
AFRL-IF-RS-TR-2001-287
Final Technical Report
January 2002

EVOLVING COMMAND, CONTROL,
COMMUNICATIONS, COMPUTERS, AND
INTELLIGENCE, SURVEILLANCE AND
RECONNAISSANCE (C4ISR) DECISIONS

Natural Selection, Incorporated

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20020308 053
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-287 has been reviewed and is approved for publication.

APPROVED: 'to-2$j

STEVEN M. ALEXANDER, 1st Lt., USAF
Project Engineer

FOR THE DIRECTOR:

JAMES W. CUSACK, Chief
Information Systems Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, end completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

JANUARY 2002
3. REPORT TYPE AND DATES COVERED

 Final Apr 00 - Apr 01
4. TITLE AND SUBTITLE

EVOLVING COMMAND, CONTROL, COMMUNICATIONS, COMPUTERS,
AND INTELLIGENCE, SURVEILLANCE AND RECONNAISSANCE (C4ISR)
DECISIONS
6. AUTHOR(S)

V. William Porto and Lawrence Fogel

5. FUNDING NUMBERS

C - F30602-00-C-0048
PE- 62702F
PR- 459S
TA BA
WU -01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Natural Selection, Incorporated
3333 North Torrey Pines Court
Suite 200
La Jolla California 92037

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFSB
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-287

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Steven M. Alexander,1st Lt., USAF/IFSB/(315) 330-4304

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 wordsl

This report details the investigation, development, and prototype demonstration of evolving C4ISR capabilities of aircraft in
an arbitrary environment. Natural Selection, Inc. (NSI) was tasked to show how the application of the Valuated State Space
Approach and evolutionary programming (EP) could be used to produce optimal behavioral plans, and develop a set of
requirements for implementing this capability within an existing (or near-future) simulation engine. As a step toward the
creation of an actual prototype system, a small prototype optimal planning mechanism was created using computationally
intelligent techniques. A long-term goal is to develop a generalized, extensible evolutionary software system which can
efficiently and effectively encompass all desired hierarchical levels of planning for air combat entities, and can be used as a
tactical decision aid or training mechanism.

14. SUBJECT TERMS

Valuated State Space, Evolutionary Programming, Evolutionary Computation, Genetic
Algorithms, C4ISR Decision Support, Cognitive Process Modeling, Optimization

15. NUMBER OF PAGES

60
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG]
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSJDIOR, Oct 94

Table of Contents

1.0 Introduction 1
1.1 Objectives 1
1.2 Tasks 2
2.0 Overview and Rationale 3
3.0 Background 4
4.0 Review of Existing Simulation Engines 8
5.0 Technical Considerations 14
6.0 Proposed Software Implementation 17
6.1 Robust Software Design 18
6.2 Prediction Mechanisms 20
6.3 Mutation Operators 21
6.4 Scoring Function 23
7.0 Prototype Simulation and Sample Experiments 23
7.1 Prototype Simulation Scoring Function Components and Implementation 24

7.1.1 Damage Assessment and Survival/Kill Probabilities 24
7.1.2 Resource Utilization 26
7.1.3 Strategic Influence 26
7.1.4 Constraints 29

7.2 Test Experiments 30
8.0 Conclusions and Recommendations 37
8.1 EP/Simulator Problem-Specific Recommendations 38
8.2 Software Extensions 38
8.3 Hardware Requirements 39
8.4 Testing 39

References 41

Appendix A: Overview of Evolutionary Programming 43
Appendix B: The Valuated State Space Approach 46

List of Figures

Figure 1. Flow Diagram of EP/ModSAF processing 6
Figure 2. Processing diagram of EP/JANUS software system 8
Figure 3. Example of a temporally linked task frame set for controlling

ModSAF vehicles containing 4 task frames. 15
Figure 3. Processing diagram of EP/ Generic simulator software system. 18
Figure 4. Initial plan for test scenario after on generation of evolution 31
Figure 5. Evolved plans for basic scenario after 17 generations. 32
Figure 6. Evolved plans for basic scenario after 44 generations. 33
Figure 7. Initial scenario with one rectangular no-fly zone added. 34
Figure 8. Modified scenario with one rectangular no-fly zone, after 9

evolutionary generations. 35
Figure 9. Modified scenario with one rectangular no-fly zone, after

206 evolutionary generations. 36

1.0 Introduction

This report details the investigation, development, and prototype demonstration of
evolving C4ISR capabilities for the control of aircraft in an arbitrary environment.
Natural Selection, Inc. (NSI) was tasked to show how the application of the Valuated
State Space Approach and evolutionary programming (EP) could be used to produce
optimal behavioral plans, and develop a set of requirements for implementing this
capability within an existing (or near-future) simulation engine. As a step toward the
creation of an actual prototype system, a small prototype optimal planning mechanism
was created using computationally intelligent techniques. A long-term goal is to develop
a generalized, extensible evolutionary software system which can efficiently and
effectively encompass all desired hierarchical levels of planning for air combat entities,
and can be used as a tactical decision aid or training mechanism.

1.1 Objectives

Accomplishing this involved achieving a number of objectives, each leading to the
development of a useful software tool capable of demonstrating the aforementioned
capabilities. These objectives are described below:

1) Survey and examine the range of simulation engines currently available in the
simulation and modeling world for potential use for C4ISR support. Identify the state
of the art with respect to non-rule-based intelligently interactive combat simulation
and how existing deficiencies impact the capabilities of these systems.

2) Define the necessary requirements for the design, development and implementation
of software which uses evolutionary programming and a suitable simulation engine
for the optimal planning of air combat vehicles in a specified environment.
Specifically, determine all necessary components required to interface an existing
simulation engine, as well as the hardware/software, and communications protocols
required to support such a system.

3) Provide recommendations for implementing such a system, the potential tradeoffs and
possible uses for this automated planning system. Identify a course of action that will
facilitate adaptation of a chosen simulation engine such that it can be used to generate
optimal, truly intelligently interactive, air combat plans.

All of these objectives have been met successfully as a result of work performed during
this effort.

1.2 Tasks

There were three global tasks in this project. In the first task, a survey of Air Force
C4ISR and related training activities was conducted. This task consisted of two
interrelated components. The first of these entailed identifying the aspects of air combat
planning operations currently in place in the Air Force, and assessing which of these
aspects would benefit from the application of evolutionary optimization techniques to
derive optimal plans. The second part of this task involved reviewing the set of existing
simulation models currently being used by the military forces, and identifying those that
are suitable for use in an evolutionary planning framework. These two parts are highly
coupled as the availability and choice of the simulation engine is critical to the success of
the software system. In turn, the aspects of air combat planning define what parameters of
concern and level of simulation are necessary to generate C4ISR decision aids.

The second phase of this project involved development of a small test/prototype program
to generate optimal plans for aircraft entities within an environment with typical
constraints and threats. For this prototype program, modeled threats consisted of SAM
sites. Additionally, a no-fly zone was included to represent typical combat environments
wherein specific countries or areas therein prevent transit through parts of their airspace.

The third and last task was centered around developing recommendations, requirements,
and a general plan of action for implementing an autonomous evolutionary planner for
planning air combat operations. Such a combat planner could be used as a tactical aid as
well as in a training environment wherein combat personnel could train against a
calibratable, intelligently interactive adversary.

In addition to these tasks, a paper and presentation were made at the Aerospace SPIE
conference held in Orlando, Florida. The purpose of this presentation was to inform the
audience on the nature of the current state of the art as well as provide them with a small
demonstration of the possibility of generating air combat plans using evolutionary
computation.

This report is comprised of sections describing 2) overview and rationale, 3) review and
analyses of applicable simulation engines, 4) technical considerations pertinent to the
problem, 5) potential software implementation, 6) prototype simulation software, and 7)
conclusions and recommendations. Appendix A contains an overview and algorithmic
details of evolutionary programming.

2.0 Overview and Rationale

Creating optimal intelligently interactive behaviors for both C4ISR and air combat in
general is a formidable task. There are multiple interacting aspects, all of which must be
taken into account simultaneously. By definition, the mechanisms involved must operate
without human intervention. They should also be fully adaptive to realistic dynamic
environments and not just static simulations. In typical applications, available
information is limited by visibility and communication capability. In addition, there is
often a difference between perceived reality and actual truth due to the information
filtering processes inherent in a typical battlefield environment.

In the vast majority of previous research studies, planning is undertaken for a single
vehicle at a time. Multiple vehicle scenarios are either ignored or treated as a set of
separately controlled individual vehicles. However, in combat, autonomous vehicles must
act in concort with other members of the same team to enhance the effectiveness of the
cohesive whole. Coordination of efforts is an exceedingly important mechanism. Without
it aggregate behaviors cannot be truly exploited, leading to suboptimal solutions. This
results in the expenditure of more resources to solve any given problem than should be
necessary.

The search space of possible alternative paths and combinations thereof is immense.
Because of this, exhaustive analysis is, in most cases, impractical. What is needed is a
way to efficiently search the space of possible tactics to find one of sufficient value in
time for it to be useful. When exhaustive analysis is clearly impossible, a common
approach is to turn to heuristics. However, heuristics often prove useful only under
certain specialized circumstance.

Another approach is to attempt to solve the problem using mathematically tractable
approximations. This typically generates the right solution to the wrong problem. For
example, steepest descent is prone to failure if there are multiple optima. Linear
programming is often used even when the constraints are known to be nonlinear.
Complex problems are decomposed into simple ones so that these can be treated
separately for convenience. The aggregate of these local optimizations leads to a global
optimum only if the component problems are truly independent, which is rarely the case.
Statistical procedures generally presume stationarity, but the real-world is nonstationary.
In fact, these and other heuristics are rules. If the rules that solve the specific problem are
known a priori, the best procedure is to use them. If they are not known the rules chosen
relative to a previous problem may often stand in the way of finding a better solution to
the current problem.

Until recently, simulated autonomous entities were either semi-automated (where an
operator is required to exert some degree of supervisory control over the vehicles), or
constructively controlled using heuristics (defined a priori by a 'knowledgeable expert').
Requiring human operators to interact with 'semi-intelligent' autonomous entities is both
expensive and inefficient. Aside from the required personnel costs, the resulting
simulations are highly dependent upon the skill of the human involved. In any case, these
entities are not truly autonomous, as the operator is a necessary part of the control
process.

Heuristic control can be equally problematic. Increasing intelligence levels through
application of heuristics quickly makes these vehicles just 'smart' enough to accomplish
routine tasks but generates easily predictable (and defeatable) behaviors. The heuristics
employed always reflect a human's opinion, which is not necessarily optimal for more
than one circumstance. In addition, heuristics are fixed rules that are not adaptable to
realistic dynamic environments.

In contrast, the evolutionary programming algorithm (Fogel 1964, Fogel et al., 1966,
Fogel 1995) is a most general optimization technique. The only "rules" are problem-
independent iterative mutation and selection. Those components of randomness that are
found to be of value are retained to benefit further generations of solutions. Evolutionary
programming is an inherently elegant and potent technique simulating the mechanisms of
phenotypic evolution: iterative mutation and selection to generate organisms that tend
toward optimal behavior with regard to their environment and given payoff function. It is
not limited by prescribed rules or heuristics, therein making it most suitable for
optimizing path plans for autonomous vehicles, especially in dynamic environments.

Prior to this research artificial intelligence systems failed to provide truly intelligent
computer simulated vehicles. In contrast, results of research at Natural Selection, Inc.
using evolutionary programming to control simulated entities have shown that
intelligently interactive behaviors can be evolved [Porto and Fogel, 1997].

3.0 Background

Evolutionary programming [Fogel et al. 1966, Fogel 1995] can be used to generate
optimal behavior that controls the simulated entities for a predetermined amount of time
into the future. An objective function in the form of a Valuated State Space and
normalization function [L. Fogel 1995] scores each prospective behavioral plan. Re-
optimization of this information is performed periodically using the latest available
information about the sensed environment (i.e., number and positions of entities, terrain,
damage assessment, etc.). This results in the generation of dynamically adaptive
behavioral plans. By predicting the positions of all simulated vehicles, behaviors which
anticipate actions of enemy, friendly (and potentially, neutral) team members can be
evolved.

Natural Selection, Inc. has successfully demonstrated the use of evolutionary
computation for generating behavioral plans for simulated combat entities. This
evolutionary process has been combined with two different simulation engines, ModSAF
and more recently, JANUS. The first research produced an evolutionary program
implemented around the simulation engine ModSAF, that provided a basis for optimal
low-level control of autonomous vehicles [Porto and Fogel, 1996]. Evolutionary
programming was used to optimally control computer generated forces (CGFs) on two
opposing teams in highly dynamic environments. Tactical courses of action were learned
adaptively for individual vehicles as well as for higher-level aggregations (i.e., platoons).
Evolutionary updates of behavioral plans incorporated dynamic changes in the
developing situation and the sensed environment.

The version of this integrated EP/ModSAF software (as developed for STRICOM) plans
high level behaviors/paths in view of the given scoring function that includes several
factors. The process acts by interrupting the normal processing flow of the simulation
engine, essentially stealing CPU cycles to perform the optimization tasking. First, the
simulation engine (ModSAF) is temporally stopped to obtain a snapshot of the current
environment. Next, while the simulation is paused, the evolutionary program uses the
current physical environment (i.e., sensed enemy positions, terrain features, weather, etc.)
to predict the actions of the opponent forces into the near future. Past behaviors can be
used to approximate state information relative to purpose and intent. With this
information, the evolutionary program generates a set of 'parent' solutions to the
planning problem, given the desired mission goals (e.g., survival, task accomplishment,
minimization of fuel used, etc.). From these 'parent' solutions, 'offspring' solutions are
generated which are variants of the parent solutions.

After scoring all of these solutions, the least-fit are culled (finite resources limit the
number of retained solutions) and the process is iterated by the generation of new
'offspring' solutions. When a sufficient number of iterative cycles or specified time has
elapsed, the best of these solutions is input back into the simulation engine that is
awakened from its paused state. The evolved solutions are then used by the simulation
engine as plans for the specified vehicles over the desired time period. The process is
repeated indefinitely or until the desired goals are accomplished. Figure 1 below
represents this process flow pictorially.

During each EP/ModSAF cycle the (modified) graphical user interface within ModSAF
displays the paths generated throughout the evolutionary process. However, the vehicles
do not actually move on the screen during this planning phase - this is only a graphical
guide for ascertaining (visual) fitness of the solution set. When restarted, ModSAF can
be used to display the new behavioral paths within its own graphical framework.

Interactive Evolution of Task
Plans using ModSAF

Pause Scenario

Access Current
World Status

Create N 'Parent' Plans
using full set of ModSAF

Entities

Create M Offspring
for each Parent
Plan by Mutation

Score Plans using
VSS Scoring

Function

Select N Top Scoring
Solutions

I
Transfer Best Plans back to
ModSAF Simulation Entities

Restart
Scenario

Figure 1. Flow diagram of EP / ModSAF processing.

This preliminary study using ModSAF resulted in a second research project in which
JANUS was used as a simulation engine. In addition to the major differences between
JANUS and ModSAF, several other important improvements were made. These include

1. providing for additional robustness against several failure modes
2. incorporating additional fidelity to the internal evolutionary models.
3. implementing the software in a true parallel processing framework.
4. refining the probabilistic Pkil/Psurviva, measures
5. incorporating several soft-factors into the simulation (e.g., motivation)

Instead of 'stealing' CPU cycles directly from the single processor running ModSAF, the
JANUS-based approach uses parallel processing mechanisms to permit offloading
evolutionary computation processing tasks if/as necessary. This is an important
consideration since when used in a training mode, any delay in processing directly effects
the end-user's leading to dissatisfaction. A client-server mechanism was developed in
which separate data servers act as information messengers only, relieving the main CPU
running the simulation engine of both heavy EP-related computational costs as well as
making it less prone to interruption failure due to interruptions. Standard internet sockets
and protocols are used to transmit information to and from each data client program. This
design also isolates the individual components from each other, allowing them to act
asynchronously and independently from each other. Thus, if one client is terminated for
whatever reason, other clients are not affected.

By revising the implementation, it allows the evolutionary programming software to run
as a completely separate process on virtually any computer (provided said computer has
standard internet socket communication capabilities and sufficient memory to run a basic
EP client process). In fact, the design allows for any number of independent evolutionary
programs to be run on one or more computers. Thus, in true parallel processing fashion,
these independent processes can be instantiated based solely upon the available
computational resources (up to host platform communication socket limits). Figure 2
indicates the functional components and relationships between each component. Note
that although only one EP client process is shown in the figure, any number of EP client
processes can interface independently with the EP server process. A separate graphical
user interface (GUI) is provided for each EP client process to facilitate access to and
control of user parameter selections.

Finally, the new implementation incorporates a set of soft-factors which are important to
the measure of success on a battlefield. Intelligence level is controlled through adjusting
the number of alternative courses of action reviewed during each evolutionary epoch
(time between updates of behavioral plans to the simulation engine). This is
accomplished through adjustment of population dynamics (e.g., number of parents,
number of offspring per parent, number of generations between epochs). Similarly,
measures of motivation, physical and mental ability, and risk taking propensity are also
modeled.

JANUS
Software

JANUS

Evolutionary Programming
Software

JANUS Data Server EP Server

EPGUI

EP Client

Figure 2. Processing diagram of EP / JANUS software system.

4.0 Review of Existing Simulation Engines

A survey was conducted of Air Force C4ISR and other training simulations in order to
identify those that can be enhanced by incorporating an intelligently interactive opposing
force. This requires that:

1. The simulation model entities at a suitable level of complexity and abstraction,
midway between engineering simulations (will the missile hit its target), and
campaign level simulations (primarily concerned with attrition, sustainment, and
the deterrence of escalation).

2. The simulation can be adapted to operate without human intervention, for
having a man-in-the-loop makes the simulation uncalibratable and adds excessive
lag.

3. The simulation operates on an available computer platform at least as fast as
real-time, that is, it can generate outcomes of any particular maneuver/tactic fast
enough to search for alternative courses of action before a final solution is
required. If this is not the case, the evolutionary program (or any other

optimization method for that matter) cannot execute a sufficient number of
generations to discover significantly better maneuvers/tactics.

4. The simulation is written in such a manner that an external program can access
both the state information that defines possible courses of action as well as the
measures that appear in the mission as stated as the form of a Valuated State
Space™. Here combat effectiveness is judged in terms of a number of parameters
such as, targets killed by priority, their timeliness, munitions expended,
acceptable degree of vulnerability, amount of force at risk, as well as lost
opportunity costs. Success of the mission therefore involves broad considerations
that go beyond simply time-on-target. Direct access to the code is not necessary if
the simulation engine provides an existing convenient interface to obtain these
parameters and input new optimized information back to it.

5. The simulation must not be a legacy system, classified, or one that is still in
development. To create a truly usable evolutionary optimization system it must be
implemented on an existing system that is also expected to be utilized in the
relevant future. Legacy systems are, most often, inappropriate as they are
generally scheduled for replacement in the near future. In order to minimize
development costs and maximize flexibility for use on a range of Air Force
projects, use of a classified simulation system is not realistic.

6. The program manager in charge of the simulation must be willing to provide a
copy that can be modified. It was found that program managers offer a variety of
reasons for not allowing this to occur. Access to source code is highly important
to the success of this project although it often tends to present a problem with
many simulation development teams. In fact, the majority of people contacted
with regard to their simulation engines would either not release the source code or
required their own development teams to place the required hooks into their
simulations. Given the cost (both time and money) of using a third party as an
intermediary, these simulation engines are not economically feasible for our use.

A large number of simulation systems were reviewed for use as part of an evolutionary
optimization system. Contact was made with Bob Mayne regarding AFMSS/CLOAR, a
mission planning segment that is federated with Joint Interim Mission Model (JIMM). A
number of pilots select the mission routing/scheduling plan, viewing it on AFMSS with
CLOAR providing appropriate intelligence information. This portion of the simulation is
classified. After the plans have been established they are executed on JIMM taking from
one minute to an hour depending upon the complexity of the required simulation.
Obviously this simulation is unsuitable. JIMM is much like Suppressor (a non interactive
simulation) written in C++ for Unix but it is reported to be difficult to get up and running
and even then not necessarily reliable.

JIMM is the merger of key capabilities of the Air Forces Suppressor model into the
Navy's Simulated Warfare Environment Generator (SWEG) model. It is primarily a
mission level analysis model but can also be used as a scenario generator for testing and
training purposes. It is a Distributed Interactive Simulation (DIS), event-stepped, object-

oriented, general purpose conflict simulation and may be used as a missile prototype for a
next generation mission model. It can participate in a network with other simulations and
man-in-the-loop systems and represent multi-sided conflicts. Based upon the information
that this simulation is frequently unreliable and difficult to instantiate the software on a
new system, this simulation package is not suitable for our use.

Col. Thomas Ardern reported that all the training combat simulations used at Maxwell
Air Force Base are manned on both sides. Therefore they are unsuitable.

Mike Davis, program manager for AWSIN referenced Jim Daly of Raytheon. He, in turn,
reported that the OPFOR within AWSIN is manually operated by personnel who attempt
to simulate enemy behavior in a realistic manner. There is no measure of their degree of
optimality. The blue force has even less freedom, in that it must follow the given ATO
and doctrine. AWSIN is the official Air Force Theater-Level war gaming
model/simulation for training. It can include day and night operations under limited
weather conditions over smooth earth. This two-sided simulation includes aircraft,
airbases, surface-to-air missiles, short-range air defense systems, ships and radar sites.
Measures are ordinarily taken with respect to the success of individual aircraft, munitions
consumption and the manner in which the scenario develops. There is no calibration of
the friendly force demonstrated capability. This simulation can treat air attack, air
defense, air interdiction, air-land battle, air superiority, air traffic control as well as
command and control operations, but is not suitable for enclosing in an evolutionary
framework. AWSIM can be coupled with JQUAD, a joint electronic warfare model that
combines other intelligence models. It is a two-sided game with probability driven
random variables. It is interactive because it requires human controllers operating in a
complex language in instructions and formats. For example, there are 36 different kinds
of missions, each with presets.

Dave Hoagland of WPAFB referenced their current development of Combat Automation
Requirements test bed (CART) within the Air Force Research Laboratory, Human
Effectiveness Directorate. Within constructive simulations, sensitivity analyses are
usually conducted on key subsystem attributes by selectively varying their levels and
measuring the results in terms of mission performance. Unfortunately, consideration of
the crew interface is usually avoided in such requirement generation efforts. Here, man-
in-the-loop is used partly because of an inability to properly model human behavior in an
interactive setting. CART intends to advance the state of the art in human modeling. This
simulation is in C++ and is HLA compatible, however, it is not suitable for an
evolutionary framework because of the man-in-the-loop requirement.

Major Scott Fox reported on Thunder, a stochastic, two-sided analytical simulation of
campaign-level military operations. The simulation was developed in the 1980's to
examine the utility and effectiveness of air and space power in the context of theater-level
joint warfare. Thunder is written in SINSCRIPT and is the predecessor to STORM to
take advantage of "new technology and simulation, algorithms, and processing to
enhance analytical utility". In essence the mission is specified, the simulation runs faster
than real time but is still slow because of the duration and complexity of theater
operations. This rule-based simulation includes the variability found in actual combat, as

10

a result each initial condition scenario is processed twenty times in order to determine the
most likely outcome and other statistics. It offers certain reasonable measures of
effectiveness, but these are neither weighted nor combined. The simulation can work on a
SUN workstation after being compiled in C. STORM is a future simulation that will be
neither intelligently interactive nor calibrated. It is being developed in support of
JWARS. It is not a candidate for the evolutionary framework because it is currently under
development. However, if in the future this simulation becomes a reality, our design will
be capable of interfacing with it.

Lt. Col. Laurie Talbot monitors JCAT for the Air Force Agency for Modeling and
Simulation. This is a man-in-the-loop, n-player game, wherein each player can have a
different weapon system. It can operate in real time or up to ten times real time with sub-
routines directing weapons to targets in a preset manner. The program is in C++ and has
already programmed measures of effectiveness, but no way to combine these or to
determine when the combat is over. Being man-in-the-loop it is unsuitable for an
evolutionary framework.

Technical information was also obtained regarding the Advanced Tactical Combat Model
(ATCOM) developed by Boeing, Philadelphia. This is a stochastic, force-on-force
constructive combat simulation. The term "constructive" means that the computer
constructs the outcome from the initial conditions and force direction, this as opposed to
the virtual simulation wherein the man-in-the-loop determines the outcome by estimating
various outcomes during the game. In ATCOM, interactions between the opposing forces
are simulated over a digital terrain, taking into account weapons and sensor performance,
combat vehicle characteristics, weather and tactics. This simulation is man-in-the-loop,
requiring gamers/tacticians to make tactical inputs during the combat simulation. It
provides a high fidelity simulation of detection and communications with six degree of
freedom dynamic models of the aircraft and fundamental equations of motion for the
ground vehicles. Again, because this simulation requires man-in-the-loop, it is not
suitable for an evolutionary framework.

The Extended Air Defense System (EADSIM) was developed by Teledyne-Brown. They
own the software and will not allow changes to be made unless they make them. The
Extended Air Defense Test bed is an outgrowth of EADSIM that is reported to be
flexible, difficult to operate and very costly. Here the subject is too far from Air Force
C4ISR and the program cannot be readily modified to insert the hooks to access the
required parameters.

The Virtual Strike Warfare Environment 7 is intended to support the next generation of
Joint Strike Fighter. The intent is to develop a prototype engineering environment and
process for evaluating Joint Strike Fighter Mission Effectiveness. There are many
participating organizations but this simulation is still under development and therefore
not suitable for the present purpose.

BAE Systems produced a Tactical Strike Coordination Manager (TSCM), a joint force
level planing tool that enables rapid execution of the ATO and near real time monitoring
of ground and airborne tracks. It displays the theater of operation and selectively permits

11

overlay of targets and threats, the friendly Order of Battle, zones developed manually or
from the Airspace Control Order (ACO) and weather. Although developed primarily for
Navy use, planners can use this to develop integrated strike packages for Air Force or
coalition tactical aircraft, Tomahawk land attack missiles and UAV's, or to process the
ATO for execution. This simulation was demonstrated to Lt. Steven Alexander at the
BAE facility in Rancho Bernardo. It was considered a strong contender to the
modification of JANUS to include air capabilities. TSCM is understood to be the
property of BAE Systems. Their cooperation would be essential to incorporating the
required hooks and providing an evolutionary framework that would optimize the tactics.
In conversations with BAE personnel they were adamant that their source code remain in
house and only their developers would be allowed to insert the required interface hooks
to the parameters of interest. Hence, due to the additional cost of this third-party
interface, this simulation is deemed unsuitable.

The Air Campaign Planning Tool (ACPT) was developed under DARPA, Air Force, and
Navy sponsorship to support the Joint Forces Air Component Commander (JFACC) in
the development of CNOOPS. It consists of a large collection of routines that are called
upon in the process of planning. Situation Analysis Tools provide access to relevant
information including intelligence reports and help the campaign planner build a rationale
for the air strategy based on national political theater and military objectives as presented
by NCA. Although this takes into account enemy capabilities, it is not interactive in real
time.

Natural Selection, Inc. has been under contract to DARPA to provide automated decision
support to JANUS. Before this, a variety of specially qualified experts were required to
exercise this training program, each expert directing the tanks, artillery, and other
specialized weapons so that the students could learn to operate the friendly force in a
realistic manner. This is costly and it is often difficult to have the right experts at the time
and place required. The automated capability has now been demonstrated. The mission of
each "expert" is specified, the evolutionary program optimizes tactics given the initial
conditions and available capabilities. The speed of performance depends on the number
of platforms (up to several thousand), the extent of the mission statement (number of
parameters and level of detain of the Valuated State Space™ and normalizing function),
and the population size/number of generations used in the evolutionary program. This
capability was demonstrated to Lt. Steven Alexander in terms of ground warfare, then
later in terms of inserting air combat aircraft. JANUS is indeed a flexible simulation that
has been used extensively for Army training and can be readily modified to simulate air
land battles. There are numerous entity types within JANUS and it is easily extensible to
additional entities. However, the plans executed within JANUS are typically point-to-
point moves wherein no turning information (kinematics, loading, etc) are currently
modeled. Although this could be a point of concern in aircraft combat simulation,
JANUS could be modified to incorporate these parameters. It was therefore
recommended that this simulation be used for our development efforts.

Certain other simulations were considered to be unworthy of further attention. Col.
Forrest Crain, Director of DMSO, indicated that his agency has jurisdiction over some

12

1000 different combat simulations. Many of these are still undocumented in their files.
There is no current summary of their usage rate or degree of calibration. Incidentally, he
pointed out that JWAR/JSIM, the most recent joint simulation will cost over one billion
dollars. Such an expenditure cannot be justified in terms of its projected worth. Thus far
it has not met its requirements and may receive no further funding.

Another possible candidate simulation is ModSAF (Modular Semi-Automated Forces).
ModSAF models the physical processes of a number of entities simultaneously. ModSAF
incorporates heuristics for emulating low-level vehicle behaviors. These heuristics are
used to manipulate vehicles at various hierarchical levels (unit, platoon, etc.) while
adhering to realistic physical constraints. A computer operator (or automated system) is
used to generate high-level behaviors, leaving the detailed low-level modeling and
planning to the imbedded heuristics inside ModSAF. This realistically approximates a
chain of command, where command leaders provide high-level instructions and let the
smaller details be handled in some routine manner1.

Although ModSAF is currently at the end of its development cycle (soon to be replaced
by OneSAF), it is designed to model a wide variety of entities in land, sea, and air
environments. ModSAF (as well as most other CGF simulation engines) effects control
of entities via parameterized structures that specify actions for discrete periods of time. In
terms of game theory, this temporal aspect becomes critically important as behaviors for
each agent rely upon a finite-time period for planning as opposed to the usual open-ended
approach typically used in robot path planning. Instead of describing paths as points in N-
space, a set of temporally linked, discrete-time task frame segments are used to specify
the duration, velocity vector, and all other pertinent parameters. An entity is controlled by
instructing it to perform a sequence of desired tasks, each for a prescribed period of time.
Hence, predictive planning is driven by time, not position. Each team plans for a
specified 'lookahead' time into the future. The sum of all task frame time durations in a
behavioral plan is a constant, set equal to this 'lookahead' time.

Previously, ModSAF v2.0 and v3.0 were used (as described above) as part of an
evolutionary planner. Both versions exhibited suitable traits but were prone to failure due
to unreliable execution of input plans. The new OneSAF prototype is currently being
tested as a beta version. Natural Selection, Inc. has obtained a copy of this simulator and
will be evaluating it over the course of the next few months. Additional hardware is
required to operate OneSAF as it requires 256MB RAM memory, over a Gigabyte of
storage space, and the most recent version of Linux to operate. A version has also been
developed which should run under Windows NT4.0 if additional software components
(i.e., X windows, communications protocol upgrades, etc.) are also installed. Due to the
unreliability of WindowsNT as a stable multi-tasking O/S, Linux is obviously the
preferred choice if OneSAF is selected for use in the future.

It is important to note that both ModSAF and OneSAF do not allow the user to identically
replicate results of a scenario, hence some other method of obtaining statistically

1 A detailed description of the implementation of this algorithmic approach can be found in [Porto and
Fogel, 1996].

13

significant results must be used. This may require replication of an experiment many
times to account for potential statistical variance in the underlying simulation engine2.

5.0 Technical Considerations

Since the choice of simulation engine is crucial to the success of the evolutionary
optimization software, several technical aspects must be considered. The basic
requirements have been described above (i.e., the simulator must run at a suitable level of
abstraction, hooks into the required parameters must be available, documentation must be
available, etc.). However, many other aspects must be considered as part of optimization
of Air Force C4ISR tasking.

The choice of representation for tasking is pertinent to the C4ISR optimization problem.
The representation must be capable of incorporating all salient aspects of the behaviors to
be modeled in an efficient manner. Within JANUS, for example, tasks are carried out as a
set of temporally linked moves (line segments) with a velocity vector specifying direction
and velocity. The state of the entity (e.g., firing permission) is held as a separate construct
which is not necessarily coupled to each move. NSFs extension to this concept augments
these line segments with a set of parameters relevant to the action and time the action is
being performed. This is very similar to (and derived from) the task frame constructs
used within ModSAF (and OneSAF).

In ModSAF, each vehicle is controlled via a sequence of temporally linked 'task frames'
which specify the path, velocity, firing permissions, targeting systems, and other
pertinent parameters. A set of task frames acts as a time-ordered sequence of behavioral
plans specifying how, where, when, and what each vehicle will do now and in the
predicted future (Figure 3). This provides a mechanism for specifying desired (i.e.,
optimal) behaviors through a given period of time. ModSAF, however executes certain
sub-behaviors within each taskframe using one or more fixed finite-state machines
(FSMs). Evolution of the number of task frames, the specific types, and all parameters in
these task frames for each vehicle can be performed as an independently scheduled task.
By coupling the action type with a set of pertinent parameters, more complex behaviors
can be controlled and optimized. From an Air Force C4ISR combat perspective, the
addition of parameters within such a task frame may allow optimization at different
levels of hierarchy (i.e., subjugating lower-level behaviors to heuristic control
mechanisms). For example, low-level navigation around an obstacle may be performed
using a set heuristic wherein the higher level tasking (e.g., travel to a specific point in
space) is open to full optimization.

2 ModSAF utilizes the system clock in some parts of the scheduling algorithm, hence exact replication of
scenarios may not be possible. Thus, repeating each test a sufficient number of times is necessary in order
to obtain accurate statistics with respect to overall system performance. Modification of this random
number generation mechanism to use a deterministic pseudo-random number generator would rectify this
problem but may cause unknown effects in multiple terminal, interactive simulations.

14

Task Frame 1 Task Frame 2 Task Frame 3 Task Frame 4

Type: Move Type: Move Type: Attack Type: Halt
Duration ti Duration Xi Duration T3 Duration t4

VXLVYLVZ! Vx2, Vy2, Vz2 Vx3,Vy3)Vz3 Vx4,Vy4, Vz4
Fire Control Set 1 Fire Control Set 2 Fire Control Set 3 Fire Control Set 4
Aux. Parameters Aux. Parameters Aux. Parameters Aux. Parameters

Figure 3. Example of a temporally linked task frame set for controlling ModSAF
vehicles containing 4 task frames. Control proceeds (from left to right)
through each successive task frame.

The evolutionary process must be able to accurately predict where and when each entity
will be in the (limited) future. This can be accomplished through running the simulation
to completion stage, or by modeling the simulation itself using abstractions of behavioral
results. Using the simulation itself is often infeasible as it 1) consumes considerable CPU
time, and 2) is often not capable of being re-set to a specified starting time. Hence,
creating a model of the simulation itself is often the only realistic option. Planning and
prediction must take into account available (or anticipated) terrain, intervisibility, and
communication information. Problems arise, however, when the heuristic low-level
planning mechanisms deviate significantly from the evolved high-level plans. This is a
problem encountered interfacing the evolutionary planner with ModSAF, which
generates low level behaviors using a set of hard-coded finite state machines.
Discrepancies typically occur when entities navigate through difficult terrain or around
barriers, leading to both timing and position errors. Although these low-level actions are
controlled by hard-wired heuristics inside ModSAF, their resultant behaviors are not
easily predictable. Access to the heuristic rule sets is limited at best, and the number of
rules precludes realistically utilizing them in the path planning prediction process.
Solving this problem involves creating and evaluating plans that are not only desired but
are also actually realizable. Thus ModSAF (and presumably OneSAF) will require
additional effort to incorporate features which minimize any such discrepancies.

JANUS and many other simulators model movement as simple point-to-point actions.
This may be inappropriate for air-to-air combat, since it neglects the physical dynamics
of turning to achieve the new heading and velocity. For air strike planning this may not
be of major concern as the optimal plans are executed by the pilot who most likely will
have direct control of vehicle turns. Incorporating turning dynamics into any simulation
results in a more realistic model at the expense of considerably more computational time.
Depending upon the end application and level of abstraction, these features can be added
or omitted from the evolutionary optimization software without difficulty.

Of equal importance to the representation is the capability of the model to incorporate
environments that accurately reflect real-world situations. Many of these features are
common to both ground-based and air-based combat simulations. These include general
weather conditions, time of day, terrain features, etc. Weather may require augmentation
to specify conditions at various altitudes (a capability not currently implemented within
JANUS or ModSAF/OneSAF). Non-homogeneous weather conditions could be
implemented within the EP-based model by stratifying the altitude domain. Two or more

15

discrete layers would model the applicable altitudes, with discontinuities at boundaries.
This method has been successfully implemented in ocean-based simulations wherein
sound speed profiles rely on similar stratification modeling. This can be implemented as
needed depending upon the degree of fidelity required.

Threats can be modeled using various entity types, both fixed and movable. Surface to
Air (SAM) sites were added to the JANUS simulation by creating a new entity with
specified (x,y,z) position, no movement capability, limited ammunition (missiles), and
specified kill radii. Both hemispherical and cylindrical probability of kill models have
been successfully included. Since these entity types are easily created and instantiated
with different parameter sets, many different threat types can be included in the
simulation.

Constraint modeling is also important to the optimization process. Two main constraints
are the terminal points of a flight, and the inclusion of potential no-fly zones. In air-
combat/strike planning it is often important to constrain the flights to return to the point
of origination. Within the EP model NSI accomplished this by setting the terminal way-
point to be equivalent to the starting point, and not permitting it any freedom of
movement during the mutation processes. Thus, round-trip travel was proscribed for all
aircraft in the simulation. Other possible implementations would allow terminal points to
vary within a fixed set of points describing preferred landing sites. If this constraint is
relaxed, additional mechanisms should be incorporated to ensure that the aircraft entities
land in appropriate areas (and not just terminate their routes abruptly as land vehicles
can).

Similarly, there are several methods of incorporating other (hard and soft) constraints
such as no-fly-zones into the simulation. One, albeit unorthodox, method involves
modification of existing terrain features such that they pose an impenetrable area within
the flight envelopes of the designated aircraft. A better method and one which has been
successfully implemented within the EP/JANUS software suite involves incorporating a
binary mask of terrain features added to the existing terrain map. This mask is then used
to define a penalty function which decreases the fitness score of entities that fly through
it. The chord segment distances through the penalty zone are aggregated and used to
either completely negate (all or nothing) the strike plan, or to decrease the score
proportionally to this traversal distance. Typically the penalty function is constructed to
allow some penetration for initial plans which are subsequently refined through the
mutation process. After a sufficient number of iterations, final solutions exhibit plans that
navigate around the no-fly zones. Implementation of specific mutation operators that
augment this process can significantly speed the convergence process. Similarly, a
heuristic mechanism can be used to 'correct' and refine those plans around the specified
no-fly zones. Since the penalty function can be tailored with continuous or discrete
functions, any number of soft/hard constraint models can be implemented as desired.

Another required feature is the ability of the simulation engine to access plans from the
evolutionary optimization engine in a timely fashion. In order to accomplish this without
degrading the simulation performance, the simulation engine should be capable of
implementing a fast interface mechanism, such as shared memory. Shared memory
segments are physical memory (RAM) allocated by the operating system to a process.

16

This RAM is then directly accessible by the originating and other designated processes.
File based data transfer mechanisms are considerably slower, relegating them infeasible
for this purpose. The shared memory can be used as a reflective memory wherein all state
information normally stored in the simulation software is replicated within the shared
memory. A simple memory copy is utilized, resulting in little or no computational impact
on the simulation process. In addition to the shared memory segments, some mechanism
must be in place to transfer data to and from the shared memory. The requirements for
this mechanism is to be able to 1) attach to the shared memory segment, and 2) transmit
data asynchronously bi-directionally to and from this shared memory. Additionally this
interface must be sufficiently fast and robust as not to impact the performance of the host
computer running the computer. Since shared memory is only accessible by processes
executed on the same computer, the data transmission mechanism must also reside on this
host computer. Ideally it should be a completely separate process for the sake of
robustness. A simple client-server mechanism such as that shown in figure 2
accomplishes all of these goals. This interface process can act as a client to the simulation
engine and as a server to all other processes (e.g., the EP optimizer).

Standard internet sockets using TCP/IP or UDP protocols are sufficient for the data
transfer interface. Other mechanisms might use UNIX pipes or equivalent concepts on
non-UNIX machines. Since internet sockets are fairly universal among all modern
computers, this is a more extensible approach and should make the software applicable to
simulation engines running on virtually any current or future operating system.

Provided the simulation engine interface is designed as described above, the computer
platform/operating system hosting the evolutionary optimizer should be capable of
supporting a graphical user interface to allow the user to enter and view parameter
settings.

Finally, some method for grouping various simulated entities is required. Group actions
are often required as part of military doctrine. Doctrinal constraints require that multiple
agents on the same team must work in concert, achieving their mission goals collectively.
A planning solution consists of a set of behavioral plans, one for each entity on the team.
The scoring function must consider an aggregate of all individual behaviors for a specific
team solution. This entails implementing hierarchical models (i.e., a platoon of tanks or a
squadron of aircraft), versus representing and evolving solutions for each individual
entity. If a chosen simulation itself currently does not incorporate grouping and cannot be
readily adapted, the evolutionary program can still be used to create group behaviors and
later copy these plans back into the appropriate individual entity parameters within the
simulation engine. The net effect will be the same although the visualization within the
simulation engine may show a set of identical plans versus a plan for the designated
group.

6.0 Proposed Software Implementation

The design of the evolutionary algorithm system should result in a platform independent
program that is capable of utilizing a variety of simulation engines. This will greatly
enhance its applicability as doing so will make the program useful well into the future,
and applicable to more than just one simulation engine. To achieve this goal, a design

17

that utilizes a high degree of object-orientation (for extensibility), multiple independent
processes (for robustness), and standardized inter-process communication mechanisms is
required. The design shown in Figure 3 meets these requirements.

Simulator
Software

Simulation
Engine

Simulator Data
Server

Evolutionary Programming
Software

EP Server

EPGUI

EP Client
Software

Figure 3. Processing diagram of EP / Generic simulator software system.

6.1 Robust Software Design

The proposed design approach consists of distributing the EP task(s) as separate
processes (clients) that act and communicate asynchronously with the host simulation
engine. Although only one EP client process is shown in figure 3, any number of such
processes can be instantiated to optimize actions for simulated entities independently or
cooperatively. By incorporating and implementing all communication with the host
process through standard internet-type socket connections (TCP/IP), virtually any
computer can host one or more EP processes independent of the host simulation engine.
In this way, off-line computation can be accomplished via other computer assets (similar

18

to using auxiliary array processors) to offload computationally intensive tasks. One
interface program acting as a server process interfaces with the host simulation engine.
All EP processes communicate their requests (acquire data, transmit data) to the server,
and not directly to the simulation engine, increasing robustness. Thus the EP processes
(can) operate independently from any predefined simulation engine. This provides great
flexibility for incorporating this same behavior optimization software into other existing
and potential future simulation engines.

The server process is either called directly (as a subroutine) from the host simulation
engine, or as a stand-alone process that will interface through shared memory (or other
suitable interface mechanism) with the simulation engine. To interface with a new
specific simulation engine, only the part of the server process that transmits data to and
from the simulator needs to be tailored to the particular simulation (e.g., ModSAF). This
transmission interface methodology is a standard, robust concept in other programs
involving communication with a variety of heterogeneous computers/programs.
Communication bandwidth is minimal since 1) transfer of pertinent simulation
environment data (i.e., world topography) is only required once per EP process, 2)
updates in the scenario data are relatively small in size, and 3) data transferred to the
server after evolution are small (i.e., path plans for each entity being evolved). To
maintain robustness, both EP client and server processes are designed to reconnect
dynamically should socket communications be interrupted accidentally.

The chosen coding language should be selected with respect to speed due to requirements
for speed in evaluating solution fitness. The additional computational cost of using JAVA
or C++ may seriously impact the performance of the overall system, therefore it is
recommended that standardized (platform/OS-independent) ANSI C be used wherever
possible. Since it is largely interpretive, JAVA is up to an order of magnitude slower than
other languages, and its garbage collection (object memory allocation/deallocation
mechanisms) are known to be prone to failure. The C++ language, while providing built-
in object-oriented benefits also is typically 15-20% slower than the same software written
in standard ANSI C. Because speed of operation directly dictates how much of the search
space can be analyzed, any reasonable method to minimize computational costs should be
incorporated. No platform-specific constructs should be used (e.g., Microsoft extensions
to the ANSI specification). Furthermore, the ease of interfacing with existing (i.e.,
ModSAF, OneSAF, JANUS, etc.) simulation code reinforces the decision to use ANSI C.

Regardless of the chosen base language, certain object-oriented design principles should
be incorporated. Although it requires some additional coding effort, an object-oriented
design does greatly enhance extensibility. For example, object definitions may include
low level types (eg., XYZPosition, TaskSegment, Mission, MissionGoal, etc.) as well as
high level objects (ScenarioData and EPSolution). Each object then incorporates basic set
of constructors and operators that can be performed on the object. (NOTE: due to the
generic object-oriented design, C code can be easily converted to C++, Objective-C or
other object-oriented language if desired in the future).

19

Standard TCP/IP sockets provide the basis for all interprocess communication. By
implementing these within a data-packet framework, a high level of robustness to failure
can be incorporated. A data packet consists of a header, the data, and possibly a packet
termination symbol. The header contains the packet type (for quick
confirmation/rejection of incoming messages) and the number of bytes the data message
actually contains. Additional security is obtained by comparing the number of bytes read
to the number in the header. Messages which are corrupted or unexpected (unhandled)
can be rejected without compromising system performance.

Multi-threaded code should be used to minimize potential bottlenecks in the system.
Three separate threads can be incorporated as follows:

1) Receiving Thread - receives, parses, and transfers data inside (from a
specified set of designated message types) to the Processing Thread. Mutually
exclusive buffering is used to prevent overwriting data. This thread also
rejects corrupt/unhandled message types.

2) Processing Thread - utilizes data received from the Receiving Thread,
processes it through the evolutionary algorithm, and sets appropriate flags to
ensure buffered data is not overwritten.

3) Sending Thread - transfers resulting data from the algorithmic actions inside
the Processing thread, buffers these into data packets, and transmits the
packetized messages to the appropriate client/server processes.

Since each thread acts independently (although the data is buffered through mutually
exclusive flags) and is scheduled by the operating system, each can be set up to ensure
communication bottlenecks are eliminated. A consequence of this design is the
requirement that the operating system chosen for this implementation be capable of
instantiating multiple threaded processes, and that it allows the software designer to set
independent priorities for each thread.

6.2 Prediction Mechanisms

Prediction of opposing force actions is critical to the success of the optimization system.
There are several possible methods of prediction of opposing entity behaviors. The most
simplistic is to assume a single-player game wherein the motive behind actions of one
team to not directly impact the behaviors the other opposing team. Although unrealistic,
this approach allows fast computation where solutions are required in minimal time.
Augmenting the state-space to incorporate anticipated (predicted) mission goals for
opposing entities allows the optimization process to adapt intelligently to perceived
actions. Actions taken in light of known information about the enemy are much more
likely to succeed.

This is a much more realistic approach and can be accomplished as follows. First, the
mission goals for opposing entities are initialized randomly, or by incorporating whatever
information is known about the opposition forces. Within each iteration, the previous
state of the opposing entities is compared against the current state (as determined by the
'snapshot of the world' mechanism described in figure 1. Estimates of mission goals for

20

opposing team members can then be updated using a predictor-corrector mechanism. In
this way, state estimates are constantly updated and track the perceived motives of enemy
forces temporally. Note that, however, if the estimates are erroneous, actions planned can
be highly sub-optimal (i.e., estimate survival is the enemy's highest priority but in truth
they are laying a trap and are highly aggressive). Thus this mechanism must incorporate
some measure(s) of uncertainty.

In addition to estimating the mission goals for the enemy, prediction mechanisms are
required to estimate physical position movements for some time into the future. First,
second, and higher order models can be used depending upon what kinematic data is
available. A key point in the success of position estimation into the future is to
acknowledge the uncertainty of future predictions by de-weighting the 'predicted' actions
as the prediction intervals increase. One method for accomplishing this is to use
uncertainty covariance ellipses (or other distributions) which grow with time. A simple
linear estimation model can be derived which updates these using an extended Kaiman
Filter (EKF) update cycle. Physical dynamics of the motion models can be incorporated
to skew the distributions according to specific characteristics of opposing force entities.
Prediction of own-team entities is unnecessary since the plans for these are created (thus
known implicitly) or assumed known as a part of information sharing among common
team members.

6.3 Mutation Operators

Regardless of representing the parameter state space as simple route segments or more
complex 'taskframes', the set of mutation operators must be able to generate a range of
variants of parent solutions. These mutation operators should be able to take small,
medium, and large jumps in the solution space to prevent stagnation and entrapment on
local optima. Assuming a simple route segment model containing a velocity vector and
terminal stage operation (i.e., wait, turn, fire, etc.) potential mutation operators found
useful include

1) Add a new route segment randomly within the set of existing segments. Generate
the new velocity vector randomly based upon a Gaussian or other appropriate
distribution around the adjacent segment directions. A maximum number of route
segments can be incorporated to constrain the resulting solution.

2) Delete an existing route segment chosen at random from the set of segments in the
parent solution. A minimum number of route segments can be incorporated to
constrain the resulting solution.

3) Randomly modify the parameters within an existing route segment (i.e., velocity
magnitude, velocity direction, end state, etc.). The range of modifications can be
similarly restricted to ensure physical bounds are realized for each parameter of
concern (i.e., tanks cannot fly).

4) Merge portions of two existing solutions to create an offspring solution.
5) Merge portions of an existing solution with a solution created randomly to create

an altered offspring solution.
6) Utilize a combination of the above mutation operations to create variants which

have an increasing range of deviations from the parent solutions.

21

Unless otherwise specified, random selection of parameters indicates selection with equal
probability for all outcomes. The following operators are directly applicable to more
complex 'taskframe' constructs. Mutation operators should created to take into account
the temporally variable nature of each individual task frame.

1) Add a task frame segment randomly by reducing the time durations of the
adjacent segments. Generate the new velocity vector randomly based upon a
Gaussian distribution around the current direction.

2) Add a task frame segment randomly by reducing the time durations of the
adjacent segments. Generate a new velocity vector to smooth paths between two
adjacent vertices.

3) Randomly remove time from a task frame segment and add it to an adjacent task
frame segment without modifying the velocity vectors.

4) Delete a randomly chosen task frame segment.
5) Modify the velocity vector of a randomly chosen task frame segment using a

Gaussian distribution centered around the current direction.
6) Modify the parameters of a randomly chosen task frame segment (firing

permission, targeting parameters, etc.).
7) Modify the type of a randomly chosen task frame segment (e.g., from 'move' to

'assault').
8) Merge solution 'taskframes' from two or more solutions to create a new offspring

solution.
9) Merge solution 'taskframes' from an existing solution and a randomly created

solution to create new offspring solutions.

Another possible option is to incorporate randomized heuristics into the solution set.
These may be derived from known solutions used successfully in previous scenarios or
derived randomly. For example, obstacle avoidance can be accomplished as a low-level
task by incorporating a randomized heuristic. When an obstacle is encountered (i.e., a no-
fly zone, SAM site) the heuristic randomly chooses a direction, and augments the current
plan with one or more additional tasking/route segments to the left/right of the
impediment. Additionally, a 'back-up' step can be implemented within this approach.
These methods have been found quite useful in optimizing solutions for low-level
maneuvering around obstacles in land-based scenarios.

A self-adaptation mechanism to optimize selection of mutation operators can also
implemented. Self-adaptation mechanisms can speed the convergence of evolutionary
search algorithms. A threshold for each mutation operator is initialized and subsequently
updated as a function of its cumulative effectiveness in improving the fitness of a
solution. A mutation operator's effectiveness in improving the fitness of a solution path is
then measured by the ratio of the number of times it improves the fitness to the number of
times it is applied.

Making the number of mutations per offspring a function of the relative fitness of the
individual vehicle (its fitness score) increases the convergence speed of the evolutionary
algorithm. Individual entities on a team with behavioral plans demonstrating better fitness
are mutated fewer times on average than those with poorer fitness. The average number

22

of mutations for each vehicle's plan in an aggregated solution is calculated independently
for each entity in the team solution.

6.4 Scoring Function

In order to judge the fitness of any solution a suitable scoring function must be
formulated. This fitness function should be a metric that evaluates the solution as a
whole. Functional components of concern are

1) Probability of survival
2) Probability of kill
3) Attainment of mission specific goals
4) Resource utilization

Probability of kill and survival are calculated by integrating probabilities sampled at a set
of discrete points throughout the projected scenario plans. Projected positions (and hence
potential threat areas) of opposing entities are used for these calculations. Mission goals
are defined as attainment of certain time-space requirements (i.e., the aircraft must be at a
specific location at a specific time). Other applicable (previously tested using ground-
based scenarios) entity mission goals include successful area defense, area attack, and
pursuit.

Resource utilization is required in the scoring function to permit optimal use of limited
resources. These typically include fuel and weapons, but could be potentially augmented
to incorporate other limited assets of value.
Penalty functions for avoiding constraint bounds (i.e., no-fly zones) can be modeled
using a variety of functional types depending upon the requirement for hard or soft
constraints. Hard constraint penalty functions can utilize a unit step function, whereas
sigmoid or other continuous functions are more suitable for preferentially avoiding
physical areas and for generating solutions with semi-permeable 'buffer' zones around
impenetrable objects.

The payoff function is then constructed to evaluate the worth of each behavioral plan
using individual scores each entity (with respect to the environment). These results are
aggregated by team to create an overall fitness score. Solutions for multiple members on
a team are first weighted with respect to their assigned priorities, then aggregated. Thus it
is possible (though not desirable) to evolve a high-scoring solution which contains
behavioral plan for one entity which is excellent and plans for other vehicles which are
significantly worse. In general, however, the evolutionary process will drive solutions
toward those with high fitness for all entities simultaneously. A scoring function based
upon the Valuated State State Approach accomplishes this in a most general manner.

7.0 Prototype Simulation and Sample Experiments

Due to the time and budget constraints of this project, generation of a full simulation
model for Air Force C4ISR combat entities was not possible. However, a small-scale
demonstration package was constructed using modified components from existing

23

EP/JANUS software, and incorporating additional graphical display software for
visualization of solutions.

A set of simplistic experiments was conducted to evaluate the modified capabilities of the
modified EP/JANUS algorithm. In all of these experiments, the focus of the mission was
1) attack one or more designated, prioritized targets, 2) avoid threat zones. Hard
constraints imposed on all test experiments consisted of mandatory return to the starting
location. Soft constraints consisted of 1) minimization of flight duration, 2) minimization
of fuel used (Note: this is separable from flight duration since altitude changes are
mutable parameters), and 3) avoidance of no-fly zones defined in the environment.

Threats (SAM sites) were modeled as non-movable entities with fixed a amount of
ammunition (missiles) capable of shooting down anything traveling within a defined
circular envelope around the site. Both cylindrical and hemispheric threat models were
defined with the probability of kill proportional to the chord length traversed by the
aircraft through the kill radius. Since threat zones are parameterized objects, any number
of these can be implemented within a scenario, each with potentially different ranges, kill
probabilities, number of missiles, etc.

7.1 Prototype Simulation Scoring Function Components and Implementation

The scoring function for the prototype problem consists of the several components
aggregated into a modified Valuated State Space (VSS). These components represent
measurable factors of interest to the problem at hand, in this case, air strike planning. To
measure these factors the simulation is typically not run through to the point where end
results can be ascertained. This is due to three main factors 1) it is computationally
expensive, 2) the simulation software often cannot be reset in time back to any desired
starting point, and 3) accurate statistical analyses of results would require multiple runs
due to the stochastic nature of the simulation. Hence measurements are modeled with
approximation functions and these results are used to accumulate the resulting fitness
score.

For this simulation experiment, five components pertinent to the air strike planning task.
These parameters are 1) self damage, 2) damage inflicted on the enemy, 3) fuel used to
complete the tasking, 4) end distance from a designated goal position, 5) cumulative
survival as a measure of team strength, and 6) influence over the defined battle area. In
this particular test example, since these parameters do not entail various sub-
parameterizations the VSS can be reduced to a weighted sum of the individual
components. Individual performance measures are defined below in more detail.

7.1.1 Damage Assessment and Survival / Kill Probabilities

Self damage and damage done to the enemy are measured as the cumulative damage
inflicted upon each member of the self (controlled) team. Damage is measured
probabilistically along discrete time steps. The simulation time is discretized, and known
and projected positions are estimated through to the end of the desired simulation time.
Each entity in the simulation has a known set of munitions, each with a pre-defined
probability-of-hit table (with respect to range, velocity, and other environmental

24

parameters). Probability tables can be modified as required based upon known
characteristics of a weapon and delivery system. Typically these parameter tables indicate
higher probabilities of hitting targets at closer ranges. Thus, plans which traverse closer
to (or directly above) targets obtain a higher score. For this experiment NSI utilized the
current physical parameters defined in JANUS v6.34 for USAF A8 jet aircraft and its
associated munitions systems. The SAM sites (enemy forces) used the parameter set
defined for Soviet SA-13 missiles. Maximum ranges for both of these weapon systems
were, however, set independently (overriding the JANUS parameterization) to 5km and
20km, respectively. Intersections of these probabilities (with respect to range) are used
cumulatively (as a product) to calculate instantaneous damage to and damage done to
each entity in the simulation. The current JANUS model utilizes four quality states for an
entity, undamaged, mobility damaged, firepower damaged, and complete destruction. The
number of hits acquired by an entity and the position of the hit are used to determine the
degree of damage. The instantaneous probability of survival (equivalently, the probability
of being killed) for each entity are calculated using the 'complete destruction' damage
calculations. These then are aggregated over the total discretized simulation time to
determine the net outcome (with respect to survival/damage) of the planned behaviors.

With each sequential discretized time step, a cumulative probability of survival is
calculated for each entity in the scenario. Cumulative probabilities at each time step tk are
calculated from the instantaneous probabilities as follows:

Ne n
i=0

Psurv(j) = ntl-0 - cc(i, j) * Pkilld, j)]

Pkilled(j) = 1.0 - Psurv(j)

Pkilled(j)k+l = Pkilled(j)k + Psurv(j)k * Pkilled(j)

Psurv(j)k+l =l.0-PkilledU)k+l

Psurv(j)0 =1.0

where Ne is the number of enemies,

Pkill(i, j) is the instantaneous probability of the i-th entity killing the j-th entity

a{i, j) = 1 if entity i is shooting at entity j
= 0 otherwise

Psurv (j) is the instantaneous probability of the j-th entity surviving

PkilledQ is the instantaneous probability of the j-th entity being killed

25

Psurv(j)k is the cumulative probability of survival for the j-th entity at time tk

Pkilled(j)k is the cumulative probability of the j-th entity being killed at time tk

This results in a cumulative probability for each team member entity at the end of the
predicted time interval. A normalized sum is generated from these terms, which can be
weighted by the specified priorities for each 'home team' entity or opposing team entity
as specified for the team solution. By accumulating these weighted terms, a team
probability of survival (and probability of killing the opposing team forces) is available
for use in the VSS scoring function. Since cumulative survival for a team is an aggregate
over all entities on the same team the score is normalized by the number of entities on
that team.

7.1.2 Resource Utilization

Measurements of fuel usage are calculated based upon the fuel usage per unit time
parameters within the JANUS data files. Note, however, that these data tables do not
currently recognize differences in fuel usage due to elevation changes (acceleration up to
a specified altitude) and turning maneuvers. This value is then normalized by comparing
it to the maximum values stated in the data tables for the specific entities.

Distance to the end goal position is a measure of how close the final plan comes to
achieving a physical goal. The difference between the ending position and targeted goal
is normalized based upon a pre-set range parameter (defined specifically for each
potential ending goal position). Ultimately this may become a set of goals, within a
temporally prioritized sequence, but in the current version of the software only the ending
position is used (and only if a goal-position specific mission objective is selected). In the
prototype tests since the mission was not dependent upon a end-position goal, this
component was ignored.

Certainly utilization of other limited resources can be included into the simulation scoring
function. These quantities include water, food, human physical capacities, and perhaps
potentially restricted operations such as electromagnetic transmissions.

7.1.3 Strategic Influence

An influence parameter is also calculated for the team entities. The influence value for a
team is calculated by determining the areas over which the entities have potential for
inflicting damage, regardless of enemy positions and capabilities of inflicting damage
upon the enemy. Influence values are modeled using a derivative of a heat-equation
boundary value problem in classical thermodynamics. In a nutshell, influence is (non-
linearly) proportional to the aggregation of force at the discretely sampled points in time.
The distribution of entities in (x,y,z) position space is used in these calculations.

This technique is based roughly upon a map weighting technique (Zobrist 1969). The
algorithm starts by allocating a grid array (with the same dimensions as the map) and

26

initializing this array to zero at all locations. The granularity of the grid array is arbitrary
and is typically constructed from convex polygonal (e.g., quad, hex, octogon, etc.) cells,
but can also be created from any other discretized geometric base shape. Finer grid
meshes result in higher accuracy at the expense of significantly higher computational
times. A positive value is placed at each friendly entity grid location and a negative value
at each enemy entity location. Neutral entity locations can be set to positive, zero, or
negative values based upon their modeled 'expected/anticipated degree of cooperation'.
The algorithm then iterates, adjusting the values at each location in the array by the
values at its neighbor positions, until it reaches a steady state (or a specified termination
criterion is reached). One rough measure is to increase the value at each position it by one
for each friendly entity neighbor and decrease it by one for each enemy entity. At the
steady state, the resultant map values indicate the degree of control the teams have over
the mapped combat environment.

The sign of the value indicates which side has some degree of control. Values near zero
mean that no team controls the territory (i.e., no-mans-land or a 'front' zone). Large
values indicate there is a strong control in that area by one of the teams. To determine the
starting value for each entity type, each point is set to the average of its four previous
neighbors, then scaled with a thermal conductivity (based upon terrain characteristics).
Points which have constraints on them must remain untouched and boundary areas at
map edges should have non-zero constraint values.

The matrix convolved upon the topographical map can be partitioned into quadrants,
hexagons, or any other suitable discretization based upon computational requirements.

A value can be placed upon on each type of terrain, and each type of objective, depending
on how useful it is to each of the strategies applicable to the designated mission. In tank
warfare, for example, a forest might be set to a high defensive value, a low offensive
value, and a moderate movement value. By creating new maps that have a value within
each discretized grid cell it is relatively easy to evaluate strategic influence. If these
values are then combined with entities currently on the topographic map, it is possible to
evaluate how well or poorly defended an area is, where weak and strong points are, etc.

A tank, for instance, may add a significant offensive value to it's own grid cell, and due to
the range of it's weapons, may add a slightly lower offensive value to all grid cells within
it's level of force (LOF) and range (possibly modified by terrain and probability of hitting
as modified by range). If another tank is beside it then the two LOFs and ranges would
very likely cross, and create fields of fire with overall greater values. An enemy tank
within this field will correspondingly reduce the values by it's defensive values. This is
analogous to building up a histogram of the battlefield to determine positions of relative
strengths, weaknesses and balance points.

Simplified heat transfer equations have been implemented for the NSI influence model,
with each entity being represented by a temperature constraint on a point of a flat plate.
If a single point is constrained to a certain temperature, it will influence other points of
the plate over time, eventually reaching a steady state. With only one point constrained,

27

the entire plate will reach a constant temperature in the steady state. With several point
sources, both positive and negative, the steady state solution will define areas of
influence, and define a picture of controlled areas. The following is a simple example of
how a few entities might affect their surroundings:

Initial: Steady State:
00600 03631
00000 -3-1243
0-6040 -5-6-144
0-4000 -5-4-255
0 0-660 -4-5-665

A contour map produced using this data represents a front at a zero level. Using the heat-
transfer analogy, by changing the thermal conductivity of any point on the plate, it is
possible to modify the ability to influence it. For example, imagine a layered, composite
plate constructed of various (not-necessarily contiguous) insulating properties, overlaid
together to represent terrain on a map.

If a particular map section composite has higher overall higher heat conduction
properties, it will transmit more heat than a section made of with overall higher insulation
coefficient. The concept is to define how well each terrain type conducts influence.
Relative to ground-based combat, mountainous terrain might be made act as an insulator,
forests might have very high heat conductivity, plains and roads set to other intermediate
conductivity values. Thus, a tank positioned in the mountains will not be able to
command as large an area as one in the middle of a field.

For example, imagine a tank sitting in the middle of a 5x5 grid, with the all edges
constrained to a level of zero. The map on the left contains the terrain data in terms of
thermal conductivity (a function determining how well heat (military strength) can be
transferred through it). Let the integer values '4' represent forest, and the integer values
'9' represent open areas. The influence of a strength '8' entity on a specified terrain map
would be:

Terrain Map Influence Map
99999 01210
99999 13431
99999 24842
44444 01210
44444 00000

Thus the influence map shows the area the entity commands as well as the relative degree
of control. This approach works well with supply lines by setting the conductivity for
roads to be relatively high. Using this technique, ALL entities along or near a road will
increase the power of any other entity along that road. If an enemy puts entities on a road
square, the line to the remaining forward entities is obviously broken, and the influence
from rear entities must now flow around the road (over land or other terrain).

28

On a topological map, areas of influence are analogous to hills & valleys. The
evolutionary optimization algorithm then develops plans that take advantage of these
level zones and hills and valleys. If for example in the optimization process, the mission
is to destroy the enemy forces, plans which Till' up the 'holes' and 'valleys' (created by
the presence of the enemy in the environment) in the landscape will score high.

Alternatively, if the mission objective is to capture strategic points with the least
resistance, plans which find 'passes' in the enemy influence 'mountains' will score high.

7.1.4 Constraints

No-fly zones are also modeled, using rectangular sections superimposed upon the terrain
grid. These zones are implemented as three-dimensional objects that extend past the
flight limits of all aircraft (thus the algorithm could not just develop plans which flew
over the no-fly zones). A continuous function that uses a sigmoidal shape defines the
penalty for intrusion through the zone. The sigmoid function is defined as

ft ^ L0

1.0 + e ■kx

where k is a parameter controlling the linearity (slope) around the zero crossing. The
overall penalty is thus directly proportional to the time/distance traversed through the
zone, permitting multiple transits with aggregate penalties. The form of the sigmoid
function is convenient as it is asymptotic to (+/-) 1.0 and can be easily scaled and
translated to the range [-0.5,+0.5].

Though the simulation software allows multiple entities in any combination to be used,
due to available time and funds, only one aircraft was used for these prototype tests. This
also made analysis easier. Positive scores were assessed for plans that traversed over the
targets (the assumption was made that for these experiments, if the aircraft flew within a
predefined distance (500 meters) of a target it could strike it with Pkill proportional to the
distance from the target. Aircraft were also modeled with weapons that could dispense up
to 10 munition loads, each targeted to an individual (though not necessarily unique)
target. Total kill scores were aggregated as the product of Pkill multiplied by the
designated target priorities.

Finally, based upon the maxim of parsimony, a small factor is incorporated that rewarded
simpler solutions (with fewer task segments) over those with more complicated paths.
This factor is calculated as

N /(JC) = 1.0
M

where N = the number of task segments in a plan
M = the maximum allowable number of task segments in any plan

29

7.2 Test Experiments

Figure 4 displays the basic scenario at initialization stage with two targets (indicated by
the symbol T'), three SAM sites (indicated by the symbol 'S') overlaying the basic
topography (indicated by the various shades of grey). Circles around the SAM sites
indicate the range the missiles launched from a SAM site can attack aircraft. The symbol
'A' indicates the starting airbase for the single aircraft flying the mission. The no-fly
zone is not part of this example. In green are the altitudes of the target sites, whereas the
purple digits (center left near the target) indicate the altitude of the aircraft's planned
path. The best initial solution is indicated by the red segmented path. This path represents
the best path generated after one iteration of the evolutionary program. Note that although
it satisfies the constraints (return to the starting base) it only visits one target site, and
does not visually appear to be optimal.

At the top left of this plot, there is a set of performance figures for the current iteration.
Shown in yellow are the individual scoring components for self damage (inflicted by the
SAM sites), enemy damage (based upon nearness to and weapons damage to the
target(s), fuel usage (minimized parameter), distance to the goal point(s) (i.e., target
sites), cumulative survival (based upon integration of probabilities of survival over the
entire planned path. Additionally the influence parameter is calculated by determining the
areas over which the aircraft has potential for inflicting damage. Finally the overall
fitness score is displayed as the cumulative sum of the weighted individual components
just described. The 'nomove' term is unused in these scenarios as it is applicable to
ground-based entities only.

30

Figure 4. Initial plan for test scenario after one generation of evolution.

In figure 5 is the same scenario shown after 17 generations of evolution. The best path is
again shown in red. In light-grey are the solution paths from the entire population. Again,
purple numbers adjacent to route terminal points are indications of the altitudes for the
individual aircraft path plan segments. Note that by generation 17 the software has evolve
a solution which evades all SAM sites (no intersections within their circular kill radii),
flies over one target and is quite close to flying directly over the second target. The
cumulative fitness score indicates this is a better solution than the initial score shown in
figure 4 above.

31

Figure 5. Evolved plans for basic scenario after 17 generations.

Figure 6 displays the final best solution after 44 generations of evolution. Note that the
path now flies directly over both targets, and does not intersect any of the SAM site
circular kill zones. Also shown, in light-grey, is the second-best solution from the
population. Notice the small deviation (to the right middle of the plot) from the best plan
(in red). The majority of these two plans are coincident, indicating the close similarity
between the two solutions in fitness.

32

Figure 6. Evolved plans for basic scenario after 44 generations.

The fitness score for this best solution is noticeably higher than the best solutions shown
in the previous plots. If the software is left to iterate over a few more generations, the
expected improvements include tightening up the path segments such that they minimize
threat exposure and fuel usage. Some evidence of this is already evidenced in the
difference between the best plan in this plot and the best plan from the plot in figure 5.

Results of another set of test experiments are shown in figures 7, 8, and 9 below. In these
experiments, the initial conditions were kept identical to the example shown in figures 4,
5, and 6, above, but an additional constraint was added to the scenario. To make the
experiment more realistic, a rectangular no-fly zone (shown in red at the lower left side of
the scenario topography) was added to the problem. Aircraft paths that intersect this no-
fly zone are highly penalized to guiding the evolutionary process to derive solutions that
avoid this area. Both the addition of and position (close to the origination point) of the

33

no-fly zone constraint makes this a considerably more difficult problem than the
unconstrained example. For clarity, in figure 7, no initial solution paths are shown.

Figure 7. Initial scenario with one rectangular no-fly zone added.

In figure 8, the plot shows solutions generated after 9 iterations of the evolutionary
process. Notice that the best solution, while hitting one of the targets, does fly over the
no-fly zone, for which it is penalized. The component score for hitting a target, however,
out-weighs the penalty for this solution. Variations in the no-fly zone penalty function
can be made to adjust the degree of desired constraint (hard/soft).

34

Generation 9 4, ,'.'

selfDamage ; 1,00000 * lj

1

enemyBamage : 0,45478 * l|
fuelUsage : 0.65120 * | ooo
distGoal : 0.00000 * § -if """ ~

cumSurvival : 1,00000 *|o
;' ill

/ '" " . il4':i
influence : 0,05866 W3 / ./'

I nomowe : -0.10604$* 5 i''i7J / /
Witness ;: 8.49593 |! 40,52) A" / / !■■■ y

' /

/ / , ,
/ U \ li'il'f .*^

^1258

c/> \ /
/

:\Wfftl| "^^^^tfH^mBBI^^^B / V / /

'■■'■■■■■' '-•- ■ " -■■-"-■ '•-•■"^Wß K^^':^^W^^^\fm^tJi

/ ^y / y
w- ' ük / /JkvA--..- " / /.. X x

""V^-'V'V:^" . .1 '■ / ^^T^M^ä^^l /: /,-..' y /
>

/ Br ,,,^« x ^
■»11068 . . v/flH

Ai-SäHl SE
V- "far vSrm

/ T -". '^fpH|^^^^^^^B
/ ■■■■'. 'i , ■ ^^^^^^^H

^.020 AJ|H9^^^^^^^^^H -.!
£vV;$*jp>:'& ''; A-:'v A-A^ " r 892 -■ A- -—— ""
-. •■. * rtMv£. ■■', A'\ ■■\'jS^^ "~=£^^^^H|^^^H

*&P^
i' A iH^^^H

Figure 8. Modified scenario with one rectangular no-fly zone, after
9 evolutionary generations.

Figure 9 displays the results of the iterative process after 206 generations of evolution.
By generation 206 the best evolved plan has successfully navigated around the no-fly
zone, flies directly over both target sites, and avoids the SAM site threat zones. The
second-best solution is also displayed (in light-grey). Again, the majority of this solution
is coincident with the best solution, with minor differences noticeable in the upper left
quadrant of the plot. In further iterations, the evolutionary program will continue to refine
the solution (i.e., minimizing the overshoot in the upper left quadrant, thus minimizing
fuel used and potential threat exposure). Note that this solution is not unique, as there are
an infinite number of variations that could be evolved. Experiments with different
starting random number seeds evolve multiple solutions with quite unique path plans.

35

Generation 2ÜG

selfDamage : 1.00000 * 3
enemyDamage : 0,99692 * 10
fuelUsage : 0.59691 * 2
distGoal : 0.00000 * 3
cumSurvival : 1.00000 * 0
influence : 0.11397 * 3
nomowe : 0.00000,* 5

fitness : 14.50891 (69.11)

i

Wm II

'« K' 1/ :"5**!iff.£""
wÄ£i5w8

&,.
V'.'iSjH Hn* <f'.'.v' '-'-f ■ •. ;^^H

'.'^■.'^«■PF-.H'-'-
1 *■•*■ ^BS P(r '*!.>• ^%i.^

SI '"*'&,"'Vi,&-''? ■> J|
v:h,'::V-^^c;'V'-'o,:'v'-io,:'v':.:' ^~Wm

0.000' /

+/ 505

I.

J.000
■*

•-.■•>'^5i It*.
Figure 9. Modified scenario with one rectangular no-fly zone, after

206 evolutionary generations.

36

8.0 Conclusions and Recommendations

The combination of evolutionary programming with an appropriate objective function
(such as the Valuated State Space Approach) has been proven in several instantiations to
generate intelligently interactive behavior for autonomous entities. This combination has
demonstrated the ability to learn/adapt plans with respect to defined mission goals in a
highly dynamic environment. An assigned mission can be used to measure the worth of
the current and prospective situations so that the evolutionary program discovers
increasingly appropriate plans as it searches through the solution space. When a sufficient
score is reached (or the available computation has been expended), the best evolved
behavior is implemented. This capability has now been demonstrated for autonomous
vehicles operating individually or in combinations, as well as in the presence of a
similarly driven adversary. The mission of each side is arbitrary and may be changed
dynamically. The constraints that each side reacts to are dependent upon the developing
situation.

Optimal or near-optimal plans can be evolved in light of fixed or dynamic barrier regions
(i.e., no-fly zones). Incorporation of terrain/airspace traversibility greatly increases
prediction accuracy. The variable time nature of this approach makes combining high-
level planning and low-level navigation possible. Incorporating probabilistic kill and
survival functions further extends this capability, allowing for realistic simulations of two
or more opposing teams on a battlefield.

By varying the population dynamics, number of generations, and timing between updates,
scenarios with simulated forces of different intelligence can be effectively created.
Further extensions of this approach will increase the usefulness of this software as a
tactical aid and/or training tool. These extensions may include enhancement of predicted
traversibility, extension of the task frame constructs, in addition to further refinement of
the scoring function.

An important and informative lesson learned is due to the stochastic nature of both the
simulation engine as well as the evolutionary program. Since the solutions and simulated
vehicles utilize randomness, the same scenario may produce multiple yet equally valid
solutions depending upon the random seed. Evidence of this is shown in re-running tests
with different random number seeds where multiple outcomes are possible from the same
scenario. For example, re-running a sample path planning test (eg., a barrier positioned
symmetrically between a vehicle and its goal point) with different random number seeds
produced different solutions (clockwise and counterclockwise) each of which
demonstrated optimal planning. This is important as it indicates there may be more than
one optima point in the solution space at a specific place in a dynamic environment.

Finally, it is important to note that this algorithmic approach and software can be used for
non-military as well as military purposes. For example, in the civilian domain, routing
and planning for fighting fires is of critical importance. This optimization approach can
be modified to plan optimal paths to fight forest fires, and re-optimize based upon the
often rapidly changing scope of the fire. Other application areas include traffic routing,
automated navigation in ocean environments, and in the vast commercial computer game
sector.

37

8.1 EP/Simulator Problem-Specific Recommendations

In the course of developing similar evolutionary software systems we have learned many
important lessons regarding simulation of behavior and military doctrine. Continued
development and extension of the software and algorithms will provide an effective tool
for the military simulation community. While there are many possible avenues to turn
the software into a fully realistic Air Force C4ISR tactical aid/training tool, we have
detailed a course of action that will accomplish a set of realizable goals for the next phase
of development.

Specific recommendations below are based upon experience and knowledge learned
within this pilot project.

Due to the broad areas covered under the umbrella C4ISR, prior to any software
modifications, one or more specific, well-defined Air Force C4ISR problem areas should
be identified for implementation. These may include development of an air-strike
planning tool similar to the prototype described above, training software for air-to-air
combat maneuvers, high-level combat outcome tools which utilize interactive simulation
capabilities, or any host of other applications.

Next, assuming JANUS, ModSAF, OneSAF, or other reviewed software engine is
formally selected, the scope of the software revisions should be broken into discrete,
mutually independent tasks. This will allow testing individual components such as
communication improvements without impacting all other development efforts. All
software should be implemented only after a thorough design review process wherein
interfaces, algorithms, and performance requirements are formally specified. Although
afterthoughts will always be part of the software process, this will minimize re-coding
efforts.

8.2 Software Extensions

The current software system implemented together with JANUS makes an ideal starting
point for anticipated Air Force C4ISR combat simulation tasking. In addition to the
methods and extensions mentioned in section 6, other reasonable extensions to the
software should include

1) adding to the current set of aircraft models and potentially, future aircraft models to
test performance characteristics through simulation.

2) modifications to utilize full multi-threaded capabilities.
3) altering the fitness function to incorporate all known parameters of concern.
4) increasing the robustness of the communication mechanisms to further decrease

failure and minimize effects on other simulation operators.
5) adding additional threat types and refining parameters for each based upon known

characteristics.
6) modifying the point-to-point model to incorporate required flight dynamics.

38

As with any problem, utilizing available information specific to the problem domain can
greatly increase the performance (if judiciously applied) at the expense of generalization.
In this case, the low-level navigation components could benefit from such information.
Augmenting the mutation operators, implementing path smoothing algorithms, and using
other navigation specific information could produce more optimal paths. Again, an
object-oriented approach would make this both economically realizable and easily
extensible.

A full set of applicable entity types should be implemented. The current build of the
software utilizes only a very limited set of entity types (e.g., tanks), therefore is seriously
limited in the scope of scenarios which can be accurately simulated. A number of
additional entity types, including other ground vehicles, fixed wing aircraft, rotary wing
aircraft, and perhaps even dismounted infantry should be implemented. These
modifications should allow for any arbitrary combination of these entities and entity
types in order to provide for a useful planning/training tool.

Future software development should also incorporate the capability for autonomous
control of singleton entities, platoons, companies, battalions and any combinations
thereof. The software should be upgraded to evolve behavioral plans of action at each
desired level in the hierarchy, from low-level up. Part of this upgrade involves
incorporating the inherent ability to prevent or resolve conflicts as the chain of command
dictates. For example, evolved behavioral commands filtered down to the platoon level
must be consistent with and not conflict with commands evolved for entities at the
battalion level. Accomplishing this in an efficient manner requires an object-oriented
design. This approach would make incremental improvements more timely and
economically feasible. Implementing the autonomous controller in object-oriented
software would make extensions to incorporate different hierarchical levels relatively
seamless. This is perhaps where the largest long-term benefits could be realized.

8.3 Hardware Requirements

While the current hardware is capable of running a range of scenarios, it is limited by
memory and computational speed. Currently, our testing evolving solutions for up to 24
ground entities simultaneously indicates sufficient computational capacity exists using
600-800Mhz CPU speeds. Additional computational speed would be required for faster
updates (currently ground-based entities update solutions every 30 seconds), or for
evolving simultaneous solutions for a significantly larger number of entities.

Additional RAM memory and an additional computational power are also necessary if
larger scenarios are envisioned. Requiring allocation of 256Mb RAM will reduce page-
faults and significantly increase processing speed.

8.4 Testing

When sufficient software capability exists to simulate and evolve actions for any number
of entities at the desired hierarchical level(s), more extensive testing should be
performed. Evolved solutions should be compared against known strategies and results
noted appropriately. Attention to existing military doctrine will be noted and if optimal

39

behavioral plans result in deviations from this doctrine, the results will be thoroughly
documented.

It is certainly possible and probable that this software will devise behavioral plans of
action which exceed the fitness of existing plans derived through military heuristics or
other sources. This is especially true in dynamic environments and in simulations with
multiple opposing teams. Therefore a comparison should be made between the optimized
plans of action with those plans obtained from human, heuristic, or other military sources
and detail the differences, if any. A set of scenarios should be played wherein a human
competes against the evolutionary program. In addition, tests should also be made to
compare performance between the EP program and any other available heuristic planning
resource. This will provide much needed information to definitively demonstrate the
effectiveness of this optimization technique.

Evaluating scenarios where evolutionary programming controls all teams in the scenario
will prove highly instructive. It is possible to implement various degrees of intelligence in
many ways. One simple mechanism is to let the user select the number of iterations for
each team in the scenario. Setting the number of iterations (and/or population size) for a
team to a large value would imply higher intelligence (a larger portion of the parameter
space is searched), hence generation of better solutions. Setting this team parameter to a
small number of iterations would imply lesser optimization, and lower intelligence of the
behavioral planner. Other potential mechanisms include limiting or augmenting
prediction capabilities, and implementation of modified versions of the scoring function.
This last technique could utilize a limited amount of knowledge in the scoring function
(i.e., joint VSS) or possibly evolve the predicted behaviors for opposing teams as part of
the solution for selected teams.

40

References

Atmar, W., 1992, On the rules and nature of simulated evolutionary programming,
Proceedings of the First Annual Conference on Evolutionary Programming, San Diego,
CA: Evolutionary Programming Society, pp. 17-26.

Fogel, D.B. (1995) Evolutionary Computation, Toward a New Philosophy of Machine
Intelligence, Piscataway, NJ: IEEE Press.

Fogel, L.J., 1964, On The Organization of Intellect, Ph.D. dissertation, University of
California, Los Angeles.

Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966) Artificial Intelligence through
Simulated Evolution, New York, NY: John Wiley.

Fogel, L.J. (1995) "The Valuated State Space Approach and Evolutionary Computation
for Problem Solving," Computational Intelligence: A Dynamic System Perspective, M.
Palaniswami, Y. Attikiouzel, R.J. Marks, D. Fogel, and T. Fukuda, (eds.), IEEE Press,
NY, pp. 129-136.

Goldman, S.R. (1996) "Knowledge Acquisition and Delivery: Constructing Intelligent
Software Command Entities," Proceedings of the Sixth Conference on Computer
Generated Forces and Behavioral Representation, D.E. Mullally (ed.), Orlando, FL, pp.
31-36.

Hocaoglu, C, and Sanderson, A. (1996) "Planning Multi-Paths using Speciation in
Genetic Algorithms," Proc. 1996 IEEE International Conference on Evolutionary
Computation, Nagoya, Japan, May, pp. 378-383.

McDonnell, J.R., and Page, W.C., (1990) "Mobile Robot Path Planning Using
Evolutionary Programming", Proc. of the 24th Asilomar Conference on Signals, Systems,
and Computers, Vol. 2, Maple Press, San Jose, CA, pp. 1025-1029.

Porto, V.W., (1998) Evolving Integrated Low-Level Behaviors into Intelligently
Interactive Simulated Forces, Proceedings of the Seventh Annual Conference on
Evolutionary Programming, San Diego, CA: Springer Verlag, Berlin.

Porto, V.W., and Fogel, L.J. (1996) "Simulating an Intelligently Interactive Adversary",
Final Report for STRICOM, Contract number N61339-95-C-0088, Natural Selection,
Inc.

Porto, V.W., and Fogel, L.J. (1997) "Evolution of Intelligently Interactive Behaviors for
Simulated Forces", Proceedings of the Sixth International Conference on Evolutionary
Programming, P.J. Angeline, R.G. Reynolds, J.R. McDonnell, and R. Eberhart (eds.),
Springer Verlag, pp. 419-429.

Page, W.C., McDonnell, J.R., and Anderson, B. (1992) "An Evolutionary Programming
Approach to Multi-Dimensional Path Planning," Proc. of the First Annual Conference on

41

Evolutionary Programming, D.B. Fogel and W. Atmar (eds.), Evolutionary Programming
Society, San Diego, CA, pp. 63-70.

Rajput, S., and Karr, C. (1996) "A New Mechanism for Cooperative Behavior in
ModSAF," Proceedings of the Sixth Conference on Computer Generated Forces and
Behavioral Representation, D.E. Mullally (ed.), Orlando, FL, pp. 189-199.

Tambe, M., Johnson, W.L., Jones, R.M., Koss, F., Laird, J.E., Rosenbloom, P.S., and
Schwamb, K. (1995) "Intelligent Agents for Interactive Simulation Environments," AI
Magazine, Vol. 16(1), pp. 15-40.

Xiao, J., Michalewicz, Z., Zhang, L. and Trojanowski, K. (1997) "Adaptive Evolutionary
Planner/Navigator for Mobile Robots," IEEE Trans. Evolutionary Computation, Vol. 1,
No. 1, April 1997, pp. 18-28.

Zobrist, A. L., (1969) "A Model of Visual Organization for the Game of GO," AFIPS
Conf.Proc.,34,pp.l03-112.

42

Appendix A: Overview of Evolutionary Programming

Evolutionary programming (EP) is one of a class of paradigms for simulating evolution
which uses the concept of Darwinian evolution to iteratively generate increasingly
appropriate solutions (the behavior of organisms) in light of a static or dynamically
changing environment. This is in sharp contrast to earlier artificial intelligence research
which largely centered on the search for simple heuristics (generally useful rules).
Instead of developing a (potentially) complex set of rules derived from human experts,
evolutionary programming evolves a set of solutions which exhibit optimal behavior with
regard to the environment and specified payoff function. In a most general framework,
evolutionary programming may be considered an optimization technique wherein the
algorithm iteratively optimizes behaviors, parameters, or other constructs. As in all
optimization algorithms, it is important to note that the point of optimality is completely
independent of the search algorithm, and is solely determined by the adaptive topography
(i.e., response surface) (Atmar, 1992).

In its standard form, the basic evolutionary program uses the four main components of all
evolutionary computation algorithms (EC): initialization, variation, evaluation (scoring),
and selection. At the basis of this, as well as other EC algorithms, is the presumption
that, at least in a statistical sense, learning is encoded phylogenically versus ontologically
in each member of the population. 'Learning' is a byproduct of the evolutionary process
as successful individuals are retained through stochastic trial and error. Variation (e.g.,
mutation) provides the means for moving solutions around on the search space,
preventing entrapment in local minima. The evaluation function directly measures
fitness, or equivalently the behavioral error, of each member in the population with
regard to the environment. Finally, the selection process probabilistically culls
suboptimal solutions from the population, providing an efficient method for searching the
topography.

The basic evolutionary programming algorithm starts with a population of trial solutions
(e.g. plans of action) which are initialized by random, heuristic, or other appropriate
means. The size of the population, p., may range over a broadly distributed set, but is in
general larger than one. Each of these trial solutions is evaluated with regard to the
specified fitness function. After the creation of a population of initial solutions, each of
the parent members is altered through application of a mutation process; in strict
evolutionary programming, recombination is not utilized. Each 'parent' member i
generates Xi progeny which are replicated with a stochastic error mechanism (mutation).
Mutations are chosen with respect to a probability distribution, typically uniform. The
number of mutations per offspring is also chosen with respect to a probability distribution
or it may be fixed a priori. These offspring solutions are then evaluated over the existing
environment in the same manner as their parents.

After the fitness or behavioral error is assessed for all offspring solutions, the selection
process is performed by one of several general techniques including: 1) the best p.
solutions are retained to become the parents for the next generation (elitist), or, 2) [i of
the best solutions are statistically retained (tournament), or 3) proportional-based
selection. In most applications, the size of the population remains constant, but there is

43

no restriction in the general case. The process is halted when either the solution reaches a
predetermined quality, a specified number of iterations has been achieved, or some other
criteria (e.g., sufficient convergence) stops the algorithm. Figure Al diagrams this
process pictorially.

t:=0;
initialize P(0):= {a'i(P),a'7(0),...,a'^0)}
evaluate P(0): {O(fl'i(0)),O(fl'2(0)),...,<D(a,

A(0))}
iterate

{
mutate: P'{t) := rm„{P{t))
evaluate: P'(t): {®(a'i(t)),®(a'i(t)),...,®(a'x(t))}
select: P(t +1) := s&!(P'(t) u Q)
t:=t+ 1;

}
where

step,

a' is an individual member in the population
ju > 1 is the size of the parent population
X > 1 is the size of the offspring population
P(t):- {a'i(t),a'2(t),...,a'p(t)} is the population at time t
0:1 -» 9? is the fitness mapping
ma. is the mutation operator with controlling parameters em

s©s is the selection operator a ses [I* u f+x 1 -> IA

Q e{0,P(t)} is a set of individuals additionally accounted for in the selection

i.e. parent solutions.

Figure Al: The evolutionary programming paradigm

Evolutionary programming differs philosophically from other evolutionary computational
techniques such as genetic algorithms in a crucial manner. Evolutionary programming is
a top-down versus bottom-up approach to optimization. It is important to note that
(according to neo-Darwinism) selection operates only on the phenotypic expressions of a
genotype; the underlying coding of the phenotype is only affected indirectly. The
realization that a sum of optimal parts rarely leads to an optimal overall solution is key to
this philosophical difference. Genetic algorithms rely on the identification, combination,
and survival of "good" building blocks (schemata) iteratively combining to form larger
"better" building blocks. In a genetic algorithm, the coding structure (genotype) is of
primary importance as it contains the set of optimal building blocks discovered through
successive iterations. The building block hypothesis is an implicit assumption that the
fitness is a separable function of the parts of the genome. This successively iterated local

44

optimization process is different from evolutionary programming which is an entirely
global approach to optimization. Solutions (or organisms) in an evolutionary
programming algorithm are judged solely on their fitness with respect to the given
environment. No attempt is made to partition credit to individual components of the
solutions. In evolutionary programming (and in evolution strategies), the variation
operator allows for simultaneous modification of all variables at the same time. Fitness,
described in terms of the behavior of each population member, is evaluated directly, and
is the sole basis for survival of an individual in the population. Thus, a crossover
operation designed to recombine building blocks is not utilized in the general forms of
evolutionary programming.

45

Appendix B: The Valuated State Space Approach

Making Missions Well Defined: The Valuated State Space

A mission can be defined in quantitative terms using the Valuated State Space Approach
[L. Fogel, 1995]. This approach can be used to express any mission in terms of the
relative importance of each of the significantly different outcomes, and therefore can be
used to measure the overall worth of the current and prospective situations. To illustrate,
suppose three dimensions are of concern: x, y, and z. These dimensions have relative
importance of, say, six, nine, and two, respectively (with reference to a 10-scale, where
10 indicates paramount importance, 5 indicates moderate importance, and 0 indicates no
importance whatsoever). As depicted in Table 1, the lines following the parameter
designators indicate the class intervals of significantly different degrees of achievement.
Specific thresholds identify the limit of each class interval (although these are not shown
here as specific measures). Values on a ratio or magnitude scale are attributed to each of
the class intervals.

In general, the number of class intervals reflects the relative importance of the parameter
being described; that is, the more important the parameter, the greater the specificity of
its measure. Usually, a parameter of little importance may be adequately specified in a
binary sense, as is the case with parameter z. By convention, the class intervals are
arranged in order of decreasing worth in Table 1.

Table 1. A Valuated State Space

6 x | 3 | W | 0 |
9 y | 10 | 9 | 2V | 1 I 0 I
2 z | 10 | OV |

1=17

The number of states in the space is the product of the number of class intervals on each
of the dimensions (parameters), in this case, 30. Achieving the most valuable class
interval on each of the parameters corresponds with the state of the highest overall worth
(a measure of 1.0, or 10 on a 10 scale, 100 on a percent scale). Achieving no success on a
parameter corresponds with an overall worth of zero. (In situations where a negative
worth is ordinarily associated with some class intervals, the scale can be linearly
transformed so that the worst possible degree of achievement has zero value.) Any
intermediate state has some value, depending upon the normalizing function. For
example, taking the weighted arithmetic mean as that function, the state indicated by the
check marks in Table 1 has a value as indicated:

46

Suppose four dimensions are of concern, say, (1) Performance Reliability, (2)
Maintainability, (3) Ease of Operation, and (4) Resistance to Enemy Countermeasures.
These dimensions are given relative importance weights of 10, 8, 3, and 6, respectively.
The class intervals of significantly different degrees of achievement are shown under
each of these parameters in Table 2, these spanning the range from the least desirable to
the most desirable achievement. The check marks indicate the degrees of achievement
that define the state being measured.

Table 2. A Sample Valuated State Space

10 Performance Reliability:
10 > 99%
9 > 95% but < 99%
8 > 90% but < 95%

V 6 > 80% but < 90%
4 > 60% but < 80%
1 > 40% but < 60%
0 < 40%

8 Maintainability:
10 Easily maintained at field level by operational personnel
7 Maintainable at field level by unit military technicians

V 5 Maintained at field level with assistance of specialized military
technicians

3 Skilled civilian field technicians required for all but minor procedures
1 Must be returned to factory or depot for all but minor, routine procedures
0 Non-repairable

3 Ease of Operation:
10 Routinely operated by regular troops
8 Operated by regular troops directed by specially trained supervisor

V 4 Operated by specially trained crew
1 Operated only by highly technical and highly skilled personnel
0 Inoperable

6 Resistance to Enemy Countermeasures:
10 Not susceptible to countermeasure
8 Has self-contained capability to defeat enemy countermeasures

V 5 Requires special support forces to suppress enemy countermeasures
3 Highly degraded by sophisticated countermeasures
0 Easily defeated by simple countermeasures

Taking the weighted arithmetic mean, the overall worth of this situation is

47

By improving Performance Reliability from the 4th to the 5th class interval (i.e., from
between 80% and 90% to between 90% and 95%), increases the overall worth to;

.- (A)$)+(AX*)+(AX*)+(A)(*Xa59" -5>"%

Note that statistical independence (or lack of correlation) of the subparameters is neither
necessary nor sufficient for the appropriateness of the weighted arithmetic mean. What is
necessary and sufficient is that the overall utility (worth) be preferentially independent of
the subparameters.

In many situations, any level of achievement has some overall worth. In others, all the
parameters are critical. Failure in any single regard nullifies any other contribution. In
this case, it is appropriate to use the weighted geometric mean, the overall worth being
the product of the normalized degrees of achievement, each raised to the power of the
normalized importance of that parameter. Other methods for combining the contributions
are appropriate for different situations. In any case, a multi-attribute utility function
specifies the overall worth of any particular situation; that is, the Valuated State Space
and its normalizing function yields a single overall measure for the worth of each
significantly different situation.

The examples provided are single-level Valuated State Spaces. In practice, the main
subparameters (i.e., Performance Reliability, Maintainability, etc.) would be explicated in
terms of lower-level subparameters. Only the lowest levels can be calculated from below.
It is also worthwhile to recall that the weighted arithmetic mean is always greater than or
equal to the weighted geometric mean. The former simple calculation provides an
optimistic view of the real value.

In reality war is never a one-player game. Almost always, decisions are best made in the
light of the other player's perceived, known, or assumed intent, capabilities, and
motivation. It is, therefore, suitable to construct a similar representation of the purpose of
each of the other players, then examine the joint state space that defines the game. This
portrays a finite number of possible situations, those situations that are significantly
different from any single or multiple players' points of view. There is a joint payoff in
each cell/state for each of the players, this being a function of their marginal worth. Every
sequence of moves and countermoves corresponds with a trajectory across state in the
joint state space, there being some overall worth for that series of transitions. Note that
the payoff function need not be symmetric, nor must the game itself be zero-sum. The
joint state space reflects the motivation (degree of resolve or commitment) of the
individual players as well as their mutual attitudes.

Natural Selection, Inc. has had sufficient experience to ensure the practicality of this
approach. After being briefed on the underlying logic, influential individuals within the
organization are interviewed to reveal their views of the purpose to be achieved. Certain
rules-of-thumb assist this process. For example, the more important parameters are
measured in terms of a larger number of class intervals. The resulting viewpoints are
compared. Any significant differences are resolved so that a final draft can be approved

48

by those responsible. This statement of purpose then indicates what to measure, with
what specificity, how to fuse the data into the overall degree of achievement and, in
addition, provides a listing of the remaining problems by priority.

aU.S. GOVERNMENT PRINTING OFFICE: 2002-710-038-10228

49

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

