4. TITLE AND SUBTITLE

A Catalytic Reactor for Mechanistic Investigation of Hydrocarbon Functionalization

14. ABSTRACT

The reactor assembled using these funds has allowed us to define the conditions permitting direct electrochemical oxidation of the reduced form of the catalyst. This key finding should enable a greater breadth of nucleophiles, including oxygen nucleophiles, to be used in hydrocarbon functionalization reactions catalyzed by rhodium prophyrsins.
FINAL REPORT

GRANT #: N00014-01-1-0583

PRINCIPAL INVESTIGATOR: Stephen G. DiMagno

INSTITUTION: University of Nebraska

GRANT TITLE: A Catalytic Reactor for Mechanistic Investigation of Hydrocarbon Functionalization

AWARD PERIOD: 1 April 2001 - 31 March 2002

OBJECTIVE: To construct a reactor that allows in situ monitoring and investigation of hydrocarbon functionalization under moderate pressure. This reactor supports research carried out under grant # N00014-00-1-0283.

APPROACH: Rhodium complexes of novel fluorinated porphyrins are prepared and their actions upon gaseous hydrocarbons, particularly methane, are followed by FT-IR spectroscopy and electrochemical analysis within the high-pressure reactor. The impact of varying ligand design, solvent, nucleophile, axial ligand, oxidant, and hydrocarbon or hydrogen pressures upon the rates and/or thermodynamics of the catalytic process are assessed similarly. In addition, extensive electrochemical studies of these catalysts in various solvent/electrolyte systems are performed to find systems compatible with direct electrochemical oxidation of the rhodium catalysts. The essential steps in this novel catalytic cycle are outlined in Scheme 1.

ACCOMPLISHMENTS: With the new pressure reactor, we performed kinetic studies of H₂ and D₂ activation and methane and deuteriomethane activation and evolution by Rh(F₂8TPP) at moderate gas pressures and 293 °K, 313 °K, 333 °K, and 353 °K reaction temperatures. The rate constant for hydrogen activation was found to be nearly identical to that of Rh(TMP). Methane evolution was well fit by a second order kinetic model, indicating that the C-H activation reaction does involve two metalloradical centers in the rate determining step. Complementary H-D exchange
reactions with linear alkanes (heptane, decane) showed that C-H activation is selective toward 1° C-H bonds when both
1° and 2° saturated carbon centers were present. These data indicate that the highly electrophilic nature of the metal center does not compromise the kinetics of the important homolytic bond-breaking steps in the cycle (reactions 1 and 4 in Scheme 1.)

Electrochemical Studies: We conducted a variety of electrochemical experiments aimed at determining what solvents, counterions, and potential nucleophiles were compatible with a stable rhodium metalloradical species. After extensive experimentation, it was found that the Rh(F28TPP) metalloradical was stable in hydroxylic and/or nonpolar solvents containing weakly coordinating anions. Furthermore, aqueous mixtures of nonpolar solvents (saturated solutions) also supported a stable Rh(II) metalloradical. These results indicate that water or other hydroxylic nucleophiles are compatible with this catalytic process; this is a key finding given that alcohols are desirable end products.

CONCLUSIONS: Direct electrochemical oxidation of reduced Rh(F28TPP) is possible under catalytic conditions. The kinetics of hydrocarbon functionalization indicate the alkane activation is rate limiting for the Rh(F28TPP) catalyzed process.

SIGNIFICANCE: The reactor has allowed us to define the conditions permitting direct electrochemical oxidation of the reduced form of the catalyst. This key finding should enable a greater breadth of nucleophiles, including oxygen nucleophiles, to be used in hydrocarbon functionalization reactions catalyzed by rhodium porphyrins.

PUBLICATIONS AND ABSTRACTS:

