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Abstract. A variety of data mining techniques are under evaluation on the spa- 
tial data of concern in our setting. We are planning to integrate a number of 
these techniques into our geospatial system (GIDB). Three approaches are un- 
der special consideration and are described in the paper. A COTS data mining 
system has been successfully used to develop predictive models of near-shore 
conditions such as wave height for naval amphibious operations. Attribute 
generalization was applied to seafloor data to obtain statements about condi- 
tions relevant to mine warfare. Finally an extension of association rule discov- 
ery applied to fuzzy spatial data that is under development is discussed. 

1   Introduction 

Data mining or knowledge discovery generally refers to a variety of techniques that 
have developed in the fields of databases, machine learning and pattern recognition. 
The intent is to uncover useful patterns and associations from large databases. We are 
concerned with applications of data mining to spatial and temporal data. 

In this paper we describe the geospatial system that will be the source of the data 
we are attempting to enhance with data mining for a number of Naval planning appli- 
cations. Then we describe our experiences with three diverse data mining techniques 
that we have found applicable to the spatial data of interest in our setting and summa- 
rize their potential for integration into an overall enhanced system. 

2  Background 

We are developing approaches for spatial data mining in an environment in which 
there is considerable concern about the development of ways for processing large 
amounts of spatio-temporal data especially of oceanographic and littoral regions and 
including meteorological information. Our plan is to integrate the data mining tech- 
niques into the geospatial system described below.   The ultimate goal is to provide 



knowledge-enhanced information to decision tools that will be used by US Navy and 
Marine planners. 

The Digital Mapping, Charting and Geodesy Analysis Program (DMAP) at the Na- 
val Research Laboratory has been actively involved in the development of a digital 
geospatial mapping and analysis system since 1994. This work started with the Geo- 
spatial Information Database (GIDB™), an object-oriented, CORBA-compliant spatial 
database capable of storing multiple data types from multiple sources. Data is acces- 
sible over the Internet via a Java Applet [3]. 

The GIDB includes an object-oriented data model, an object-oriented database 
management system (OODBMS) and various analysis tools. While the model pro- 
vides the design of classes and hierarchies, the OODBMS provides an effective means 
of control and management of objects on disk such as locking, transaction control, etc. 
The OODBMS in use is Ozone, an open-source database management system. This 
has been beneficial in several aspects. Among these, access to the source code allows 
customization and there are no costly commercial database licensing fees on deploy- 
ment. Spatial and temporal analysis tools include query interaction, multimedia sup- 
port and map symbology support. Users can query the database by area-of-interest, 
time-of-interest, distance and attribute. For example, statistics and data plots can be 
generated to reflect wave height for a given span of time at an ocean sensor. Inter- 
faces are implemented to afford compatibility with Arc/Info, Oracle 8i, Matlab, and 
others. 

The object-oriented approach has been beneficial in dealing with complex spatial 
data, and it has also permitted integration of a variety of raster and vector data prod- 
ucts in a common database. Some of the raster data include satellite and motion im- 
agery, Compressed ARC Digitized Raster Graphics (CADRG), Controlled Image 
Base (CIB), jpeg and video. Vector data includes Vector Product Format (VPF) 
products from the National Imagery and Mapping Agency (NIMA), Shape, real-time 
and in-situ sensor data and Digital Terrain Elevation Data (DTED). The VPF data 
includes such NIMA products as Digital Nautical Chart (DNC), Vector Map (VMAP), 
Urban Vector Map (UVMAP), Digital Topographic Data Mission Specific Data Sets 
(DTOP MSDS), and Tactical Oceanographic Data (TOD). 

Over the years, the system has been expanded to include a communications gate- 
way that enables users to obtain data from a variety of data providers distributed over 
the Internet in addition to the GIDB. These providers include Fleet Numerical Mete- 
orology and Oceanography Center (FNMOC), USGS, Digital Earth/NASA, and the 
Geography Network/ESRI. A significant FNMOC product is the Coupled 
Ocean/Atmosphere Mesoscale Prediction System (COAMPS) data. The atmospheric 
components of COAMPS are used operationally by the U.S. Navy for short-term nu- 
merical weather prediction for various regions around the world. Our communica- 
tions gateway provides a convenient means for users to obtain COAMPS data and 
incorporate it with other vector and raster data in map form. The gateway establishes 
a well-defined interface that brings together such heterogeneous data for a common 
geo-referenced presentation to the user. An illustration of the interface for a typical 
data request is shown in Figure 1. 



Fig. 1. The GIDB Interface. 

3 Spatial Data Mining Techniques 

3.1 Predictive Modeling 

For this technique we used a COTS data mining system (the KXEN Knowledge Ex- 
traction Engines) based on the Support Vector (SV) approach. It is based on the VC 
(Vapnik-Chervonenkis) learning theory, which does not depend on dimensionality and 
can be applied to any function estimation problem [7]. 

The particular component we utilized is a regression algorithm, which builds pre- 
dictive models. The support vector machine approach is an extension of the linear 
hyperplane classification of perceptrons to more complex surfaces. This is done by 
extending the measurement space so that it includes transformations of the raw vari- 
ables. The distinct aspect of this approach is the score function called the margin. 
This is used to optimize the decision boundary between the classes such that it is 
likely to lead to the best possible generalization performance [5]. 

We have approximately 20 years of data observations of sea conditions at the Field 
Research Facility in Duck, North Carolina USA. Sensors record changing waves, 
winds, tides and currents on approximately an hourly basis. These are stored in the 
GIDB and were selectively used for the data mining experiments. 

The application for which we wish to utilize this type of data is that of providing 
advisory information to tactical Naval planners for amphibious operations. One criti- 



cal factor is the wave conditions near the beach for mine removal, landing craft opera- 
tion, etc. In particular we considered wave height and wave periodicity. In doing this 
we were concerned with the ability to predict conditions that would jeopardize the 
mission. Thus we focus on prediction of the wave heights in the upper quartile of the 
recorded data. We needed to provide a qualified prediction as to whether the wave 
height would exceed a given operational capability for the equipment being planned 
for the mission as input by a user. For example based on prescribed operational re- 
quirements, the mission would have to be cancelled if the wave heights exceeded l-!4 
meters. 

For predicted wave heights we must consider two situations. The first is where we 
have overestimated wave heights. If a prediction is an overestimate that exceeds the 
specified limits, the operation might be erroneously scrubbed, thus missing an oppor- 
tunity but not jeopardizing equipment or personnel. 

On the other hand an underestimate might cause a planner to decide on continuing a 
mission in an unacceptable and potentially dangerous sea condition. This is clearly 
the more important error and the one presented in the table. 

Training was done based on years 1999-2000 with a total of 13,591 observations. 
This model was then used to predict the wave heights for years 1993-1995 and 1997- 
1998. Data was not available for the entire year 1996. Consider the 1993 data in 
which there were 7773 observations (1943 in the upper quartile). In the upper quartile 
1004 of these were underestimates (since very few are exact predictions in general we 
either have under or over estimates). The range of wave heights in the upper quartile 
was .60 - 2.0 meters. For the upper quartile, the average error for the underestimates 
was 24.7% and the average wave height of the underestimates was 0.95 meters. So 
the typical error in the underestimate was 0.27 meters in this critical range. This error 
was deemed to be generally acceptable although this is of course situation dependent. 

Table 1. Duck, NC Wave Height Predictions 

Year       Number of    #Upper Quartile      Avg. Wave       Average %     Std. Dev 
Observations   Under Estimate    Height Under     Under Esti- 

Estimate mate 
1993 7773 1004 0.95 24.75 0.19 
1994 7735 625 0.92 24.86 0.16 
1995 7767 876 0.94 29.79 0.20 
1997 6162 1282 1.02 31.85 0.22 
1998 6729 1461 1.06 32.10 0.22 

3.2 Attribute Generalization 

Both this technique of attribute-oriented induction and association rule generation are 
intended to provide a generalization or summarization of some potentially relevant 
aspects of the data being considered. 

The attribute-oriented induction approach produces a generalized representation by 
either attribute removal or attribute generalization. After this step the processed data is 



aggregated by merging identical tuples in the database and counting the number of 
tuples merged to indicate significance [4]. Attributes are removed if there is no hier- 
archy for the attribute or if it can be expressed in terms of higher-level concepts of 
other attributes. Attribute generalization examines an attribute to ascertain if there are 
too large a number of distinct values (exceeding a given threshold). Then if a gener- 
alization hierarchy is available for this attribute, it is generalized and the common 
tuples merged. 

We applied this technique to sea bottom data from 10 locations (such as areas in 
the Philippines, Mediterranean, Persian Gulf, etc.). Here the intended application was 
to characterize various sea bottom areas for the planning of a mine deploy- 
ment/hunting mission. The spatial data was queried to formulate the files from which 
the attribute generalization was done. The basic query was on bottom sediment classi- 
fication as this was the major characteristic of interest to experts. The data consisted 
of polygons of the bottom types as classified. Depth was an estimate, and depth and 
area were binned into three categories 

Shown below in Table 2 is generalization of data from the Onslow Bay area. The 
value of "any" is the root of the concept hierarchy to which the corresponding tuples 
have been generalized. 

Table 2. Generalization of Bottom Data from the Onslow Bay Area. 

Area Type Depth Count 
any pure sand shallow 46 
any pure sand deep 44 
any sandy mix deep 26 

small sandy mix shallow 15 
mid sandy mix shallow 9 
mid pure sand mid 1 
mid sandy mix mid 1 

small sandy mix mid 1 

3.3 Association Rules for Fuzzy Spatial Data 

Association rules capture the idea of certain data items commonly occurring together. 
For example an analysis of the soils and vegetation in a certain region might reveal 
that 30% of the total area has co-occurring sandy soil and scrub cover and for any 
sandy soil area, 75% of these area had scrub cover. Thus we can obtain the rule 

Sandy soil -> Scrub cover (1) 

that could be used for planning and environmental decision makers. This rule is said to 
have a 75% degree of confidence and a 30% degree of support. 

The process of generating rules requires the determination of the values of support 
and confidence and if a potential rule has values for these that exceed the user the user 
provided minimums it is called a strong rule [1]. Let R = { Ti, T2, ....} be the results 
of a query that obtains the data of interest. To determine if there is a strong relation 



between values (possibly sets) A and B, the tuples in R must be examined and a count 
made of the number containing A and B where T* contains A (B) if A (B) c Tj. Two 
measures are used to determine rules. First, the percentage of tuples that contain both 
A and B is called the support s. Second, if Tj contains A then it also contains B - 
called the confidence c. The Apriori algorithm [1] proceeds by first obtaining the sets 
of values (called itemsets) that satisfy the minimum support. It uses an iterative level- 
wise search where sets of k items are used to consider the set at the next level of k + 1 
items. The final result is called the frequent itemsets. Then using the confidence 
value the strong association rules are extracted from the frequent itemsets 

Now if the data we are interested in, as is typical of much spatial data [2], has un- 
certainty associated, we can model this using fuzzy sets [3]. So in general we will have 
fuzzy membership values associated to the tuples of R. The count to determine the 
support for finding frequent itemsets in the case of fuzzy data is developed by using 

the idea of the z) count, which extends the ordinary concept of set cardinality to fuzzy 
sets [ 8 ]. Using this the fuzzy support count for the set A becomes: 

FSCR (A) = £ Count (A) = £ u ti. 
(2) 

j 

Finally to produce the association rules from the set of relevant data R retrieved 
from the spatial database we can now extend the ideas of fuzzy support and confi- 
dence as 

FS = FSCR(AuB)/|R|, (3) 

FC = FSCR (AUB)/ FSCR ( A ). (4) 

3.3.1 Example of Spatial Association Rules 
We will consider an example that requires data mining on a spatial database to pro- 
vide assistance in the logistical planning for a military operation. Assume that an area 
of operational interest has been divided into several zones (1, 2, etc.) and we would 
like to know some of the important relationships of relevant attributes in each zone to 
provide guidance in planning and selection of a zone for the particular mission. From 
this point of view small cities are of interest as they would have sufficient infrastruc- 
ture but would not pose difficulties in which to operate, as would large cities. The 
major logistical concern is with transportation (railroads, highways, airfields) and 
terrain (soils, ground cover) within about 5 kilometers of the city. 

The first step we must take to discovering rules that may be of interest in a given 
zone is to formulate a SQL query using the fuzzy function NEAR (Figure 2) to repre- 
sent those objects within about 5 kilometers of the cities. Additionally we use the 
fuzzy function of Figure 3 to select the cities with a SMALL population. 



Sample SQL. 

SELECT City C, Road R, Railroad RR, Airstrip A, 
Terrain T 

FROM Area of Interest Zone 1 

WHERE  {NEAR (C.loc, R.loc), NEAR (C.loc, RR.loc), 

NEAR (C.loc, A.loc), NEAR (C.loc, T.loc)} 

and C.pop = SMALL 

AT Threshold Levels = .80, .75, .70 

1 

\ 

0 
Membership 0                            5                     6 

Distance in kilometers 

Fig. 2. Fuzzy Membership Function for Distance. 

Fig. 3. Fuzzy Membership Function for Small City. 

We evaluate for each city in a selected zone the locations of roads, railroads and 
airstrips using the NEAR fuzzy function.   The terrain attribute value is produced by 



evaluation of various factors such as average soil conditions (e.g. firm, marshy), relief 
(e.g. flat, hilly), coverage (fields, woods), etc. These subjective evaluations are then 
combined into one membership value, which is used to provide a linguistic label based 
on fuzzy functions for these. Note that the evaluation for terms such as "good" can be 
context dependent. For logistical purposes an open and flat terrain is suitable whereas 
for an infiltration operation a woody and hilly situation would be desirable. 

Each attribute value in the intermediate relation then has a degree of membership. 
The three threshold levels in the query are specified for the NEAR, SMALL and the 
terrain memberships. The final relation R is formulated based on the thresholds and 
the tuple membership computed as a minimum of the individual memberships from 
the intermediate relation. 

Table 3. The Final Result of the Example Query - R. 

City Roads Railroads Airstrips Terrain Ht 
A 
B 
F 

Rte.lO 
{Rte.5,Rte.lO} 

Rte.6 

RRx 
None 
RRx 

None 
A2 

None 

Good 
Fair 

Good 

0.89 
0.79 
0.92 

In R the value 'None' indicates for the attribute that no value was found NEAR - 
within the five kilometers. For such values no membership value is assigned and so JJ., 

is just based on the non-null attribute values in the particular tuple. 
Now in the next step of data mining we generate the frequent itemsets from R using 

the fuzzy support count. At the first level for itemsets of size 1 (k=l), airstrips are not 
found since they do not occur often enough in R to yield a fuzzy support count above 
the minimum support count that was pre-specified. The level k=2 itemsets are gener- 
ated from the frequent level 1 itemsets. Here only two of these possibilities exceed the 
minimum support and none above this level, i.e. k=3 or higher. This gives us the 
following table of frequent itemsets: 

Table 4. The Frequent Itemsets Found for the Example. 

k Frequent Itemsets Fuzzy 
Support- 

Count 
1 {Road Near} 11.3 
1 {Good Terrain} 10.5 
1 {Railroad Near} 8.7 

2 {Road Near, 
Good Terrain} 

9.5 

2 {Good Terrain, 
Railroad Near} 

7.2 



From this table of frequent itemsets we can extract various rules and their confi- 
dence. Rules will not be output unless they are strong - satisfy both minimum support 
and confidence. A rule produced from a frequent itemset satisfies minimum support 
by the manner in which frequent itemsets are generated, so it only necessary to use the 
fuzzy support counts from the table to compute the confidence. The small city clause 
that will appear in all extracted rules arises because this was the general condition that 
selected all of the tuples that appeared in query result R from which the frequent item- 
sets were generated. 

Let us assume for this case that the minimum confidence specified was 85%. So, 
for example, one possible rule that can be extracted from the frequent itemsets in 
Table 4 is: 

If C is a small city and has good terrain nearby then there is a road 
nearby with 90% confidence. 

Since the fuzzy support count for {Good Terrain} is 10.5 and the level 2 itemset 
{Road Near, Good Terrain} has a fuzzy support count of 9.5, the confidence for the 
rule is 9.5 / 10.5 or 90%. This is above the minimum confidence of 85%, so the rule 
is strong and will be an output of the data mining process. 

If we had specified a lower minimum confidence such as 80% we could extract 
(among others) the rule: 

If C is a small city and has a railroad nearby then there is good ter- 
rain nearby with 83% confidence. 

Since the fuzzy support count for {Railroad Near} and {Railroad Near, Good Terrain} 
are 8.7 and 7.2, the confidence is 7.2 / 8.7 or 83% and so this rule is also output. 

4 Conclusions 

We have found the data mining approaches we have described to be basically satisfac- 
tory in our preliminary evaluations. We are continuing with more extensive testing 
and evaluation with various sets of spatio-temporal data that are available to us. 

There are three aspects of integrating these and similar data mining tools within our 
GIDB system. The first is the specification of the query to obtain the relevant data for 
the particular data mining tool(s) to be applied. As seen in some of our examples, for 
user query specification we should provide an interface that allows the query to be 
generated from selection of the data as it is displayed. Also as in the case of associa- 
tion rules, but applicable to other approaches as well, we must be able to deal with 
fuzzy function specification for the query. Considerable work has appeared that we 
can utilize for this in fuzzy set research [8]. Next for most techniques the user must 
provide some parameters and values for the techniques such as hierarchies in attribute 
generalization or support and confidence thresholds for association rule generation. 
Finally and related to the parameters specification is the issue of appropriate display 
of results to the user. This is more complex for the domain of spatial data. This is of 
concern not only for the final results but also based on the common assumption that 
the data mining will be an iterative process in which a user may be changing the input 
parameters and specifications as they obtain various preliminary results. 
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