We carried out experiments on a structural dynamic model of the twin-tail assembly of the F-15 fighter built by Professor Sathya Hanagud of Georgia Tech. The model was placed on a 250-lb shaker and subjected to a principal parametric excitation. We fixed the excitation amplitude and varied the excitation frequency around 18 Hz. For the same excitation amplitude and frequency, we found five possible responses depending on the initial conditions: (a) very small-amplitude motions of both tails, (b) a large-amplitude motion of the right tail accompanied by a small-amplitude motion of the left tail, (c) a large-amplitude motion of the left tail accompanied by a small-amplitude motion of the right tail, (d) a large-amplitude motion involving both tails moving in phase, and (e) a large-amplitude motion involving both tails moving out-of-phase. The coexisting five responses are the result of the nonlinearities. These results point out some of the shortcomings of testing models with one rigid and one flexible tail or even testing only one tail counting on symmetry.

We used nonlinear identification techniques to estimate the linear and nonlinear parameters in a mathematical model of the tail assembly. Then we devised a control methodology to suppress the vibrations of the structural model. Finally, we used the backpropagation-through-time neural controller to suppress its nonlinear responses.
Final Technical Report
Alleviation of Buffet on the Twin-Tail Assemblies of High-Performance Aircraft
F49620-98-1-0393

A. H. Nayfeh and D. T. Mook
Department of Engineering Science and Mechanics, MC 0219
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
May 1, 1998 - October 31, 2001
Objectives

The fatigue life of the vertical twin tails of high-performance aircraft, such as the F-15 and F-18, is well below what is expected due to buffeting. The buffet loading under some maneuver conditions can cause vertical tail tip deflections of the order of 6 inches, in the frequency range 8.94-39.0 Hz and beyond. The large oscillatory motions are caused by the pressure fluctuations in the wakes emanating from certain upstream components of the aircraft impinging, or nearly impinging, on the tails. The large-amplitude motions can cause one or more of the following problems: (a) Torque box disbond, (b) forward box disbond, (c) loose support fasteners, (d) broken shear tangs, (f) closure disbond, and (g) forward box skin, fitting and closure cracks. Fatigue damage near the 2-in tip pod of an F-15 was reported in 1975, the 2-in pod on a F-15 broke in 1978, and cracks in the 6-in tip pod fitting on an F-15 developed in 1979.

It is known, but not well understood in some cases, that energy can be introduced into a structure by a small-amplitude, high-frequency excitation, and once it is in the structure it can be transferred from high-frequency modes down to low-frequency modes. The danger inherent in such a transformation is that the corresponding motion is transformed from a high-frequency, low-amplitude motion into a low-frequency, high-amplitude motion. In other words, a small-amplitude, high-frequency excitation can excite a large-amplitude, low-frequency response. It is clear that such shifts in the internal energy distributions occur in a very broad class of dynamic systems, including the vertical tails of aircraft. Of course, it is the large amplitude that causes the problems. The large oscillatory motions are responsible for significantly lowering the fatigue life of the tail structures well below what was expected. The excitations are the result of wakes from certain upstream components of the configuration impinging, or nearly impinging, on the tails. The pressure fluctuations in these wakes are what excite the tail structures. Examples of such phenomena have been observed in the VPI&SU Nonlinear Dynamics Laboratory. It does appear that certain structures are much more vulnerable to this transformation of energy than others, and it may very well be that the inherent symmetry of twin-tail structures is a generic characteristic that enhances the transfer of energy from high-frequency to low-frequency modes and hence exacerbates the buffet problem.

The objectives of this project were to investigate theoretically and experimentally the large-amplitude motions of the twin vertical tail assemblies of
high-performance aircraft and develop control strategies to alleviate buffet in these assemblies.

Accomplishments/New Findings

We carried out experiments on a structural dynamic model of the twin-tail assembly of the F-15 fighter built by Professor Sathya Hanagud of Georgia Tech. The model was placed on a 250-lb shaker and subjected to a principal parametric excitation. We fixed the excitation amplitude and varied the excitation frequency around 18 Hz. For the same excitation amplitude and frequency, we found five possible responses depending on the initial conditions: (a) very small-amplitude motions of both tails, (b) a large-amplitude motion of the right tail accompanied by a small-amplitude motion of the left tail, (c) a large-amplitude motion of the left tail accompanied by a small-amplitude motion of the right tail, (d) a large-amplitude motion involving both tails moving in phase, and (e) a large-amplitude motion involving both tails moving out-of-phase. The coexisting five responses are the result of the nonlinearities. These results point out some of the shortcomings of testing models with one rigid and one flexible tail or even testing only one tail counting on symmetry. An interesting phenomenon was observed in the response of the scaled model. Fixing the excitation amplitude and frequency and plucking one tail, we observed that the oscillations of the plucked tail decayed with time and the unplucked tail oscillated with a large amplitude.

We used nonlinear identification techniques to estimate the linear and nonlinear parameters in a mathematical model of the tail assembly. Then we devised a control methodology to suppress the vibrations of the structural model. Finally, we used the backpropagation-through-time neural controller to suppress its nonlinear responses. In the experiments that we conducted the response contains only components with frequencies near the first bending modes and their harmonics. Therefore, we modeled the dynamics of the tails with the following two mass-normalized second-order coupled differential equations:

\[\ddot{u}_1 + \omega_1^2 u_1 = -2\mu_1 \dot{u}_1 - \alpha_1 u_1^3 - \mu_3 \dot{u}_1 | \dot{u}_1 | + k(u_2 - u_1) + T_1 \quad (1) \]

\[\ddot{u}_2 + \omega_2^2 u_2 = -2\mu_2 \dot{u}_2 - \alpha_2 u_2^3 - \mu_4 \dot{u}_2 | \dot{u}_2 | + k(u_1 - u_2) + T_2 \quad (2) \]

where \(u_1 \) and \(u_2 \) denote the generalized coordinates of the first bending modes of the two tails and \(\omega_1 \) and \(\omega_2 \) are their first linear undamped natural frequencies. For energy dissipation, we incorporated linear and quadratic damping
terms. To account for large deflections, we added a cubic nonlinear term to each oscillator. Also, we included linear coupling terms to account for structural as well as aerodynamic coupling between the tails. Here T_1 and T_2 are the control forces. We used a combination of experimental modal analysis, nonlinear vibration testing, and perturbation methods to identify the linear and nonlinear coefficients in the mathematical model.

We used the method of multiple scales to derive four first-order nonlinear differential equations governing the modulation of the amplitudes and phases of both tails. These equations were used to calculate the steady-state amplitudes and phases as functions of the excitation amplitude and frequency. We estimated the parameters of the model from regressive fits of the experimentally and theoretically determined steady-state response amplitudes. The identified parameters for the right tail are $\zeta_1 = 0.01357, \mu_3 = 3.157 \times 10^{-4} \mu^{-1}, \alpha_1 = -3.675 \times 10^{-2} \frac{1}{\mu^2},$ and $\eta_1 = 161.54 \frac{1}{g^2}$. The identified parameters for the left tail are $\zeta_2 = 0.01856, \mu_4 = 1.958864 \times 10^{-4} \mu^{-1}, \alpha_2 = -2.977 \times 10^{-3} \frac{1}{\mu^2},$ and $\eta_2 = 275.12 \frac{1}{g^2}$. Figure 1 shows a good agreement between the theoretically and experimentally obtained force-response curves.

A nonlinear control law based on cubic velocity feedback was used; that is, $T_1 = -G_1 u_1^3$ and $T_2 = -G_2 u_2^3$. The performance of the control technique was evaluated by comparing the controlled and uncontrolled frequency-response curves. In Figure 2, we show the frequency-response curves of the open- and closed-loop system for both the right and left tails. The response amplitudes depend on the excitation frequency and the initial conditions. The solid lines correspond to stable solutions, whereas the dashed lines correspond to unstable solutions. All of the bifurcations are saddle-node and pitchfork bifurcations. The latter are approximately at the frequencies 19.0 Hz and 21.6 Hz. Curves (a-e) show the responses of both tails as the controller gain is increased. It is clear that, as the controller gain increases, the response amplitudes of both tails decrease. Also, the bandwidth where the different responses occur decreases. For example, it is clear from curve(e) that the different coexisting responses in the frequency range 17.3 Hz to 19 Hz are completely eliminated. Also, all of the dangerous (subcritical) bifurcations are transformed into safe (supercritical) bifurcations; the jumps are eliminated.

Then, we conducted experiments using piezoelectric actuators to validate the theoretical analysis. We forced the twin-tail assembly at 3.1 g and con-
ducted forward and reverse frequency sweeps. The acceleration of the shaker head was monitored, and the input voltage driving the shaker head was adjusted to maintain a constant forcing amplitude. In Figure 3, we show the open- and closed-loop frequency-response curves for the right and left tails for the out-of-phase response. The theoretical and experimental findings indicate that the control law is both an effective vibration suppressor and bifurcation controller [2].

Another means of identification and control of the nonlinear system is through the use of neural networks. In this study, the backpropagation-through-time neural controller (BTTNC) was used in the active control of the F-15 tail section under strong dynamic loadings. Figure 4 displays the results of training the cascaded system. From this figure, it is clear that the neurocontroller suppressed the steady-state vibrations of the two tails [3].

A new strategy, based on the nonlinear phenomenon of saturation, is proposed for controlling the flutter of a wing. The concept is illustrated by means of an example with a rather flexible, high-aspect wing of the type found on such vehicles as HALE aircraft and sailplanes. The wing is modeled structurally as an Euler-Bernoulli beam with inertially coupled bending and twisting motions. A general unsteady nonlinear vortex-lattice technique is used to model the flow around the wing and provide the aerodynamic loads. The structure, the flowing air, and the controller are considered the elements of a single dynamic system, and all of the coupled equations of motion are simultaneously and interactively integrated numerically in the time domain. The results indicate that the aerodynamic nonlinearities alone can be responsible for limit-cycle oscillations and that the saturation controller can effectively suppress the flutter oscillations of the wing when the controller frequency is actively tuned.

Personnel Supported

Students

5

5. B. Hall, M.S., 1999, “Numerical Simulations of the Aeroelastic Response of an Actively Controlled Flexible Wing”

9. S. Fahey, Ph.D., 2000, “Parameter Identification of Structural Systems Possessing One or Two Nonlinear Normal Modes”

Publications

Presentations

9

Interactions/Transitions

We have been communicating with Dr. Mark Hopkins of the Structures Division of the Flight Dynamics Directorate at Wright Laboratory. Dr. Hopkins has included our findings on modal energy extraction in his basic research plans to support current and future developmental research in smart structures.

We have a grant with Cessna Aircraft Company to develop a nonlinear aeroelasticity code that couples the nonlinear dynamics of wings with an unsteady nonlinear aerodynamic model.

Dr. Nayfeh has acted as a consultant with Rohini International on an SBIR Phase II on Buffet Alleviation from the Structures Division of the Flight Dynamics Directorate at Wright Laboratory.

We have developed and delivered to Cessna Aircraft Company a nonlinear aeroelasticity time-domain code that couples the structural dynamics of wings with an unsteady nonlinear aerodynamic model. The aerodynamics of the whole aircraft is modeled. The code predicts flutter and post flutter, including limit cycles.

New Discoveries, Inventions, or Patent Disclosures

None

Honors/Awards

A. H. Nayfeh

1. A. H. Nayfeh, American Institute of Aeronautics and Astronautics Pendray Aerospace Literature Award, 1995

(For seminal contributions to perturbation methods, nonlinear dynamics, acoustics, and boundary-layer transition; praiseworthy for their quality relevance, timeliness, and lasting influence on the aerospace community.

2. Honorary Doctorate, St. Petersburg University, Russia, 1996
3. American Society of Mechanical Engineers J. P. Den Hartog Award, 1997 (Presented in recognition of lifetime contributions to the teaching and practice of vibration engineering.)

5. College of Engineering Dean’s Award for Excellence in Research, 1998

6. Honorary Doctorate, Technical University of Munich, Munich, Germany, 1999

D. T. Mook

1. Frank J. Maher Award for Excellence in Engineering Education, 1983

2. American Institute of Aeronautics and Astronautics (Associate Fellow)

3. American Academy of Mechanics (Fellow)

4. American Society of Mechanical Engineers (Fellow)
Figure 1: (a) Experimentally obtained force-response curves at 18.0 Hz. (Forward Sweep) (b) Theoretically obtained amplitude-response curve at 18.0 Hz when $k = 87 \ (1/\text{sec}^2)$.
Figure 2: Effect of varying the feedback gain on the frequency-response curves of the specified tail ($F=3.2\ g$): a) $G=0$, b) $G=0.01$, c) $G=0.1$, d) $G=1$, e) $G=10$.
Figure 3: Frequency-response curves of the out-of-phase responses before and after control.
Figure 4: Time histories of the responses of the tails (-) without control and (--) with control.