and other planning artifacts.  In these experiments, we 
used realistic databases provided by LPA Software.  Time-stamped records of 
messages sent and received were written to files and later analyzed offline.   

We also simulated attacks on LPA Vision.  We designed two scenarios for 
plausible attacks on the program, in consultation with LPA Software.  The 
scenarios, which were intended to be as realistic as possible, describe a 
malicious insider taking specific “planning” actions that would ultimately 
cause harm to the company if left uncorrected.  In the first of these, the 
perpetrator uses the standard LPA Vision interfaces to do this, after (we 
imagine) discovering an unattended terminal already logged in and running 
the software.     

In the second scenario, the perpetrator causes a very similar form of 
damage, using a “rogue client.”  A rogue client is one that an attacker writes 
to make arbitrary requests of the back-end database.  The rogue client can 
directly invoke operations on the internal objects of the application; it thus 
circumvents program logic embedded in the legitimate client. 

The other CORBA application that we used in our experiments is the 
PersonnelTracker.  This distributed program is a communication tool that 
gathers information from employees about their location or status (e.g. “in 
the office,” “at lunch”) and makes the information available to other 
employees.  It was written at ORA to demonstrate the CORBA Immune 
System, and it represents a broad class of applications in which a front end 
interacts with the user and updates a back-end database.  Security concerns 
with this program, which form the basis for possible “attacks,” are 

• Privacy—users control who can see their status 
• Integrity—preventing malicious alteration of a user’s status 

Users of the application must log in with an application password to change 
their own status or to view the status of others.  The application relies on 
this authentication for access control to maintain privacy and integrity. 

ORA employees used the PersonnelTracker application intermittently over a 
period of several weeks, as data was collected.  During the training period, 
the application was not secretly “hacked” or abused.  After the training 
period, a rogue client program was used to attack the server.  We chose a 
sample of traces (records of connections) from the normal data to use as 
official training data.  After eliminating some uninteresting polling requests, 
the training data represents 171,673 requests from 49 traces.  Other normal 
traces were used to test for false positives.  We checked for false negatives in 
interactive sessions (not recorded).  For any sliding window of width greater 
than 1 (see below), it was easy to set a threshold value that could distinguish 
between normal and rogue traces. 
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In both experiments, we used the traces obtained during training to define 
the self database (or “normal”).  The attacks were then compared with the 
self database to check for misses.  Finally, additional normal traces—not 
part of the training data—were compared with the self database to check for 
false alarms. 

3.3 Results 
The attacks that we mounted on the candidate applications fell into roughly 
two categories: rogue clients and simulated abnormal use of application 
clients.  The rogue clients are representative of direct attacks on the 
application database, attacks that are made feasible by the distributed object 
model for applications.  Abnormal use of application clients is more like 
traditional attacks on privileged Unix processes: the attacker attempts to 
subvert the unaltered application.  Such attacks may involve “stolen” 
passwords (an unauthorized user acting in the place of an authorized one) or 
unusual activity (e.g., multiple login attempts, possibly in order to guess a 
password). 

We can summarize our results as follows: 
• Our candidate definition of self for CORBA applications was able to 

detect some kinds of rogue clients.  Even when a programmer familiar 
with the application tried to imitate the application in a rogue client (in 
order to confuse the intrusion detection algorithm), the algorithm could 
detect differences. 

• We were unable to obtain conclusive results for misuse attacks. The 
LPA Vision application is very large, and we were unable to perform 
enough training to “cover” normal usage.  There is no concept of 
misuse for the PersonnelTracker.  No misuse attacks are included here. 

• The choice of window size is a matter of convenience.  It does not 
seriously affect the ability to detect intrusions.  For very small window 
sizes, the false negative rate is high, but once a certain minimum value 
has been reached, increasing window size merely increases the length 
of time required to achieve coverage.  

3.3.1 The PersonnelTracker experiment 

3.3.1.1 Window size (N) and coverage 
Aware of Stephanie Forrest’s work with Unix processes, we first tried sliding 
window widths between 6 and 12.  We found that for the PersonnelTracker 
application, a width of 2 was adequate to avoid most false alarms, and 3 to 
eliminate them.  These values are much smaller than Forrest obtained for 
Unix processes, no doubt because of the coarser granularity of CORBA 
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object requests.  We suspect that values in this range would generally apply 
to CORBA applications. 

We believe that the self database naturally consists of many strings of 
different lengths, corresponding to fragments of the client code (fragments of 
straight-line code connected by conditionals, loops, and subprogram calls).  
Using a fixed N, which is convenient for detection, can only roughly 
approximate this natural database.  If we pick a large value for N, relative to 
the natural database, then we are really trying to detect pairs of the strings 
in the natural self database.  The result is rapid growth in the size of the 
(approximate) self database—or, alternatively, the inability to achieve 
coverage. 

Table 1 shows the size of the self database as a function of N. Note that a 
window width of one simply records the different possible requests. 

 

N Size of self database Coverage? 
1 35 Yes 

2 130 Yes 

3 256 Yes 

4 385 ? 

5 504 No 

6 614 No 

Table 1.  Size of self database as a function of window width.  

Figure 1through Figure 4 show the effect of window size (N) on our ability to 
achieve coverage.  Each graph shows the growth of the number of distinct 
self database values as requests in the training data are processed.  For 
example, for N = 2, the graph shows that the self database quickly reaches a 
size of 60, but does not reach size 120 until about 100,000 requests in the 
training data have been processed.  Notice that for values of N that are “too 
small” (1) coverage is achieved quickly (at the expense of false negatives). 



 

 

 

15

 
Figure 1.  Coverage for N = 1. 

 
Figure 2.  Coverage for N = 2. 
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Figure 3.  Coverage for N = 3. 

 

 

Figure 4.  Coverage for N = 6. 
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3.3.1.2 Anomaly values  
Table 2 provides an overview of results from the PersonnelTracker 
experiment.  The traces in the table are identified by code names.  For each 
trace, Table 2 gives the length and the minimum and maximum locality 
frame values.  (Recall that the locality frame values gives a local measure of 
anomalousness, rather than an overall measure for a trace.)  A locality frame 
of length 20 is assumed in this table.  The anomaly measure used is the 
number of sliding window frames (out of the last 20 frames) with anomalous 
values.  N is the width of the sliding window used.   

 

  N = 1 N = 2 N = 3 N = 6 

Trace Length Min Max Min Max Min Max Min Max 

42.43 1445 0 0 0 0 0 0 0 0 

55.37 3017 0 0 0 1 0 2 0 8 

51.24 2718 0 2 0 8 0 15 0 20 

ORA 
rogue 

155 0 0 12 20 17 20 20 20 

BBN 
rogue 

27 0 0 20 20 20 20 20 20 

Table 2.  Summary of PersonnelTracker experimental results.  

 

The first three traces in the table (named after the final few digits of their 
timestamps) correspond to normal use of clients.  The first trace (42.43), 
which is entirely normal, was typical of almost all traces during normal 
usage.  In fact, it was hard to find normal traces containing abnormalities, 
such as trace 51.24 and trace 55.37.  Anomaly graphs for traces 55.37 and 
51.24 are shown in Figure 5, Figure 6, and Figure 7. 
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Figure 5.  Anomaly graph for 55.37, N = 2. 

 

 
Figure 6.  Anomaly graph for 51.24, N = 2. 

Trace 51.24 deserves special mention.  This trace showed the greatest 
deviation from the training data of our “normal” traces.  It was the only 
normal trace to achieve the maximum anomaly value.  The maximum 
anomaly value of 2 for N = 1 implies that two of its requests do not appear 
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anywhere in the training data.  Careful examination of the trace shows that 
it contains two instances of the request “setPrivacy.”  Evidently, none of the 
users set access rights for their data in the traces that were selected as 
training data!  For any N greater than two, this trace is apt to generate a 
false alarm (see Figure 7). 

 
Figure 7.  Anomaly graph for 51.24, N = 3. 

 

The last two traces are from rogue clients.  Most of our experimentation with 
rogue clients used interactive clients.  We wrote one rogue client program, 
which appears in Table 2.  Summary of PersonnelTracker experimental 
results..  Mike Dean of BBN kindly supplied us with another rogue client, 
which he prepared using the Interface Description Language (IDL) 
specification of the PersonnelTracker; this rogue is called the BBN rogue in 
the table.  Both rogue clients are unequivocally anomalous. 

Table 2 shows the effect on anomaly values of varying N.  Note that N = 1 
corresponds to checking that all requests made by the client appear in the 
training data.  As expected, anomaly values rise monotonically with 
increasing N.  What is more surprising is that a sliding window width of 2 is 
sufficient, for this example, to distinguish between normal and rogue traces.  

3.3.2 The LPA Vision experiment.   
The LPA Vision experiment was much smaller than the PersonnelTracker 
experiment.  The training data comprised only a few traces, and only two 
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attacks were simulated.  The coverage graphs are shown for values of N 
equal to 1, 2, and 3, in Figure 8, Figure 9, and Figure 10, respectively.  The  
N = 1 graph shows good coverage, however, that small a value of N yields a 
high number of false negatives.  As N increases to 2 and 3, the coverage 
drops off, as the number of strings in the self detector continues to grow.  
For higher values of N, the number of strings in the detector continues to 
increase and the overall coverage decreases.  

 

 

Figure 8.  Coverage graph for N = 1. 
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Figure 9.  Coverage graph for N = 2. 

 

 

 
Figure 10.  Coverage graph for N = 3. 

The results from the two attacks are summarized in Table 3.  The rogue 
client attack was 100 percent anomalous—in other words, easily detected by 
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our method.3  The attack that simulated using a standard client with a 
stolen password was only 1 percent anomalous.  We were not able to test the 
self database against additional normal traces, hence we have no 
information about false positives.  All traces were used to generate the self 
database, which includes only a little over 1,000 strings.  We do not believe 
that the training data is even close to covering normal use.  In Table 3, 
Scenario 1 is the attack that attempts to use the standard application front 
end for unusual actions.  

 

  N = 1 N = 2 N = 4 N = 6 
Attack Trace 

length 
Min  Max Min Max Min Max Min Max 

Quick 
Approve 

178 0 0 0 0 0 2 0 3 

Rogue 17 0 2 5 5 5 5 5 5 

Table 3.  Results of the LPA Vision experiment. 

3.3.3 Detection efficiency and false-positive rate 
The experimental results described so far show that the CORBA Immune 
System has a high detection efficiency (that is, that it does not miss attacks).  
To estimate its false positive rate, we tested 43 normal traces that were not 
used as training data.  The results are shown in Figure 11.  The spike in that 
figure corresponds to the spike of Figure 7, and is explained by the fact that 
the training data does not contain operations related to privacy.   

                                       
3 Unfortunately, this appealing result is invalidated by the fact that our training 
data did not nearly cover normal usage.   
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Figure 11.  Anomaly graph for normal traces. 

While much more data would be required to compute a definitive false-
positive rate, the results we have obtained strongly suggest that it is possible 
to obtain a very low false-positive rate using this method. 

3.4 Discussion 
The results that we obtained are still preliminary.  We were able to test our 
candidate definition of self on only two applications, one of which was 
developed in-house, and the other of which was too large for us to obtain 
coverage.  While these are representative of a broad class of applications, we 
need to gain more experience with a variety of distributed applications. 

Previous work on Unix benefits from the existence of well-known attacks 
from actual system use.  CORBA applications are too new for any library of 
known attacks to be available—certainly not attacks on the applications 
themselves.  Therefore we had to content ourselves with simulated (although 
realistic) attacks. 

An ideal experiment would test the detection algorithm against data from a 
real site, either relying on chance to provide some intrusions or injecting 
some test intrusions into the site.  The alarms raised by the detection 
algorithm could then be compared with “ground truth” to measure detection 
efficiency and false alarm rates.  Unfortunately, most companies and 
organizations are not willing to become experimental subjects for security 
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experiments because they perceive very little advantage and considerable 
risk. 

Intuitively, one might expect that window size for sequences of CORBA 
requests should be shorter than for, say, Unix kernel calls, because of the 
difference in granularity.  We found that window size makes little difference 
in catching rogue clients, but it certainly affects the cost of obtaining 
coverage.  In general, the window size should be the smallest possible that is 
able to distinguish between normal activities and attacks.  To make an 
intrusion detection system practical, we must find a way to automatically 
ascertain the minimum window size that distinguishes between normal 
usage and attacks. 

4 Research at the University of New Mexico 
Over the past year, the UNM group focused on three activities: Collecting 
new data sets, studying alternative data analysis methods for the system-call 
data (based on these new data sets), and developing a real-time monitoring 
tool for Linux.  Most of this work was funded under another DARPA grant.  
However, it was informed by our ongoing collaboration with ORA, and we 
charged the ORA grant for the time we spent communicating the results and 
discussing the project.  The next two subsections describe our progress and 
give an overview of the results. 

4.1 Data Modeling  
In this project, we had the goal of answering the following questions: What 
properties of the system-call data make it appropriate for the sliding window 
method that we have used so successfully?  Are there other ways of modeling 
the data that would lead to better or more efficient discrimination between 
normal and abnormal patterns?  If we had answers to these questions, then 
we would have a much better idea of what to expect when we try these 
techniques in other domains, such as CORBA, NT, or at the ATM level.  To 
answer these questions, we looked at several frequency-based techniques, 
including Hidden-Markov Models, Markov trees, n-grams, and non-
parametric methods such as those used in SRI's Emerald project. 

There are two important characteristics of the approach introduced in [5].  
First, it identifies a simple observable (short sequences of system calls) that 
distinguishes between normal and intrusive behavior.  This observable is 
much simpler than earlier proposals, especially those based on standard 
audit packages, such as SunOS’s BSM.  Second, the method used to 
analyze, or model, the sequences is also much simpler than other proposals.  
It records only the presence or absence of sequences; it does not compute 
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frequencies or distributions, or identify which sequences are most important.  
The advantage of such a simple approach is computational efficiency, but 
the question naturally arises of whether more accurate models of the data 
might be possible.  

Over the past several years, many statistically based learning techniques 
have been developed.  Several such methods have the potential for 
generating more accurate and/or more compact models of the system-call 
data, and at least two groups have published results of their own 
experiments on alternative models applied to system calls.  Most of the 
available methods, however, were designed for specific applications, and 
each has its own idiosyncrasies.  Our goal was to compare these various 
methods as systematically as possible across a larger and more realistic 
suite of data sets than has been used in the past.  This was not an easy 
task.  

We selected four methods for careful study: sequence time-delay embedding 
(stide) which is the UNM-developed sliding window technique, a frequency-
based modification of stide, which we call "tstide," a rule-induction method 
developed at ATT and adapted by Lee and Stolfo for the system-call data 
(called RIPPER), and Hidden Markov Models (HMM).   

A machine-learning approach to the system-call data would construct a 
finite state machine to recognize the ``language'' of the program traces.  
There are many techniques for building either deterministic or probabilistic 
automata for this sort of task.  These methods generally determine the 
frequencies with which individual symbols (system calls in our case) occur, 
conditioned on some number of previous symbols.  Individual states in the 
automaton represent the recent history of observed symbols, while 
transitions out of the states indicate both which symbols are likely to be 
produced next and what the resulting state of the automaton will be.  Many, 
but not all, of the algorithms for building these automata are based on the 
assumption that the data are stationary.  A particularly powerful finite state 
machine is the hidden Markov model, used widely in speech recognition and 
in DNA sequence modeling.  HMMs are computationally expensive, but very 
powerful.  There is a great deal of information available on them, and their 
usefulness has been demonstrated in many areas.  For these reasons, we 
decided to use HMMs as the finite state machine representative for our 
experiments.  

The original studies of the system-call approach were conducted primarily on 
synthetic data sets.  Synthetic traces are collected in production 
environments by running a prepared script; the program options are chosen 
solely to exercise the program, and not to meet any real user’s requests.  
Although the earlier studies on synthetic data sets were suggestive, they are 
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not necessarily good predictors of how the methods will perform in fielded 
systems.  Consequently, we used a wider variety of data sets for our current 
study.  These include “live” normal data (traces of programs collected during 
normal usage of a production computer system), different kinds of programs 
(e.g., programs that run as daemons and those that do not), programs that 
vary widely in their size and complexity, and different kinds of intrusions 
(buffer overflows, symbolic link attacks, Trojan programs, and denial-of-
service).  We used programs that run with privilege (with one exception), 
because misuse of these programs has the greatest potential for harm to the 
system.  All of these data sets are publicly available and carefully described 
at http://www.cs.unm.edu/~immsec/data-sets.htm. Intrusions were taken 
from public advisories posted on the Internet.  We tested each of the four 
data-modeling methods on each of the data sets (traces of Unix programs) at 
several different sensitivity thresholds.  False positives were computed for 
normal data not used during training, and true positives were computed for 
traces of anomalous behavior.   

We compared four methods for characterizing normal behavior and detecting 
intrusions based on system calls in privileged processes.  Each method was 
tested on the same suite of data sets, consisting of different types of 
programs and different intrusion techniques.  On this test suite, three of the 
four methods performed adequately.  Hidden Markov models, generally 
recognized as one of the most powerful data-modeling methods in existence, 
gave the best accuracy on average, although at high computational costs.  
Surprisingly, the much simpler sequence time-delay embedding method 
compared favorably with HMMs.  We conclude that for this problem, the 
system-call data are regular enough for even simple modeling methods to 
work well.  The average results indicate that it might be possible to achieve 
increased accuracy with HMMs, provided significant computational 
resources are available to train and run them. 

However, no one method consistently gave the best results on all programs, 
and results between programs varied more than results between methods.  
Variations in false positives were due more to the complexity of the traced 
programs and their environments than to differences in the analysis 
methods.  Although there are multitudes of alternative methods that were 
not tested, our results demonstrate that for this problem, several methods 
perform well.  We believe that the choice of data stream (short sequences of 
system calls) is a more important decision than the particular method of 
analysis. 

Historically, many computationally sophisticated methods have been applied 
to the intrusion-detection problem, yet there are few well-accepted solutions 
in widespread use.  One lesson from this study is that perhaps a 
disproportionate amount of attention has been directed to the data-modeling 
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problem, and that equal attention should be paid to considering what are the 
most effective data streams to monitor. 

4.2 Real-Time Monitoring and Response 
We developed a real-time monitoring system for collecting system-call data 
under Debian Linux 2.1.  The current system performs basic online 
monitoring using the “look-ahead pair” method of analysis.  This method was 
described in [5] and differs slightly from the complete sequence analysis that 
we have used for our offline studies.  Although complete sequence analysis 
seems to give more precise discrimination, the look-ahead pairs method is 
much more efficient to implement in the kernel.  Although our new kernel 
cannot yet load and save profiles reliably (needed for the next step of our 
research), we have used it over the past six months to collect several new 
data sets for offline analysis. 

Preliminary measurements on the monitor show no perceptible impact on 
the performance of the computer on which it runs.  This is a big result 
because it suggests that it is practical to do both the system-call monitoring 
and the analysis in real time.  We have had to take a few short cuts to get 
everything running, so the system is not yet ready for widespread 
distribution. 

We are developing an online monitor as the first step in implementing a 
version of our IDS that runs in real time.  Once that hurdle is crossed, our 
next effort will be directed toward adapting the code for automated response.  
We spent much of the past six months considering the automated response 
problem, and we feel that thinking about automated response from the 
system-call perspective is a good starting point.  Automated response is a 
controversial topic because of two factors: (1) False positives seem to be an 
inescapable fact of life, and (2) It seems imprudent to allow a computer to 
automatically take drastic measures when there is even a small probability 
that it is a false alarm.  We believe that the flaw in this analysis is with the 
term “drastic measures.”  We believe that a system capable of making 
automated responses should be taking actions that are of a small grain size, 
so that a few false actions are not lethal to the system.  For this reason, we 
believe focusing on the execution of system calls is a good place to begin 
studying the automated response problem. 

In conclusion, we believe that over the past several years, the field has made 
enormous progress in its ability to automatically detect the presence of 
intrusive and abnormal behavior.  We believe that it is unrealistic to expect 
perfect discrimination (100% true positives and 0% false positives), and that 
the numbers currently being reported compare favorably with discrimination 
problems in other fields.  Thus, we believe that the most important next step 
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in IDS research is to develop automated response methods that can perform 
well, given current detection abilities. 

4.3 Papers Published 
[3] D. Dasgupta and S. Forrest, “Artificial Immune Systems in Industrial 
Applications,” accepted for presentation at the International conference on 
Intelligent Processing and Manufacturing Material (IPMM), Honolulu, HI (July 
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System.”  1999 Genetic and Evolutionary Computation Conference (GECCO) 
(in press). 

[16] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions 
using system calls: Alternative data models,”  1999 IEEE Symposium on 
Security and Privacy (1999). 

[8] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using 
sequences of system calls,”  Journal of Computer Security, Vol. 6, pp. 151-
180 (1998). 

5 Software Design and Development 
We designed and built a prototype CORBA Immune System to analyze 
interobject message traffic in a CORBA application and flag anomalous 
activity in near real time.  The prototype implementation uses the sliding 
window definition of self described in Section 3.1, but the design is 
applicable to a wide range of definitions of self, including different methods 
of selecting events, different projections, and different comparison 
algorithms.   

We also constructed a tool, called Immune Data Analyzer (IDA), to aid in 
analyzing experimental data and to generate descriptions of normal 
application behavior. 

The design of the two tools is described in [11].  (Although some details have 
changed, the overall design has not.)  Here we describe some highlights of 
the design.  Section 5.1 describes the CORBA Immune System architecture.  
Section 5.2 describes the IDA architecture. 

5.1 The Design of the CORBA Immune System 
In this section, we describe the operation and design of the CORBA Immune 
System.  Details can be found in [11].  Further information on how to use 
the system can be found in [1]. 
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5.1.1 What the system does 
The CORBA Immune System has four modes: 

• Inoperative  In inoperative mode, the CORBA Immune System does 
nothing.  The application can run as if the CORBA Immune System 
were not installed. 

• Training  In training mode, the CORBA Immune System collects data 
about the message traffic between clients and servers.  The data can 
later be used to generate a description of normal behavior. 

• Test  In test mode, the CORBA Immune System displays information 
about every client/server connection.  (Note that in the original 
architecture report, test mode was called experimentation mode.) 

• Detection  In detection mode, the CORBA Immune System displays 
warnings about anomalous client/server connections. 

The Installation Guide [1] describes how to use the CORBA Immune System.  
Briefly, 

• The application developer decides which servers to instrument.  He 
links the CORBA Immune System’s Reconnaissance/Analysis module 
with those servers. 

• The application installer runs the CORBA Immune System in training 
mode to collect data about normal usage of the application. 

• The application installer runs the IDA tool to generate a self detector. 
• The application installer runs the CORBA Immune System in detection 

mode, telling it where to find the self detector.  The CORBA Immune 
System displays information about anomalous connections, which may 
indicate that an attack is occurring. 

5.1.2 Overview of how the system works 
The Common Object Request Broker Architecture (CORBA) [2, 12], 
promulgated by the Object Management Group (OMG), provides standards 
for linking applications and objects across machine boundaries in a 
heterogeneous, networked environment.  In the CORBA environment, we can 
speak of three layers: the underlying operating system(s), the Object Request 
Broker, and the application.  A CORBA application is written in terms of 
communicating objects.  The ORB architecture defines how requests are sent 
from clients to servers and how replies are returned.  

As described in Section 3.1, the CORBA Immune System analyzes message 
traffic between CORBA application clients and servers, using the sliding 
window definition of self.  We call the combination of client and server a 
connection; different clients interact with a server via different connections. 

The CORBA Immune System collects a sequence of requests, called a trace, 
for each connection from a client to a server.  It then compares the trace to 
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the self-value (viz., the set of sequences of length N) for that type of server, 
using the sliding window algorithm.  (The self-value has been computed from 
training data.)  We expect that even when no attack is being made on the 
application, some deviation from normal may occur, typically because the 
training data does not cover all normal activity.  To avoid false alarms, we 
report a possible attack only if the deviation from normal exceeds a certain 
(configurable) threshold.  

The prototype implementation of the CORBA Immune System works with 
Iona’s Orbix, a widely used ORB implementation.  However, the concepts 
underlying the CORBA Immune System are independent of the operating 
system and the ORB.  

5.1.3 Implementation overview 
The CORBA Immune System is implemented as three modules: 

• Reconnaissance/Analysis module 
• Threshold Monitor 
• Configurator 

Figure 12 illustrates the parts of the CORBA Immune System (CORBA 
Immune System components are shown in gray; application components are 
white.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Overview of the CORBA Immune System. 

The Reconnaissance/Analysis Module is interposed between the client and 
the object server.  Every incoming request on a connection causes the 
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Reconnaissance/Analysis Module to be invoked.  In training mode, the 
Reconnaissance/Analysis Module collects data about normal message traffic 
on connections.  We call this information training data. 

In detection mode, the Reconnaissance/Analysis Module plays a central role.  
It analyzes each request in the context of previous requests; the result is an 
anomaly measure for the current sequence of requests on this connection.  
Periodically, the Reconnaissance/Analysis Module reports to the Threshold 
Monitor an overall anomaly measure for each connection.  

In the prototype implementation of the CORBA Immune System on Orbix, 
the Reconnaissance/Analysis Module is implemented as a filter on the 
server.4  Orbix enables the application authors to define filters that can 
observe requests on the message path from client to server.  The filter is 
awakened each time a request arrives at the server.  The application 
developer controls which servers the system should monitor.  To enable the 
filter, the application developer declares and initializes a C++ filter object 
(using the C++ filter class that is part of the CORBA Immune System) in the 
server source code.  Adding a filter to a server requires adding two lines of 
code to the server, recompiling the server, and relinking. 

The Reconnaissance/Analysis Module includes two important submodules: 
• The self detector is a finite state machine that implements the notion of 

normal behavior for the server connection.  Specifically, the IDA tool 
(see Section 5.2) constructs a table describing the finite state machine 
based on the training data.  The CORBA Immune System reads that 
description during execution. 

• The anomaly meter, which aggregates the output of the self detector to 
create an overall measure of how anomalous the connection is. 

The second major component of the CORBA Immune System is the 
Threshold Monitor, which has two tasks:  

• It receives and examines the anomaly measures of connections and 
alerts the operator if a certain threshold is exceeded. 

• It optionally reports anomalies to a larger intrusion detection 
framework such as CIDF (see [14] for a report and the draft standard) 
or a network management system.  Currently, it generates an alert 
using Boeing’s IDIP format, which Boeing’s software then translates 
into a CIDF message. 

                                       
4 Filters are a feature of Orbix not currently supported by the CORBA standard.  
However, a similar feature, called interceptors, appears in the CORBA Security 
Specification Version 1.2 [13].  The OMG may add interceptors to the general 
CORBA standard in the future. 
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The third major component of the CORBA Immune System is the 
Configurator, which is concerned with operational issues, such as how the 
intrusion detection system is started, controlled, and shut down.  The 
operator communicates with the CORBA Immune System via the 
Configurator. 

The Threshold Monitor and the Configurator are implemented as CORBA 
objects, and communication between them and the 
Reconnaissance/Analysis Module occurs by means of CORBA messages.  
The CORBA Immune System does not include special mechanisms for 
security or encryption; we expect it to exploit the security features of the 
underlying ORB. 

5.1.4 Finite-state machine implementation of the self database 
In [5], Forrest defines the self of Unix processes in terms of a sliding window 
(of constant width N) over the sequence of system calls.  Self is the set of 
strings of length N that appear in “normal” traces.  In this section, we show 
how to derive a deterministic finite state machine (FSM) implementation of 
the sliding window algorithm.  Previously, such an implementation was 
thought to be impractical, because it could lead to a state explosion (see [6]).   

One potential cause of a state explosion is that a practical implementation 
must consider what state to go to in the case of an unexpected input (that is, 
an anomalous input).  We solved that problem by introducing special “none-
of-the-above” transitions in the FSM construction presented here.  As can be 
seen from the construction, the number of states is equivalent to the number 
of items in an efficient representation of the sliding window self database. 

We first briefly review the sliding window algorithm.  Recall that in the 
sliding window algorithm, we slide a window of constant width across a 
string of input data over a constant alphabet.  Consider a string of training 
data: 

A B C C B B C C B B C C D 

Then the self database consists of the set of all substrings of, say, length 4 of 
the training string: 

ABCC 

BCCB 

CCBB 

CBBC 

BBCC 

BCCD 
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We can represent the self database as a tree of depth N.  Each node at depth 
k represents the first k letters of a substring.  Figure 13 shows part of the 
tree for the example training string (the branch representing BBCC is 
omitted, to simplify the figure).  Thus, the nodes of the tree represent all 
legal substrings of the training string.   

Each transition may be labeled with the letter that leads to the child 
substring.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  A partial tree for the example string. 

Given such a tree representation of the self database, a straightforward 
implementation of detection using the sliding window algorithm requires 
descending the tree from the root to depth N for each new window value.  
Suppose, for example, that the current window contents are BCCB.  The 
detector would descend the tree, passing from the root node through B, BC, 
and BCC, to BCCB. 

An alternative implementation maintains N pointers into the tree.  In this 
implementation, if the current window content is BCCB, there are pointers to 
BCCB, CCB, CB, and B.  When a new input symbol is read, each pointer is 
updated.  For example, if the next letter is B, the pointer to BCCB is replaced 
with a pointer to B, and the next three are updated to CCBB, CBB, and BB. 
Both of these implementations require N operations for each input symbol. 

It occurred to us that handling a single symbol of input could be done using 
fewer operations, which led to the FSM implementation.  Our construction 
implements what we call the “two-finger” algorithm, which can best be 
explained as follows.   

A B C 

AB BC 

BCC CBB 

CB CC 

CCB 

 

ABC 

ABCC BCCB CBBC CCBB BCCD 
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Imagine that while reading the string, you enclose a substring of letters with 
your two index fingers.  As you read the string, you move your fingers so 
they always contain the current contents of the sliding window.  Suppose 
you are reading the test string “ABCCBCCB.”  You begin with both fingers 
together at the beginning of the string.  This (initial) state corresponds to the 
root node of the tree, or the empty string.  Moving your right finger one letter 
to the right corresponds to descending one level in the tree of Figure 13.  In 
this case, with successive moves of your right finger, you successively visit 
states A, AB, ABC, and ABCC.  However, we require that your fingers be 
separated by at most N letters.  In order to move past the Nth letter, you 
must move your left finger one letter to the right.  This results in the state 
representing the suffix of the current state’s substring.  For example, from 
state ABCC you move your left finger and arrive at state BCC.  (Note that 
this state is guaranteed to be in the tree.)  You may now move your right 
finger again, which brings you to state BCCB.   

The left finger moves correspond to a set of suffix transitions that we can 
impose on the tree.  That is, we define a transition from each state to the 
state corresponding to its suffix.  For example, the suffix of A is the empty 
string state; the suffix of state AB is state A.  It is easy to see how, using left 
and right finger moves, we can traverse any string that contains no 
anomalies. 

However, the sixth letter in the test string introduces an anomaly.  After 
substrings BCCB, there are two anomalous substrings—CCBC and CBCC—
that do not appear in the training data.  From state BCCB, a left finger move 
brings us to state CCB, but there is no transition for a next letter C from 
that state (because CCBC isn’t in the self database).  If, however, you move 
your left finger a second time,5 you get to state CB.  There is also no 
transition for C from state CB.  Moving the left finger a third time, we arrive 
at state B, which has a transition to BC.  The rule, then, is to move the left 
finger only until you can move the right finger again (i.e., until you reach a 
state in which a transition for C occurs).   

In this example, we have been forced to take three suffix transitions, which 
corresponds to two anomalous substrings in the test data (CCBC and 
CBCC).  In general, the number of anomalies for each right finger move is 
the number of left finger moves minus one (because one left finger move is 
always required).  Now we can traverse any test string, including anomalous 

                                       
5 We can also call the suffix transition the “none-of-the-above” transition.  It is the 
default transition, which we take when none of the right-finger transitions is 
possible.  Note that suffix transitions do not consume their input.  However, the 
FSM that we have defined is deterministic. 
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ones, and we can count the number of anomalies that occur during the 
traversals. 

Suppose that a new letter appears in a test string, one that does not occur in 
the training data.  To accommodate that possibility, we add one more state, 
the UNKNOWN_SYMBOL state, as a child of the root.  This completes the 
construction of the FSM for the two-finger version of the sliding window 
algorithm. 

We have implemented the two-finger algorithm in the Immune Data 
Analyzer.  By adding the suffix transition for each node at the time the node 
is created, we construct the self database directly as a finite state machine.   

The self database may be very large, including tens, hundreds, or even 
thousands of strings of length N.  Nevertheless, the finite state machine 
executes just two transitions for each input symbol, plus one transition for 
each anomalous input string, so the computational burden associated with 
each input symbol is low. 

5.2 The Design of the IDA 
The IDA is a tool for building self detectors from training data describing the 
normal operation of a CORBA application, as shown in Figure 14.  After the 
self detector is generated, it is used as a custom component as part of the 
reconnaissance/analysis module, as shown in Figure 15.  The self detector 
evaluates incoming messages from the CORBA client and reports anomalies 
to the anomaly meter.   

 

The ImmuneDataAnalyzer Generates a Self Detector from
Training Data

Training
data

Immune Data
Analyzer

Self
detector

 
Figure 14.  Self-detector generated by the IDA. 
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Customizing the R/A Module

Self
detector

Message
from
CORBA
client Anomaly

meter

Reconnaissance/Analysis Module

To CORBA server  
Figure 15.  Self-detector and the R/A Module. 
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Figure 16.  User interface of the IDA. 

 

Figure 16 illustrates the IDA, which is constructed as a sequence of four tab 
panels: 

• Input Training Data.  In the first tab panel, the user inputs the 
training data from a file.  

• Generate Self Detector.  In the second tab panel, the user can 
generate a self detector.  Currently only the sliding window definition of 
self is supported, but the user can choose the length of the window.  
The tool provides a graph estimating how well the training data covers 
normal usage (see Section 3.1 for a brief discussion of coverage). 

• Save Self Detector.  In the third tab panel, the user can generate a 
description of the self detector as a finite state machine.  

• Test Self Detector.  The user can test the generated self detector 
against new traces.  The IDA produces anomaly measures for each new 
trace.  Several different algorithms are available to determine the 
anomaly measures. 

The user interface is presented in detail in the Installation Guide [1]. 
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6 CIDF Promotion to the Government and Commercial 
Sectors  

Over the last two years, ORA has contributed to the standardization of a 
common framework for intrusion detection known as CIDF. ORA has 
contributed in the areas of architecture definition and the establishment of a 
connection between CIDF and the SNMP network management standards 
defined by the Internet Engineering Task Force (IETF).  An additional 
contribution has been in the formulation of data content requirements for 
intrusion detection alert messages.  In this report, however, we focus on the 
work done to promote CIDF to government agencies and commercial 
vendors. 

The CIDF standard was initially defined principally by the DARPA-sponsored 
intrusion detection community.  A year into the standardization effort, the 
CIDF community decided to become one of the many Internet Engineering 
Task Force (IETF) standards efforts.  Without becoming part of a larger 
standards group, there was concern that the effort to standardize intrusion 
detection would not become a commercial reality.  The goal of the ORA CIDF 
promotion effort was to visit the commercial vendors and bring them into the 
standardization effort.  The specific goals of these trips were: 

• educate the vendors about intrusion detection standards, using CIDF 
as the draft standard,  

• solicit their opinion on requirements for intrusion detection standards, 
and  

• get them involved in and committed to the standards effort.  

These goals were met by visiting the vendors, promoting the standardization 
effort, and signing them up for IETF participation.  The cooperation of the 
commercial groups was needed to ensure the success of this standard in 
IETF.  The Intrusion Detection Exchange Format working group (IDwg) was 
launched in December 1998, and is an active part of the IETF with a charter 
and clearly defined goals.  The companies visited as part of this promotion 
project were Axent, Centrax, Network Associates, CISCO, and ISS are now all 
active members of the IDwg. 

6.1 Summary of Vendor Visits and Accomplishments 
Table 4 presents a list of the companies visited and the location and name of 
the intrusion detection commercial product of each one.  
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Company name Location Product(s) 
Axent Technologies Rockville, MD NetRecon, Intruder 

Alert 

Centrax San Diego, CA ENTrax 

HP Cupertino, CA HP Openview Node 
Sentry 

Network Associates Santa Clara, CA CyberCop Network, 
CyberCop Server, 
CyberCop Scanner 

 

Newbridge Networks, 
Inc. 

Herndon, VA High Speed ATM 

SAIC San Diego, CA CMDS 

Table 4.  Company and commercial product matrix. 

6.1.1 HP (October 5, 1998) 
Maureen Stillman of ORA presented an overview of CIDF and discussed 
requirements for intrusion detection standards with the Openview Security 
Management Products group at HP in Cupertino, CA. 

This group is working on the development of a product called HP Openview 
Node Sentry, which will be commercially available in 1999.  The product will 
provide a graphical user interface to a number of intrusion detection and 
network management systems and offers an integrated solution for 
enterprise security management.  HP views intrusion detection standards as 
critical technology for this product because they want as many commercial 
vendors as possible to “plug in” to their management console.  HP has 
announced a strategic alliance with CISCO and is working to form other 
alliances.  Thus, HP has good business reasons for adopting intrusion 
detection standards.  Our technical discussions reflected this strategic plan.  
They agreed to take an active role in the IETF and present their requirements 
for an ID standard at the IETF kickoff meeting. 

6.1.2 Centrax (August 5, 1998)  
Centrax was the first to sign up and commit to working on intrusion 
detection standards.  They presented their requirements for ID standards at 
the IETF kickoff meeting.  They have been active participants in the 
standardization process. 
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6.1.3 Network Associates (October 5, 1998) 
We presented an overview of CIDF and discussed requirements for intrusion 
detection standards at Network Associates in Santa Clara, CA.  The product 
developed by this group, Net Tools, is a toolbox combination that includes 
PGP, Gauntlet Firewall, and McAfee Total Virus Defense.  They requested a 
discussion with Stuart Staniford-Chen (IDwg co-chair) to voice their 
concerns and ascertain the technical direction of the group.  Ultimately, they 
attended the IETF kickoff meeting and presented their requirements for 
intrusion detection. 

6.1.4 Newbridge (November 17, 1998) 
On November 17, we visited Newbridge and made the same presentation.  
Newbridge responded that they would attend the kickoff meeting if they 
didn’t have a conflict with other IETF meetings.  They are heavily involved in 
the IETF and work extensively on ATM standards.  Their business supports 
and relies on standards efforts. 

6.1.5 Axent Technologies (November 16, 1998) 
On November 16, we visited Axent Technologies and Newbridge to educate 
them in intrusion detection standards and ask them to join us in the 
standardization effort.  Axent was originally skeptical, but ultimately agreed 
to join the standardization effort and present at the IETF kickoff meeting.  

6.1.6 CISCO (August, 1998) 
We signed up Kevin Ziese of CISCO’s Austin-based security group to present 
their requirements at the IETF kickoff meeting.  This group works on the 
former Wheelgroup (purchased by CISCO) commercial line of IDS products).  
With CISCO on board, we were more easily able to persuade many other 
companies to join the standard’s effort.  CISCO also attended the CIDF 
meeting in Seattle on October 20-21. 

6.1.7 ISS   
Stuart Staniford-Chen signed up ISS to present their requirements at the 
IDdwg in Orlando.  ISS is committed to intrusion detection standards.  Mark 
Wood of ISS is the editor of the intrusion detection requirements document. 

6.1.8 SAIC 
After several months of discussions with DISA, the government contract 
group at SAIC committed to attend CIDF meetings as well as attend the IETF 
kickoff meeting.  Robert Thuleen is the point of contact for SAIC and Lynn 
Henderson claimed that DISA would fund their participation.  Although SAIC 
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claimed that they would participate, they never came to any meetings.  The 
group working on the CMDS toolkit was later sold to another entity.   

Refer to Table 5 for a summary of vendor requirements for IDS standards. 

Company Signatures of 
attack 

Configuration 
management 

Console accepts 
alerts from any 
IDS 

Axent 
Technologies 

 ✓  ✓  

Centrax ✓    

HP  ✓  ✓  

Network 
Associates 

✓   ✓  

SAIC ✓    

Table 5.  Requirements for intrusion detection standards. 

With respect to the openness of the IDS and data format, and security 
supported by the IDS software, in general, we found that the vendors are 
building closed proprietary systems with minimal built-in security 
mechanisms.  Table 6 presents a summary of the results. 

6.2 Vendor Questionnaire 
Each vendor was presented with a questionnaire concerning the openness of 
their intrusion detection technology and their attitude on standards.  The 
vendors were told that the answers could not be proprietary, as this would 
be published as a DARPA report.  The appendix contains the answers to 
these questions from each vendor.  These questions were compiled in 
collaboration with Todd Heberlein of NetSquared. 
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Company Proprietary 
data format 

Patents, 
licensed 
technology 

Security 
services 

Support for 
SNMP 

Axent 
Technologies 

Data transfer 
in encrypted 
ASCII format 

Yes We use our own Yes 

Centrax Yes Yes DES Forward 
alerts 
through 
SNMP 

HP N/A N/A N/A Yes 

Network 
Associates 

Yes Yes PGP, MS-CAPI 
and proprietary 
services 

For alerts, 
generate 
SNMP traps 

SAIC Yes Yes DES Alert 
message to 
SNMP trap 

Table 6.  Openness of product and security services. 

6.3 Lessons Learned 
What did it really take to sign up these vendors?  Here are some lessons 
learned for the benefit of those interested in going down a similar path.   

The Commercialization Subgroup.  We had great support during this.  A 
CIDF commercialization subgroup was formed, comprised of Paul Proctor 
from Centrax, Brian Witten of (at that time) AFRL-Hanscom Site, and Dave 
Donahoo from CSC at the Air Force Information Warfare Center.  The group 
formulated ideas on how to motivate commercial vendors and was especially 
strong in the area of making the business case to enable vendors to commit.  
CIDF would not have been successful without this group. 

Business justification for standards.  The commercial vendors all stressed 
the need for a business justification to persuade their higher management to 
commit.  The CIDF commercialization group helped to address this issue.  
Ultimately, however, each vendor had to make the case for themselves with 
their higher management.   
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Choice of representative.  It was important to send a representative that 
the vendors did not consider a competitor or a threat.  This was critical to 
getting them to say where they stood on the idea of a standard.  

Getting the right people to the meeting.  To get the necessary 
commitments from the vendors, the right people need to be at the meetings – 
the best technical people, as well as marketing representatives and 
important decision-makers. 
Stating the business case.  The ORA representative prepared for each visit 
by reviewing each vendor’s Web site and reading relevant papers to 
understand the company, their product, and their competition.  The vendors 
were informed that ORA was visiting all of their competitors, which really 
shook them up, causing them to take the standard’s initiative seriously. 

Get the vendor’s technical interest.  The technical talk on CIDF was about 
an hour long and stimulated interesting technical exchanges.  The vendors 
had clearly not given much thought to the idea of a standard (with the 
exception of HP), so presenting CIDF as a work in progress sparked a lively 
debate.  This provided intellectual motivation for the technical staff.  

A presentation on CIDF entitled “Common Intrusion Detection Framework 
Overview” was prepared and a bound book containing the following 
information was handed out to the participants: 

Overview of CIDF presentation 
Copy of the draft IETF charter 
Copy of a published paper on CIDF 
Copy of the questionnaire 

7 Conclusion 
For the past two years, we have conducted research on applying 
computational immunology to distributed object systems.  We created a 
definition of “self” for such systems, conducted experiments to validate that 
definition, and built a prototype intrusion detection system for applications 
build on representative CORBA middleware. 

Trusted applications and the rogue client attack.  We have defined and 
advertised the problem of the rogue client in applications and shown that 
computational immunology can detect such attacks with high efficiency and 
an extremely low false alarm rate.  The problem of rogue clients needs to be 
addressed not only in an intrusion detection system, but also by access 
control mechanisms at the middleware and OS levels. 
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We have articulated the four components of a definition of self in any area 
and created a general tool for analyzing self data and building a self 
database.  Our colleagues at the University of New Mexico have 
demonstrated of these four, the most important are focusing attention on a 
suitable computational entity and identifying a representative data stream 
that characterizes that entity.  Unless a characteristic data stream has been 
identified, sophisticated detection mechanisms are pointless; once it has 
been identified, rather simple and inexpensive mechanisms will suffice.  
Much of the work of other groups has focused on mechanism.  By contrast, 
ORA applied the UNM mechanism to a new problem, the rogue client attack.  
We designed and built a prototype CORBA Immune System to test our ideas.  
The CORBA Immune System successfully demonstrated its ability to detect 
rogue clients with high efficiency and a very low false positive rate. 

We developed a particularly efficient implementation of Forrest’s sliding 
window algorithm.  The implementation uses finite state machines for 
computational efficiency.  We are able to incrementally construct the self 
database as a finite state machine during training; the completed FSM can 
then be used for detection. 

The Unix (Linux) name daemon exploit.  As part of the work of this 
contract, our colleagues at the University of New Mexico successfully 
detected the named attack, thus providing striking and persuasive evidence 
that computational immunology catches novel attacks.  

CIDF promotion.  We also conducted a successful effort to interest 
commercial intrusion detector vendors in standards for intrusion detection. 
These vendors are now heavily involved in the current IETF IDwg standards 
effort. 

Suggestions for further research.  Computational Immunology is much 
more than exercising the sliding window algorithm on sequences of program 
calls.  While Forrest’s insight into a way of characterizing program behavior 
is profound, there are many other areas in which to apply lessons from the 
vertebrate immune system to computer systems.  These include the areas of  

• applying anomaly-based detection to new computational entities, 
• organizing system- or network-wide resistance to attacks, and  
• remembering the attack and being prepared for repeats (this is what we 

call immunity). 

One particular area of research that deserves greater attention is the 
problem of obtaining coverage—of ensuring that enough training data has 
been collected to provide a complete self database for a given application.  
This problem is exacerbated by changes in “normal” behavior, either because 
of new releases or because of gradual changes in user behavior over time.  
As computational immunology is used in larger and more complex systems, 
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the problem of obtaining coverage will become acute.  Work needs to be done 
on automating this area. 
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Appendix 

Intrusion Detection standards interviews 

 
The appendix presents the responses to a survey of intrusion detection 
software vendors ascertaining their interest in participation in development 
of standards for intrusion detection software.  The companies surveyed were 
Axent Technologies, Centrax, Hewlett Packard, Network Associates, and 
SAIC Inc.  The answers were elicited during face-to-face visits.  The full text 
of the responses is included.  

 

Axent Technologies 
 

0.  What is the name, address, Web page address and CIDF meeting 
attendees for this company? 

 

Name:    Axent Technologies 

Address:   2400 Research Blvd., Suite 200 

Rockville, MD 20850 

Web address:    http://www.axent.com 

Meeting attendees:  Mark Shinbrood, Senior VP, Business 
Development 

Meeting date:   8/5/98 

 

 

1. What is the name of your product(s)? 

Intruder Alert, Enterprise Security Manager, NetRecon 

 

2. What is your framework and what platforms do you currently support? 
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The framework is proprietary. Our products support 55 
platforms, including NT, NetWare, Solaris, AIX, HP/UX, etc. 

 

3. What is the data format on the wire?  Is it documented?  Is it proprietary? 

   Data transfers in encrypted ASCII format 

 

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET, 
REPLY, and TRAP message types)? 

   SNMP 

 

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)? 

   TCP, IPX 

 

6. What do you use for security, such as secure communication?   

We use our own  

 

7. Do you provide an API to your communication infrastructure or to your 
IDS?   

   Yes 

 

8. How do you configure your system? 

We call our configuration “Drop and Detect” because we provide 
out of the box over 100 pre formatted policies to detect 
intrusions. 

 

9. Do you see any benefit to interoperatibilty with network management 
tools or standards?   

Yes. Our products are currently the only products that are 
seamlessly integrated with Tivoli, HP-OpenView, and BMC. 

 
 Are you compliant with SNMP? 

   Yes. 
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10. What are your requirements for an intrusion detection standard? 

We expect a standard to be host based and scalable to the 
enterprise which means that it must have a distributed 
architecture with console management as a key piece of the 
product definition. 

 

11. Would you see an IDS standard as a benefit to your business?   

   Yes, we believe it would be beneficial to our customers. 

 
  If so, how? 

 In fact, AXENT is one of the start-up participants involved in the 
ICSA-sponsored Intrusion Detection Consortium. Our primary 
mission is to centralize terminology and common practices into 
some sort of unified understanding, so that the market may 
better understand what "Intrusion Detection" means--from the 
leading vendors' PoV. This give all of the vendors more 
credibility, and accountability in needing to cut through the 
marketing information, and helping the market really 
understand the concept of "truth in advertising." 

 

12. Do you have trademarks, patents, or licensing fees for your 
communication framework? 

 

  Yes. 

 

Centrax 
0. What is the name, address, Web address and CIDF meeting attendees for 

this company?  

 

Name:   Centrax 

Address: 6540 Lusk Boulevard, Suite C-212 

  San Diego, CA 92121 

Phone:  (619)546-2400 
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Web address: http:\\www.centraxcorp.com 

Attendees: Paul Proctor and Chris Byrne 

Date:  8/6/98 

 
1. What is the name of your product(s)? 

 

Detection and Response Software (eNTrax) and Centrax Audit 
Strategy Tool (CAST) 

 

2. What is your framework and what platforms do you currently support? 

 

Our plaform is NT for the central console.  The agents can be 
NT, Solaris and HP/UX AIX. 

 

3. What is the data format on the wire?  Is it documented?  Is it proprietary? 

 

The data format on the wire is proprietary and not documented 
for customers. 

 

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET, 
REPLY, and TRAP message types)? 

 

We use SNMP for talking. 

 

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)? 

 

TCP/IP. 

 

6. What do you use for security, such as secure communication?  Do you 
use your own cryptographic techniques to provide for secure 
communication or do you assume another piece of equipment will provide 
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers 
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create a virtual private network (VPN), or "encrypted sleeve” as they used 
to call it, provides much of the security). 

 

Single DES. 

 

7. Do you provide an API to your communication infrastructure or to your 
IDS?  From C, C++, Java, Perl? 

 

Currently, we don’t provide any APIs.  We have plans to provide 
some APIs to open up information in the database.  The 
customers are asking for access to the information in the 
database.  We are working on giving them that access. 

 

8. How do you configure your system? 

 

Configuration is defined using a GUI to specify security policies. 
There are audit policies and collection policies that can be set by 
the tool.   We believe that it would be very difficult to standardize 
on configuration. 

 

9. Do you see any benefit to interoperability with network management tools 
or standards?  Are you compliant with SNMP? 

 

We forward alerts through SNMP.  HP OpenView sends 
messages to our system. 

 

10.What are your requirements for an intrusion detection standard? 

 

We would like to see standards for signatures of attacks.  If we 
had such a standard, then records could be processed and put 
into a format for the product’s analysis engines.  All products 
would handle the analysis differently. 
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11.Would you see an IDS standard as a benefit to your business?  If so, 
how? 

 

We believe that commercial standards benefit the bottom line.  
They expand markets and open access to other resources.  You 
should be talking with user groups as well as the commercial 
vendors. 

 

12.Do you have trademarks, patents, or licensing fees for your 
communication framework? 

 

Yes, we have trademarks and patents but we wouldn’t suggest 
any required technology for the standard that would allow us to 
charge a fee or license technology. 

 

13.Anything else that you would like to add? 

 

Paul Proctor:  We would like to know what DARPAs commitment 
is to this standard’s effort.  We are concerned about spending 
Centrax’s valuable time and effort only to find that the standard 
is dropped due to lack of follow through.   

 

Paul Proctor has agreed to attend the next CIDF meeting on Aug. 23 in 
Chicago.  We welcome his participation. 

 

Hewlett Packard 
0. What is the name, address, Web page address and CIDF meeting 

attendees for this company? 

 

Name:   Hewlett-Packard Company 

Address:   19111 Pruneridge Avenue, MS 47U12 

Cupertino, CA 95014 

Web address:    http://www.nai.com 

Meeting attendees:   
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Polly Siegel, Ph.D., R&D Manager, OpenView Security              
Management Products 

 Mark Crosbie, Security & Intrusion Detection 

Dipankar Gupta, Architect, OpenView  Security 
Management Products 

 Rosemarie Shepley, Software Development Engineer 

    

Meeting date:   10/5/98 

 
 
1. What is the name of your product(s)? 

 

HP_Openview Node Sentry 

 

2. What is your framework and what platforms do you currently support? 

 

The term “framework” has a very specific meaning in the 
management software industry. HP OpenView uses a “building 
block” approach rather than a “framework” approach. This 
means that OpenView products are modular and can be 
implemented standalone.  

 

Our approach is a management platform through which we will 
support the “plugging-in” of a variety of intrusion detection 
systems.  We have recently announced a strategic alliance with 
CISCO.  We support HP-UX, NT and Solaris platforms. 

 

3. What is the data format on the wire?  Is it documented?  Is it proprietary? 

 

CISCO proprietary. 

 

4. What type of messages do you exchange (e.g., SNMP uses the GET, SET, 
REPLY, and TRAP message types)? 



 

 

 

54

 

Cisco-proprietary messages.  Record formats are defined in the 
Cisco NetRanger User’s Guide. 

 

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)? 

 

Cisco-proprietary, connection-base UDP protocol. 

 

6. What do you use for security, such as secure communication?  Do you 
use your own cryptographic techniques to provide for secure 
communication or do you assume another piece of equipment will provide 
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers 
create a virtual private network (VPN), or "encrypted sleeve” as they used 
to call it, provides much of the security). 

 

We are exploring SNMP V.3 and SSL and IPSec.  We need secure 
communications. 

 

7. Do you provide an API to your communication infrastructure or to your 
IDS?  From C, C++, Java, Perl? 

 

N/A.  Our requirement is to provide APIs to the management 
functions. 

 

8. How do you configure your system? 

 

Management and configuration is our key selling point.  The HP 
Openview Security Management console will be used to manage 
a wide variety of intrusion detection systems.    

 

9. Do you see any benefit to interoperability with network management tools 
or standards?  Are you compliant with SNMP? 

 

We do see benefits to this.  We are compliant with SNMP. 
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10.What are your requirements for an intrusion detection standard? 

 

Cisco is focusing exclusively on data exchange formats. 

 

We need standards for configuration management and 
installation.  In addition, standards are necessary to distribute 
signatures of attacks and deliver them securely.  We need to 
perform enterprise level deployment. 

 

11.Would you see an IDS standard as a benefit to your business?  If so, 
how? 

 

Yes, standards will allow us to become the management 
platform of choice.  

 

12.Do you have trademarks, patents, or licensing fees for your 
communication framework? 

 

Cisco does not have any trademarks, patents, or licensing fees 
associated with its communication framework at this time. 

 

13.Is there anything else that you want to add? 

 

As a company, HP is committed to standards.  We are interested 
in becoming involved in this effort.  Attending the IETF meeting 
and presenting our requirements is something we want to do.  
IDS standards are an important part of our vision for 
HP_Openview Node Sentry.  
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Network Associates 
0. What is the name, address, Web page address and CIDF meeting 

attendees for this company? 

 

Name:    Network Associates, Inc. 

Address:   3965 Freedom Circle 

Santa Clara, CA 95054 

Web address:    http://www.nai.com 

Meeting attendees:  Michael Jones, Senior Product Manager 

   Burnham H. Greeley, Development Manager 

   Tom Clare, Senior Product Manager 

   Aaron Bawcom, Software Engineer 

   Rich Feiertag,  Manager of Security 
Architecture and Methodology 

Meeting date:   10/5/98 

 
 
1. What is the name of your product(s)? 

 

CyberCop Network, CyberCop Server, CyberCop Scanner 

 

2. What is your framework and what platforms do you currently support? 

 

Scanning, IDS with console/sensor and server agents.  Support 
NT and Solaris platforms. 

 

3. What is the data format on the wire?  Is it documented?  Is it proprietary? 

 

Proprietary. 
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4. What type of messages do you exchange (e.g., SNMP uses the GET, SET, 
REPLY, and TRAP message types)? 

 

Proprietary messages.  For alerts we can generate SNMP traps. 

 

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)? 

 

We build on UDP. 

 

6. What do you use for security, such as secure communication?  Do you 
use your own cryptographic techniques to provide for secure 
communication or do you assume another piece of equipment will provide 
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers 
create a virtual private network (VPN), or "encrypted sleeve” as they used 
to call it, provides much of the security). 

 

PGP, MS-CAPI (RSA) and proprietary security services. 

 

7. Do you provide an API to your communication infrastructure or to your 
IDS?  From C, C++, Java, Perl? 

 

No. 

 

8. How do you configure your system? 

 

GUI to configure products. 

 

9. Do you see any benefit to interoperatibilty with network management 
tools or standards?  Are you compliant with SNMP? 

 

We do see benefits to this.  We are compliant with SNMP. 

 

10.What are your requirements for an intrusion detection standard? 
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We consider pre and post processing when discussing 
standards.  By pre, we mean parameters or data that is sent 
before any kind of analysis is performed.  For example, 
parameters or directives can be sent to sensors to direct it to 
report all indications of a port scan.   A second example is 
signatures of attacks, specifically, a standard format for 
signatures of attack.  By post, we mean everything else, such as 
audit data, analysis data, reports, etc.  Any IDS standard must 
allow the system to operate in real time.  We are interested in 
standards for pre and post IDS data.  

 

11.Would you see an IDS standard as a benefit to your business?  If so, 
how? 

 

Yes, both vendor and customer benefits. 

 

12.Do you have trademarks, patents, or licensing fees for your 
communication framework? 

 

IDS technology patents. 

 

13.Is there anything else that you want to add? 

 

NAI wants to meet with Stuart Staniford-Chen to exchange ideas 
on IDS standards.  They want to hear the opinions of the CIDF 
group chair before making an assessment of IDS standards.  We 
are concerned about the chances of success versus failure for an 
intrusion detection standard.  This standardization effort will 
take a considerable amount of resources and we need to plan 
carefully how we spend our time and effort.  Most successful 
efforts standardize at the lower layers allowing companies to 
compete at the higher (application) layers. 
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SAIC 
0. What is the name, address, Web page address and CIDF meeting 

attendees for this company? 

 

Name:    SAIC 

Address:   10260 Campus Point Drive 

San Diego, CA 92121 

Web address:    http://www.saic.com/it/cmds 

Meeting attendees:  David Drake, Robert Thuleen, Dan 
Parker, Tommie Aycock 

Meeting date:   8/5/98 

 
 
1. What is the name of the product(s)? 

 

Computer Misuse Detection System (CMDS) 

 

2. What is the framework and what platforms do you currently support? 

 

CMDS uses an expert system based on the CLIPS engine 
developed by NASA.  The system is written in C and accesses an 
ORACLE database.  Platforms supported 1) for the CMDS 
Manager – Solaris 2.5.1 or higher, HP/UX 10.x, DG/UX B2 
Security Option 4.12 and 2) for the CMDS agents are Solaris 2.5 
or higher, HP/UX 10.x DG/UX B2 Security Option 4.12, 
Windows NT 4.0 and trusted Solaris.  Firewall agents supported 
are: ANS Interlock, Raptor Eagle and Cybershield. 

 

3.  What is the data format on the wire?  Is it documented?  Is it 
proprietary? 

 

The data format on the wire is encrypted.  It is not documented 
for CMDS customers. The data format is proprietary and it is 
smaller than audit data records. 
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4. What type of messages do you exchange (e.g., SNMP uses the GET, SET, 
REPLY, and TRAP message types)? 

 

CMDS exchanges TCP/IP messages in one direction – from the 
CMDS agent to the CMDS manager. 

 

5. What do you build on (directly on IP, on UDP, TCP, RPC, CORBA)? 

 

Same as 4. 

 

6. What do you use for security, such as secure communication?  Do you 
use your own cryptographic techniques to provide for secure 
communication or do you assume another piece of equipment will provide 
it? (e.g., at one point, WheelGroup was letting the BorderGuard routers 
create a virtual private network (VPN), or "encrypted sleeve” as they used 
to call it, provides much of the security). 

 

Single DES 

 

7. Do you provide an API to your communication infrastructure or to your 
IDS?  From C, C++, Java, Perl? 

 

At this time, there is no API that allows users to get data from 
CMDS.  Users are interested in this feature.   However, CMDS 
uses S-expressions for its data format.  The reason for this is 
that CLIPS parses S-expressions.  In addition, the CMDS data 
format has the equivalent of CIDF SIDS.  The audit records are 
formatted in this way to make it easier for CLIPS to parse and 
analyze it.   

 

8. How do you configure your system? 

 

Handling configuration is important.  All raw data is sent from 
the CMDS agents to the CMDS manager to be analyzed.  The 
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configuration file for each CMDS agent contains the address of 
the target CMDS manager.  Raw audit records are shipped from 
the CMDS agent to the CMDS manager.  The CMDS manager 
needs to be configured to know what type of information it is 
receiving, for example, from an NT agent or from a Solaris agent.   

 

9. Do you see any benefit to interoperatibilty with network management 
tools or standards?  Are you compliant with SNMP? 

 

When an alert is uncovered, CMDS passes an SNMP trap to 
Openview.  There are two problems with using SNMP messages 
for intrusion detection standards.  The first is that some routers 
and firewalls throw way SNMP messages to lessen their traffic 
load.  The second is that  SNMP messages are limited in length.  
Long GIDOs would be a problem. 

 

10.What are your requirements for an intrusion detection standard? 

 

There was some talk here about why the intrusion detection 
companies would want to cooperate on a standard at all.  The 
obvious answers of interoperability and data sharing were 
brought up which could encourage users to buy products and 
grow the market. 

 

David Drake discussed his vision for this standard as follows:  
What is really needed here is enterprise wide protection and 
monitoring.  How can we monitor what is going on and get the 
components to talk with one another?  We need system wide 
protection, that is, self-protection on the wire and self-protection 
on the host.  We are trying to build a trusted environment on top 
of something that we can’t trust.  At an abstract level, a security 
management framework is the goal and should be the goal of the 
standard.  CIDF focuses on one piece to try to achieve this 
objective. 

 

11.Would you see an IDS standard as a benefit to your business?  If so, 
how? 
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A benefit that we perceive is a standard that would require 
different IDS to have a common rule set for detecting an attack.  
This is analogous to a standard on safety belts for automobiles.  
You have different designs of safety belts, but all conform to the 
standard. 

 

12.Do you have trademarks, patents, or licensing fees for your 
communication framework? 

 

Yes, SAIC has trademarks and patents for CMDS.  We don’t 
charge any licensing fees for communication framework. 

 

13.Is there anything else that you want to add? 

 

We are checking into availability of resources to apply to a 
standards effort.  SAIC will get back to ORA on this issue. 


