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Polytype Distribution in Presolar SiC: Microstructural Characterization by 
Transmission Electron Microscopy 
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Introduction: 
Presolar dust grains predate the formation of the 

solar system, originating from circumstellar outflows 
and supernova ejecta. Their constituent elements are 
characteristic of the different nucleosynthetic processes 
that occurred in the different star types at various stages 
of stellar evolution. The two most abundant forms of 
presolar grains, isolated from meteorites, are 
nanometer-sized diamond [1] and micron- to submicron- 
sized SiC [2]. Both appear ubiquitous in primitive 
chondritic meteorites at 300 - 1800 ppm (diamond) and 
1 - 28 ppm (SiC) [3]. 

The first astronomical evidence of SiC in dusty 
envelopes of carbon stars came from a relatively broad 
11.3 urn infrared (IR) feature attributed to emission by 
small SiC particles between the transverse and 
longitudinal optical phonon frequencies [4, 5]. Later 
attempts to identify the crystallographic structure of 
circumstellar SiC from IR spectra [6-8] generated 
controversy over the techniques and interpretation of the 
data [9-13]. The outstanding question of polytype 
variation in presolar SiC has bearing on grain 
formation conditions, because microstructures 
(particularly SiC polytypes) are highly dependent on 
conditions and atomic-scale mechanisms of formation. 
Hence, microstructures archive valuable information on 
grain condensation mechanisms and conditions within 
circumstellar grain forming regions. 

Discussion: 
Unfortunately, there are few microstructural studies 

of presolar SiC. Analysis of individual 1.5 - 26 urn 
SiC grains from the Murchison L-series separate by 
Raman spectroscopy and ion probe mass spectroscopy 
have shown all grains exhibiting anomalous isotopic 
compositions were of the cubic ß-SiC structure [14]. 
However, grains of this size are atypical, comprising 
less than 0.2% of the total population in number [15]. 
Therefore, we studied presolar SiC in the fine-grain size 
fraction, KJB, of the Murchison separate by 
transmission electron microscopy (TEM). Of the nine 
Murchison K-series size separates, KJB is reported to 
contain, the highest SiC abundance (1.91 ppm of the 
bulk meteorite corresponding to over 1/3 the mass of 
SiC in Murchison) and highest purity (97% SiC) [15]. 
Furthermore, KJB is a representative sampling of the 
total SiC population since 70% of the total population 
lies within 0.3 - 0.7 um, characteristic of 90% of the 
grains in KJB (Figure 1). Importantly, secondary ion 
mass spectrometry (SIMS) measurements of individual 

SiC grains in KJH, KJG, KJF [16], KJE [17, 18], and 
KJC [19] separates indicate that nearly all (99%) are 
presolar mainstream grains. In all of these studies, no 
significant amounts of isotopically normal SiC were 
reported, indicating these separates contain few SiC 
grains that are solar nebula products or terrestrial 
contamination. 
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Figure 1. Murchison SiC size distribution 
measured by scanning electron microscopy (SEM). 
Dominant size range (omitting 5% tails in either end of 
distribution) is shown by vertical bars. Mean size is 
shown by the horizontal bar. The relative mass within 
each size fraction is also indicated. 

Approximately 25% of the KJE SiC grains analyzed 
by SIMS [18] lie within the size range reported for KJB 
(Figure 1). Furthermore, there is large overlap (= 40 % 
of the total population) in grain size between the KJC 
and KJB separates (see Figure 1). The significant 
overlap for both the predominately presolar KJE and 
KJC with KJB strongly suggest that KJB SiC grains 
are also predominately presolar. 

High-resolution lattice images and selected area 
electron diffraction (SAED) demonstrate only two SiC 
polytypes are present in KJB; cubic 3C (ß-SiC) and 
hexagonal 2H (oc-SiC) (Figure 2). Intergrowths of 
these two polytypes are frequently observed. Less 
common than other grain types, heavily, stacking-fault, 
disordered grains are also observed. Terrestrial SiC 
contamination can be ruled out because (i) 2H SiC has 
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never been reported as occurring naturally and is not 
found in most commercially synthesized SiC and (ii) 
3C SiC is terrestrially rare in nature and also not found 
in most commercially synthesized SiC [20]. A nebular 
origin for 2H SiC in KJB can also be excluded, based 
on isotopic studies [16-19], if the 2H population is 
sufficiently large (> 1%). 

Figure 2. Bright-field image, HR-TEM lattice image, 
and SAED pattern for a 2H cc-SiC in Murchison KJB. 
An atomic model for the [11-20] zone axis is shown 
superimposed on simulated HR-TEM images at two 
defocus values, the topmost simulation matches the 
imaging conditions of the HR-TEM image. 

There are inherent difficulties in determining relative 
abundances of grain types using SAED and high 
resolution (HR)-TEM images. Difficulties arise 
because of the finite tilt range of the TEM goniometer 
and from the fact only two dimensional crystallographic 
information is contained in any one combination of 
SAED pattern and HR-TEM image. To identify 
polytype, a grain must be oriented to a high symmetry 
zone axis perpendicular to the tetrahedral stacking 
direction. Because of the finite tilt limits of the 
goniometer, a fraction of the randomly oriented grains 
will have no suitable high symmetry zone axes 
accessible. This fraction varies with SiC polytype. 
Nonetheless, the actual distribution can be estimated by 
applying appropriate corrections to TEM measured 
distributions (Table 1). This was accomplished by 
calculating,   eh   the   intrinsic   fraction   of randomly 

oriented crystals having at least one suitable zone axis 
(i.e., perpendicular to the tetrahedral stacking direction 
such as cubic <011> or hexagonal <11-20>) within the 
TEM goniometer tilt limits. In addition to crystal 
symmetry, £j is also dependent on twin and polytype- 
intergrowth microstructure. Both were taken into 
account in calculations used to correct the distributions. 

Table 1: Murchison KJB 
SiC   Polytype   Distribution 

Based on TEM analysis of 107 Grains 
Grain Type                    Population (%) 

3C                |    82.42 ±1.95 
2H/3C             |    11.57 + 2.64 

2H                |     4.52 ± 0.08 
Disordered          |     1.50 ± 0.03 

All other polytypes    |          < 1% 

16.09 
±2.64 

As demonstrated here, the KJB separate contains a 
large number of SiC grains containing 2H structure 
(16.09 ± 2.64 %) as in intergrowths and single 
crystals. In light of the bulk and individual isotopic 
data [16-19], together with the abundance of these 
grains, it is difficult to attribute all of them to nebular 
products. Therefore, 2H must be a presolar SiC grain 
type. The occurrence of two polytypes and their 
intergrowths indicates presolar SiC formed under a 
wider range of conditions than previously thought. 
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