Abstract

The specific aim of this project is to develop an integrated proximity effect correction package which can handle sub-0.1 μm feature size, heterogeneous substrates, exploits both of dose and shape modification, and is applicable to projection or multiple electron beam lithographic systems as well as single (Gaussian) beam systems. Also, the software is to be parallelized for fast correction exploiting a readily available network of workstations.

As reported in the interim progress reports and this final progress report, the proposed research project has been successfully completed.
1 Summary of Results

Only a brief summary of the results is provided in this final report as required in the reporting instruction. For details, refer to the annual interim report submitted each year.

1.1 Heterogeneous Substrates

The proximity effect correction schemes developed in the past were all for homogeneous substrates on which the electron scattering characteristic is space-invariant. A simple but effective approach has been implemented in order to allow PYRAMID to correct patterns for heterogeneous substrates.

1.2 Hybrid Correction

The main objective of the hybrid approach is to control spatial distribution of global exposure due to back-scattering to facilitate local shape correction with (i) maintaining the advantages of uniform dose as much as possible, (ii) automating the procedures of determining dose distribution, and (iii) minimizing computation required. A practical fast scheme for determining spatial dose distribution has been designed.

1.3 Dose Correction

PYRAMID 1.0 adopts the shape modification approach to proximity correction. As an effort to develop an integrated proximity correction package and also to demonstrate the flexibility of PYRAMID, a dose modification version of PYRAMID has been implemented. Two different implementations of dose modification have been considered, i.e., recursive ("sequential") and non-recursive ("simultaneous") corrections. The simulation results indicate that the PYRAMID approach is flexible enough to handle both of dose and shape modifications efficiently, and that the dose modification version, especially simultaneous correction, has a potential to improve correction accuracy significantly over the shape modification version especially for fine-feature patterns, but at the expense of a longer correction time.

1.4 Optimization

1.4.1 Selection of Critical Points

Selection of control points heavily affects accuracy and speed of proximity correction. A simple but effective method for adaptively selecting control points has been designed. Through extensive computer simulation, it has been shown that the adaptive selection scheme can improve correction accuracy significantly over the fixed selection scheme.

1.4.2 Neural Network

A backpropagation neural network (BNN) algorithm has been designed in order to improve correction accuracy. In this model, circuit elements in a group are corrected "simultaneously," thereby overcoming the recursive nature of sequential correction.

1.5 Dependency of Correction Accuracy

Accuracy of E-beam proximity correction, which can be achieved, depends on several parameters such as the forward and backward scattering ranges of electrons, feature size, dose quantization interval, etc. Dependency of correction accuracy on such parameters is analyzed as an effort to find out the limit of proximity effect correction in E-beam lithography.

1.6 Data Handling

A hierarchical pattern representation format specifying extent information on each node to reduce the searching time has been designed and its detailed performance analysis has been carried out. More specifically, dependency of data size and correction time requirements on each of the parameters involved in a hierarchical representation, has been analyzed in detail.
1.7 Parallel Correction

As the circuit size and density continue to increase, (i) the time-consuming nature of proximity effect correction will be even more so, and (ii) the computer memory required will be well beyond the size of memory available on a workstation. As an efficient and practical solution to these two problems, proximity effect correction has been parallelized using a network of workstations.

2 Journal Publications:

3 Theses:

4 Scientific Personnel:

- PI: S.-Y. Lee
- Graduate Students:
 - Gautam Ghare (M.S. degree)
 - Dake He (M.S. degree)
 - Fei Hu
 - Jayesh Laddha (M.S. degree)
 - Penxian Liu (transferred)
 - Zhong Tang (transferred)

5 Technology Transfer:

PYRAMID Version 1.0 licensed to Nabity Lithographic System Inc., Bozeman, MT.