Introduction

Patchiness is perhaps the most salient characteristic of plankton populations in the ocean. The scale of this heterogeneity spans many orders of magnitude in its spatial extent, ranging from planetary down to microscale (Figure 1). It has been argued that patchiness plays a fundamental role in the functioning of marine ecosystems, insofar as the mean conditions may not reflect the environment to which organisms are adapted. For example, the fact that some abundant predators cannot thrive on the mean concentration of their prey in the ocean implies that they are somehow capable of exploiting small-scale patches of prey whose concentrations are much larger than the mean. Understanding the nature of this patchiness is thus one of the major challenges of oceanographic ecology.

The patchiness problem is fundamentally one of physical-biological-chemical interactions. This interconnection arises from three basic sources: (1) ocean currents continually redistribute dissolved and suspended constituents by advection; (2) space-time fluctuations in the flows themselves impact biological and chemical processes; and (3) organisms are capable of directed motion through the water. This tripartite linkage poses a difficult challenge to understanding oceanic ecosystems: differentiation between the three sources of variability requires accurate assessment of property distributions in space and time, in addition to detailed knowledge of organismal repertoires and the processes by which ambient conditions control the rates of biological and chemical reactions.

Various methods of observing the ocean tend to lie parallel to the axes of the space/time domain in which these physical–biological–chemical interactions take place (Figure 2). Given that a purely observational approach to the patchiness problem is not tractable with finite resources, the coupling of models with observations offers an alternative which provides a context for synthesis of sparse data with articulations of fundamental principles assumed to govern functionality of the system. In a sense, models can be used to fill the gaps in the space/time domain shown in Figure 2, yielding a framework for exploring the controls on spatially and temporally intermittent processes.

The following discussion highlights only a few of the multitude of models which have yielded insight into the dynamics of plankton patchiness. Examples have been chosen to provide a sampling of scales which can be referred to as 'small' – that is, smaller than the planetary scale shown in Figure 1A. In addition, this particular collection of examples is intended to furnish some exposure to the diversity of modeling approaches which can be brought to bear on the problem. These approaches range from abstract theoretical models intended to elucidate specific processes, to complex numerical formulations which can be used to actually simulate observed distributions in detail.

Formulation of the Coupled Problem

A general form of the coupled problem can be written as a three-dimensional advection-diffusion-reaction equation for the concentration C_i of any particular organism of interest:

$$\frac{\partial C_i}{\partial t} + \nabla \cdot (v C_i) - \nabla \cdot (K \nabla C_i) = R_i$$

local rate of change advection diffusion biological sources/sinks
Figure 1 Scales of plankton patchiness, ranging from global down to 1 cm. (A–C) Satellite-based estimates of surface-layer chlorophyll computed from ocean color measurements. Images courtesy of the Serwifs Project and Distributed Active Archive Center at the Goddard Space Flight Center, Sponsored by NASA. (D) A dense stripe of Noctiluca scintillans, 3 km off the coast of La Jolla. The boat in the photograph is trailing a line with floats spaced every 20 m. The stripe stretched for at least 20 km parallel to the shore (photograph courtesy of P.J.S. Franks). (E) Surface view of a bloom of Anabaena flos-aquae in Malham Tarn, England. The area shown is approximately 1 m² (photograph courtesy of G.E. Fogg).
where the vector v represents the fluid velocity plus any biologically induced transport through the water (e.g., sinking, swimming), and K the turbulent diffusivity. The advection term is often written simply as $v \cdot \nabla C$, because the ocean is an essentially incompressible fluid (i.e., $\nabla \cdot v = 0$). The ‘reaction term’ R, on the right-hand side represents the sources and sinks due to biological activity.

In essence, this model is a quantitative statement of the conservation of mass for a scalar variable in a fluid medium. The advective and diffusive terms simply represent the redistribution of material caused by motion. In the absence of any motion, eqn [1] reduces to an ordinary differential equation describing the biological and/or chemical dynamics. The reader is referred to the review by Donaghay and Osborn for a detailed derivation of the advection-diffusion-reaction equation, including explicit treatment of the Reynolds decomposition for biological and chemical scalars (see Further Reading).

Any number of advection-diffusion-reaction equations can be posed simultaneously to represent a set of interacting state variables C_i in a coupled model. For example, an ecosystem model including nutrients, phytoplankton, and zooplankton (an ‘NPZ’ model) could be formulated with $C_1 = dN$, $C_2 = P$ and $C_3 = Z$. The biological dynamics link-

Figure 2 Space–time diagram of the scales resolvable with current observational capabilities. Measurements tend to fall along the axes; the dashed line running between the ‘shipboard survey’ axes reflects the trade-off between spatial coverage and temporal resolution inherent in seagoing operations of that type. Models can be used to examine portions of the space–time continuum (shaded area).

where these three together could include nutrient uptake, primary production, grazing, and remineralization. R, would then represent not only growth and mortality, but also terms which depend on interactions between the several model components.

Growth and Diffusion – the ‘KISS’ Model

Some of the earliest models used to investigate plankton patchiness dealt with the competing effects of growth and diffusion. In the early 1950s, models developed independently by Kierstead (K) and Slobodkin (S) and Skellam (S) - the so-called ‘KISS’ model – were formulated as a one-dimensional diffusion equation with exponential population growth and constant diffusivity:

$$\frac{\partial C}{\partial t} - K \frac{\partial^2 C}{\partial x^2} = \alpha C$$ \[2\]

Note that this model is a reduced form of eqn [1]. It is a mathematical statement that the tendency for organisms to accumulate through reproduction is counterbalanced by the tendency of the environment to disperse them through turbulent diffusion. Seeking solutions which vanish at $x = 0$ and $x = L$ (thereby defining a characteristic patch size of dimension L), with initial concentration $C(x,0) = f(x)$, one can solve for a critical patch size $L = \pi(K/\alpha)^{1/2}$ in which growth and dispersal are in perfect balance. For a specified growth rate α and diffusivity K, patches smaller than L will be eliminated by diffusion, while those that are larger will result in blooms. Although highly idealized in its treatment of both physical transport and biological dynamics, this model illuminates a very important aspect of the role of diffusion in plankton patchiness. In addition, it led to a very specific theoretical prediction of the initial conditions required to start a plankton bloom, which Slobodkin subsequently applied to the problem of harmful algal blooms on the west Florida shelf.

Homogeneous Isotropic Turbulence

The physical regime to which the preceding model best applies is one in which the statistics of the turbulence responsible for diffusive transport is spatially uniform (homogeneous) and has no preferred direction (isotropic). Turbulence of this type may occur locally in parts of the ocean in circumstances where active mixing is taking place, such as in a wind-driven surface mixing layer. Such motions might produce plankton distributions such as those shown in Figure 1E.
The nature of homogeneous isotropic turbulence was characterized by Kolmogorov in the early 1940s. He suggested that the scale of the largest eddies in the flow was set by the nature of the external forcing. These large eddies transfer energy to smaller eddies down through the inertial subrange in what is known as the turbulent cascade. This cascade continues to the Kolmogorov microscale, at which viscous forces dissipate the energy into heat. This elegant physical model inspired the following poem attributed to L. F. Richardson:

Big whorls make little whorls which feed on their velocity;
little whorls make smaller whorls, and so on to viscosity...

Based on dimensional considerations, Kolmogorov proposed an energy spectrum \(E(k) \) of the form

\[
E(k) = A \varepsilon^{3/4} k^{-5/3}
\]

where \(k \) is the wavenumber, \(\varepsilon \) is the dissipation rate of turbulent kinetic energy, and \(A \) is a dimensionless constant. This theoretical prediction was later borne out by measurements, which confirmed the 'minus five-thirds' dependence of energy content on wavenumber.

In the early 1970s, Platt published a startling set of measurements which suggested that for scales between 10 and \(10^3 \) m the variance spectrum of chlorophyll in the Gulf of St Lawrence showed the same \(-5/3\) slope. On the basis of this similarity to the Kolmogorov spectrum, he argued that on these scales, phytoplankton were simply passive tracers of the turbulent motions. These findings led to a burgeoning field of spectral modeling and analysis of plankton patchiness. Studies by Denman, Powell, Fasham, and others sought to formulate more unified theories of physical-biological interactions using this general approach. For example, Denman and Platt extended a model for the scalar variance spectrum to include a uniform growth rate. Their theoretical analysis suggested a breakpoint in the spectrum at a critical wavenumber \(k_c \) (Figure 3), which they estimated to be in the order of 1 km\(^{-1}\) in the upper ocean. For wavenumbers lower than \(k_c \), phytoplankton growth tends to dominate the effects of turbulent diffusion, resulting in a \(k^{-1} \) dependence. In the higher wavenumber region, turbulent motions dominate, resulting in \(k^{-3} \) and \(k^{-5} \) dependence. The high wavenumber region to the right of \(k_c \) where turbulent motions dominate, has a dependence between \(k^{-2} \) and \(k^{-3} \). (Reproduced with permission from Denman KL and Platt T (1976). The variance spectrum of phytoplankton in a turbulent ocean. Journal of Marine Research 34: 593-601.)

Figure 3 A theoretical spectrum for the spatial variability of phytoplankton, \(E_s(k) \), as a function of wavenumber, \(k \), displayed on a log-log plot. To the left of the critical wavenumber \(k_c \), biological processes dominate, resulting in a \(k^{-1} \) dependence. The high wavenumber region to the right of \(k_c \) where turbulent motions dominate, has a dependence between \(k^{-2} \) and \(k^{-3} \). (Reproduced with permission from Denman KL and Platt T (1976). The variance spectrum of phytoplankton in a turbulent ocean. Journal of Marine Research 34: 593-601.)

to resolve the underlying physical–biological interactions controlling plankton patchiness in the ocean.

Vertical Structure

Perhaps the most ubiquitous aspect of plankton distributions which makes them *anisotropic* is their vertical structure. Organisms stratify themselves in a multitude of ways, for any number of different purposes (e.g., to exploit a limiting resource, to avoid predation, to facilitate reproduction). For example, consider the subsurface maximum which is characteristic of the chlorophyll distribution in many parts of the world ocean (Figure 4). The deep chlorophyll maximum (DCM) is typically situated below the nutrient-depleted surface layer, where nutrient concentrations begin to increase with depth. Generally this is interpreted to be the result of joint resource limitation: the DCM resides where nutrients are abundant and there is sufficient light for photosynthesis. However, this maximum in chlorophyll does not necessarily imply a maximum in phytoplankton biomass. For example, in the
nutrient-impoverished surface waters of the open ocean, much of the phytoplankton standing stock is
sustained by nutrients which are rapidly recycled;
thus relatively high biomass is maintained by low
ambient nutrient concentrations. In such situations,
the DCM often turns out to be a pigment max-
imum, but not a biomass maximum. The mecha-
nism responsible for the DCM in this case is
photoadaptation, the process by which phytoplan-
kton alter their pigment content according to the
ambient light environment. By manufacturing more
chlorophyll per cell, phytoplankton populations in
this type of DCM are able to capture photons more
effectively in a low-light environment.

Models have been developed which can produce
both aspects of the DCM. For example, consider the
nutrient, phytoplankton, zooplankton, detritus
(NPZD) type of model (Figure 5) which simulates
the flows of nitrogen in a planktonic ecosystem. The
various biological transformations (such as nutrient
uptake, primary production, grazing, excretion, etc.)
are represented mathematically by functional rela-
tionships which depend on the model state variables
and parameters which must be determined empir-
ically. Doney et al. coupled such a system to a
one-dimensional physical model of the upper ocean
(Figure 6). Essentially, the vertical velocity \((\nu) \)
and diffusivity fields from the physical model are used to
drive a set of four coupled advection-diffusion-
reaction equations (one for each ecosystem state
variable) which represent a subset of the full
three-dimensional eqn [1]:

\[
\frac{\partial C_i}{\partial t} + \nu \frac{\partial C_i}{\partial x} + \nu \frac{\partial C_i}{\partial y} = R_i \quad [3]
\]

The \(R_i \) terms represent the ecosystem interaction
terms schematized in Figure 5. Using a diagnostic
photoadaptive relationship to predict chlorophyll
from phytoplankton nitrogen and the ambient light and
nutrient fields, such a model captures the over-
all character of the DCM observed at the Bermuda
Atlantic Time-series Study (BATS) site (Figure 6).

Broad-scale vertical patchiness (on the scale of the
seasonal thermocline) such as the DCM is accom-
panied by much finer structure. The special volume
of Oceanography on ‘Thin layers’ provides an excel-
 lent overview of this subject, documenting small-
scale vertical structure in planktonic populations
of many different types. One particularly striking
example comes from high-resolution fluorescence
measurements (Figure 7A). Such profiles often show
strong peaks in very narrow depth intervals, which
presumably result from thin layers of phytoplank-
ton. A mechanism for the production of this layer-
ing was identified in a modeling study by P.J.S.
Franks, in which he investigated the impact of near-
inertial wave motion on the ambient horizontal and
depth-based layering which exists at scales much
larger than the thin layers of interest. Near-inertial
waves are a particularly energetic component in the
internal wave spectrum of the ocean. Their hori-
Znental velocities can be described by:

\[
u = U_0 \cos(mz - \omega t) \quad \nu = U_0 \sin(mz - \omega t) \quad [4]
\]

where \(U_0 \) is a characteristic velocity scale, \(m \) is the
vertical wavenumber, and \(\omega \) the frequency of the
wave. This kinematic model prescribes that the
velocity vector rotates clockwise in time and
counterclockwise with depth; its phase velocity is
downward, and group velocity upward. In his
words, ‘the motion is similar to a stack of pancakes,
each rotating in its own plane, and each slightly out
of phase with the one below’. Franks used this
velocity field to perturb an initial distribution of
phytoplankton in which a Gaussian vertical distri-
bution (of scale \(a \)) varied sinusoidally in both \(x \) and
\(y \) directions with wavenumber \(k_p \). Neglecting the
effects of growth and mixing, and assuming that
phytoplankton are advected passively with the flow,
eqn [1] reduces to:

\[
\frac{\partial C}{\partial t} + \nu \frac{\partial C}{\partial x} = 0 \quad [5]
\]
Plugging the velocity fields [4] into this equation, the initial phytoplankton distribution can be integrated forward in time. This model demonstrates the striking result that such motions can generate vertical structure which is much finer than that present in the initial condition (Figure 7B). Analysis of the simulations revealed that the mechanism at work here is simple and elegant: vertical shear can translate horizontal patchiness into thin layers by stretching and tilting the initial patch onto its side (Figure 7C).

Mesoscale Processes: The Internal Weather of the Sea

Just as the atmosphere has weather patterns that profoundly affect the plants and animals that live on the surface of the earth, the ocean also has its own set of environmental fluctuations which exert fundamental control over the organisms living within it. The currents, fronts, and eddies that comprise the oceanic mesoscale, sometimes referred to as the ‘internal weather of the sea’, are highly energetic features of ocean circulation. Driven both directly and indirectly by wind and buoyancy forcing, their characteristic scales range from tens to hundreds of kilometers with durations of weeks to months. Their space scales are thus smaller and timescales longer than their counterparts in atmospheric weather, but the dynamics of the two systems are in many ways analogous. Impacts of these motions on surface ocean chlorophyll distributions are clearly visible in satellite imagery (Figure 1B).

Mesoscale phenomenologies accommodate a diverse set of physical–biological interactions which influence the distribution and variability of plankton populations in the sea. These complex yet highly organized flows continually deform and rearrange the hydrographic structure of the near-surface region in which plankton reside. In the most general terms, the impact of these motions on the biota is twofold: not only do they stir organism distributions, they can also modulate the rates of biological processes. Common manifestations of the latter are associated with vertical transports which can affect the availability of both nutrients and light to phytoplankton, and thereby the rate of primary production. The dynamics of mesoscale and submesoscale flows are replete with mechanisms that can produce vertical motions.

Some of the first investigations of these effects focused on mesoscale jets. Their internal mechanics are such that changes in curvature give rise to horizontal divergences which lead to very intense...

Figure 5 A four-compartment planktonic ecosystem model showing the pathways for nitrogen flow. (Reproduced with permission from Doney SC, Glover DM and Najjar RG (1996) A new coupled, one-dimensional biological-physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research II 43: 591-624.)
vertical velocities along the flanks of the meander systems (Figure 8). J.D. Woods was one of the first to suggest that these submesoscale upwellings and downwellings would have a strong impact on upper ocean plankton distributions (see his article contained in the volume edited by Rothschild; see Further Reading). Subsequent modeling studies have investigated these effects by incorporating planktonic ecosystems of the type shown in Figure 5 into three-dimensional dynamical models of meandering jets. Results suggest that upwelling in the flank of a meander can stimulate the growth of phytoplankton (Figure 9). Simulated plankton fields are quite complex owing to the fact that fluid parcels are rapidly advected in between regions of upwelling and downwelling. Clearly, this complicated convolution of physical transport and biological response can generate strong heterogeneity in plankton distributions.

What are the implications of mesoscale patchiness? Do these fluctuations average out to zero, or are they important in determining the mean characteristics of the system? In the Sargasso Sea, it appears that mesoscale eddies are a primary mechanism by which nutrients are transported to the upper ocean. Numerical simulations were used to suggest that upwelling due to eddy formation and intensification causes intermittent fluxes of nitrate into the euphotic zone (Figure 10A). The mechanism can be conceptualized by considering a density surface with mean depth coincident with the base of the euphotic zone (Figure 10B). This surface is perturbed vertically by the formation, evolution, and destruction of mesoscale features. Shoaling density surfaces lift nutrients into the euphotic zone which are rapidly utilized by the biota. Deepening density surfaces serve to push nutrient-depleted water out of the well-illuminated surface layers. The asymmetric

Figure 6 Simulated (left) and observed (right) seasonal cycles of temperature and chlorophyll at the BATS site. (Reproduced with permission from Doney SC, Glover DM and Najjar RG (1996) A new coupled, one-dimensional biological–physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research II 43: 591–624.)
light field thus rectifies vertical displacements of both directions into a net upward transport of nutrients, which is presumably balanced by a commensurate flux of sinking particulate material. Several different lines of evidence suggest that eddy-driven nutrient flux represents a large portion of the annual nitrogen budget in the Sargasso Sea. Thus, in this instance, plankton patchiness appears to be an essential characteristic that drives the mean properties of the system.

Coastal Processes
Of course, the internal weather of the sea is not limited to the eddies and jets of the open ocean. Coastal regions contain a similar set of phenomena,
in addition to a suite of processes in which the presence of a land boundary plays a key role. A canonical example of such a process is coastal upwelling, in which the surface layer is forced offshore when the wind blows in the alongshore direction with the coast to the left (right) in the northern (southern) hemisphere. This event triggers upwelling of deep water to replace the displaced surface water. The biological ramifications of this were explored in the mid-1970s by Wroblewski with one of the first coupled physical–biological models to include spatial variability explicitly. Configuring a two-dimensional advection-diffusion-reaction model in vertical plane cutting across the Oregon shelf, he studied the response of an NPZD-type ecosystem model to transient wind forcing. His 'strong upwelling' case provided a dramatic demonstration of mesoscale patch formation (Figure 11). Deep, nutrient-rich waters from the bottom boundary layer drawn up toward the surface stimulate a large increase in primary production which is restricted to within 10 km of the coast. The phytoplankton distribution reflects the localized enhancement of production, in addition to advective transport of the resultant biogenic material. Note that the highest concentrations of phytoplankton are displaced from the peak in primary production, owing to the offshore transport in the near-surface layers.

Although Wroblewski's model was able to capture some of the most basic elements of the
biological response to coastal upwelling, its two-dimensional formulation precluded representation of alongshore variations which can sometimes be as dramatic as those in the cross-shore direction. The complex set of interacting jets, eddies, and filaments characteristic of such environments (as in Figure 1C) have been the subject of a number of three-dimensional modeling investigations. For example, Moisán et al. incorporated a food web and bio-optical model into simulations of the Coastal Transition Zone off California. This model showed how coastal filaments can produce a complex biological response through modulation of the ambient light and nutrient fields (Figure 12). The simulations suggested that significant cross-shelf transport of carbon can occur in episodic pulses when filaments meander offshore. These dynamics illustrate the tremendous complexity of the processes which link the coastal ocean with the deep sea.

Behavior

The mechanisms for generating plankton patchiness described thus far consist of some combination of fluid transport and physiological response to the physical, biological, and chemical environment. The fact that many planktonic organisms have behavior (interpreted narrowly here as the capability for directed motion through the water) facilitates a diverse array of processes for creating heterogeneity in their distributions. Such processes pose particularly difficult challenges for modeling, in that their effects are most observable at the level of the population, whereas their dynamics are governed by interactions which occur amongst individuals. The latter aspect makes modeling patchiness of this type particularly amenable to individual-based models, in contrast to the concentration-based model described by eqn [1].

For example, many species of marine plankton are known to form dense aggregations, sometimes referred to as swarms. Okubo suggested an individual-based model for the maintenance of a swarm of the form:

\[
\frac{d^2x}{dt^2} = -k \frac{dx}{dt} - \omega^2 x - \phi(x) + A(t) \tag{6}
\]

where \(x\) represents the position of an individual. This model assumes a frictional force on the organism which is proportional to its velocity (with frictional coefficient \(k\)), a random force \(A(t)\) which is white noise of zero mean and variance \(B\), and attractive forces. Acceleration resulting from the attractive forces is split between periodic (frequency \(\omega\)) and static (\(\phi(x)\)) components. The key aspect of the attractive forces is that they depend on the distance from the center of the patch. A Fokker-Planck equation can be used to derive a probability density function:

\[
p(x) = p_0 \exp\left(-\frac{\omega^2}{2B} x^2 - \int \frac{\phi(x)}{b} dx\right) \tag{7}
\]

where \(p_0\) is the density at the center of the swarm. Thus, the macroscopic properties of the system can be related to the specific set of rules governing individual behavior. Okubo has shown that observed characteristics of insect swarms compare well with theoretical predictions from this model, both in terms of the organism velocity autocorrelation and the frequency distribution of their speeds. Analogous comparisons with plankton have proven elusive owing to the extreme difficulty in making such measurements in marine systems.

The foregoing example illustrates how swarms can arise out of purely behavioral motion. Yet another class of patchiness stems from the joint effects of behavior and fluid transport. The paper by Flierl et al. is an excellent reference on this general topic.
Figure 10 (A) A simulated eddy-driven nutrient injection event: snapshots of temperature at 85 m (left column, °C) and nitrate flux across the base of the euphotic zone (right column, moles of nitrogen m⁻² d⁻¹). For convenience, temperature contours from the left-hand panels are overlayed on the nutrient flux distributions. The area shown here is a 500 km on a side domain. (The simulation is described in McGillicuddy DJ and Robinson AR (1997) Eddy induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Research I 44(8): 1427-1450.) (B) A schematic representation of the eddy upwelling mechanism. The solid line depicts the vertical deflection of an individual isopycnal caused by the presence of two adjacent eddies of opposite sign. The dashed line indicates how the isopycnal might be subsequently perturbed by interaction of the two eddies. (Reproduced with permission from McGillicuddy DJ et al. (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394: 263-265).
(see Further Reading). One of the simplest examples of this kind of process arises in a population which is capable of maintaining its depth (either through swimming or buoyancy effects) in the presence of convergent flow. With no biological sources or sinks, eqn [1] becomes:

\[
\frac{\partial C}{\partial t} + \mathbf{v} \cdot \nabla C + \mathbf{C} \mathbf{v} - \nabla \cdot (K \nabla C) = 0
\]

[8]
Figure 12 Modeled distributions of phytoplankton (color shading, mg nitrogen m\(^{-3}\)) in the Coastal Transition Zone off California. Instantaneous snapshots in panels (A–C) are separated by time intervals of 10 days. Contour lines indicate the depth of the euphotic zone, defined as the depth at which photosynthetically available radiation is 1% of its value at the surface. Contours range from 30 to 180 m, 40 to 180 m, and 60 to 180 m in panels (A), (B), and (C) respectively. (Reproduced with permission from Moisan et al. 1996 Modeling nutrient and plankton processes in the California coastal transition zone 2. A three-dimensional physical-biological model. Journal of Geophysical Research 101(C10): 22677-22691.

where \(V_H \) is the vector derivative in the horizontal direction only. Because vertical fluid motion is exactly compensated by organism behavior (recall that the vector \(v \) represents the sum of physical and biological velocities), two advective contributions arise from the term \(\nabla \cdot (vC) \) in eqn [1]: the common form with the horizontal velocity operating on spatial gradients in concentration, plus a source/sink term created by the divergence in total velocity (fluid + organism). The latter term provides a mechanism for accumulation of depth-keeping organisms in areas of fluid convergence. It has been suggested that this process is important in a variety of different oceanic contexts. In the mid-1980s, Olson and Backus argued it could result in a 100-fold increase in the local abundance of a mesopelagic fish *Benthosema glaciale* in a warm core ring. Franks modeled a conceptually similar process with a surface-seeking organism in the vicinity of a propagating front (Figure 13). Simply stated, upward swimming organisms tend to accumulate in areas of downwelling. This mechanism has been suggested to explain spectacular accumulations of motile dinoflagellates at fronts (Figure 1D).

Conclusions

The interaction of planktonic population dynamics with oceanic circulation can create tremendously complex patterns in the distribution of organisms. Even an ocean at rest could accommodate significant inhomogeneity through geographic variations in environmental variables, time-dependent forcing, and organism behavior. Fluid motions tend to amalgamate all of these effects in addition to introducing yet another source of variability: space-time fluctuations in the flows themselves which impact biological processes. Understanding the mechanisms responsible for observed variations in plankton distributions is thus an extremely difficult task.

Coupled physical–biological models offer a framework for dissection of these manifold contributions to structure in planktonic populations. Such models take many forms in the variety of approaches which have been used to study plankton patchiness. In theoretical investigations, the basic dynamics of idealized systems are worked out using techniques from applied mathematics and mathematical physics. Process-oriented numerical models offer a conceptually similar way to study systems that are too complex to be solved analytically. Simulation-oriented models are aimed at reconstructing particular data sets using realistic hydrodynamic forcing pertaining to the space/time domain of interest. Generally speaking, such models tend to be quite complex because of the multitude of processes which must be included to simulate observations made in the natural environment. Of course, this complexity makes diagnosis of the coupled system more challenging. Nevertheless, the combination of models and observations provides a unique context for the synthesis of necessarily sparse data: space–time continuous representations of the real
ocean which can be diagnosed term-by-term to reveal the underlying processes. Formal union between models and observations is beginning to occur through the emergence of inverse methods and data assimilation in the field of biological oceanography. Biogeochemical Data Assimilation provides an up-to-date review of this very exciting and rapidly evolving aspect of coupled physical-biological modeling.

Although the field is more than a half-century old, modeling of plankton patchiness is still in its infancy. The oceanic environment is replete with phenomena of this type which are not yet understood. Fortunately, the field is perhaps better poised than ever to address such problems. Recent advances in measurement technologies (e.g., high-resolution acoustical and optical methods, miniaturized biological and chemical sensors) are beginning to provide direct observations of plankton on the scales at which the coupled processes operate. Linkage of such measurements with models is likely to yield important new insights into the mechanisms controlling plankton patchiness in the ocean.

See also

Further Reading

