The objectives of this project were, simply put, to develop advanced statistical pattern recognition methodologies for the Tufts University artificial nose (and other sensors of interest -- notably, hyperspectral imagers). This effort had significant positive impact on the Tufts University artificial nose. In particular, I claim that the paper: C.E. Priebe, "Olfactory Classification via Interpoint Distance Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. No. 4, pp. 404-413, April 2001, is among the most important papers ever published on statistical pattern recognition for artificial olfactory sensor systems. Additional publications detail advancements made which positively impact the Tufts nose (and are applicable to many other sensor systems). Furthermore, this effort produced workable initial versions of a methodology for jointly optimizing classification with sensing and processing, in terms of adaptive dimensionality reduction. This latter concept is relevant to a wide variety of adaptive sensors, and will be pursued in the future.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF ABSTRACT

Unclassified

18. NUMBER OF PAGES

19. NAME OF RESPONSIBLE PERSON

Carey E. Priebe

Unclassified

3

20011012 015

AFRL-SR-BL-TR-01-0526

3. DATES COVERED (From to)

4-1-99 to 3-31-01

AFOSR

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR

Dr. Arje Nachman

801 N. Randolph St., Rm 732

Arlington, VA 22203-1977

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

DISTRIBUTION UNLIMITED

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF TRANSMITTAL DTIC. THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLIC RELEASE LAW ART 180-12 DISTRIBUTION IS UNLIMITED.

14a. CONTRACT NUMBER

F49620-99-1-0213

14b. GRANT NUMBER

14c. PROGRAM ELEMENT NUMBER

14d. PROJECT NUMBER

14e. TASK NUMBER

14f. WORK UNIT NUMBER

AFRL-SR-BL-TR-01-0526
August 17, 2001

Wendy M. Veon
AFOSR/PKC
801 North Randolph Street
Room 732
Arlington, VA 22203-1977

SUBJECT: Final Reports for AFOSR Grant No. F496209910213 - Under the direction of Dr. Carey Priebe

Dear Ms. Veon:

Enclosed please find the following final reports for the subject award:

___ Financial Status Report (SF 269)
___ Report of Inventions and Subcontracts (DD Form 882)
___ Final Technical Report

If you have any questions or concerns regarding these reports or need anything further, please do not hesitate to contact me at gene@jhu.edu or (410) 516-6762.

Sincerely,

Gene Rutherford
Sponsored Projects Specialist

cc: E74-2031
Final Technical Report
Due 30 June 2001

Advanced Data Analysis Methods for
Analyte Recognition from Optical Sensor Arrays

Air Force Office of Scientific Research /
DARPA Applied and Computational Mathematics Program

DOD F49620-99-1-0213
04/01/99--03/31/01

PI: Carey E. Priebe
<cep@jhu.edu>
Department of Mathematical Sciences
Whiting School of Engineering
Johns Hopkins University
Baltimore, MD 21218-2682
Objectives:
The objectives of this project were, simply put, to develop advanced statistical pattern recognition methodologies for the Tufts University artificial nose (and other sensors of interest -- notably, hyperspectral imagers).

Notable accomplishments:
This effort had significant positive impact on the Tufts University artificial nose. In particular, I claim that the paper: C.E. Priebe, "Olfactory Classification via Interpoint Distance Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. No. 4, pp. 404-413, April 2001. is among the most important papers ever published on statistical pattern recognition for artificial olfactory sensor systems. Additional publications detail advancements made which positively impact the Tufts nose (and are applicable to many other sensor systems). Furthermore, this effort produced workable initial versions of a methodology for jointly optimizing classification with sensing and processing, in terms of adaptive dimensionality reduction. This latter concept is relevant to a wide variety of adaptive sensors, and will be pursued in the future.

Future transition plans:
The Tufts University Artificial Nose effort uses many of the advancements developed in this effort.

The ONR Information, Electronics, and Surveillance program (Jim Buss) is interested in our methodology for jointly optimizing classification with sensing and processing, based on a prototype developed for the HyMap Airborne Hyperspectral Scanner.

A proposal titled "The Adaptive Data Cube for Integrated Sensing and Processing" has been submitted to DARPA/DSO BAA00-36. This proposal will continue the current effort, with significant redirection toward developing dimensionality reduction methodologies which jointly optimize classification procedures with tunable parameters available in adaptive sensing and processing.

Refereed Journal Publications related to the artificial nose:

Conference Publications related to the artificial nose:

Related publications, previous to 1999:

Related manuscripts submitted for publication:

D.J. Marchette and C.E. Priebe, "Characterizing the Scale Dimension of a high dimensional classification problem." Submitted for publication. (Available as Technical Report No. 614, Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD 21218-2682. See Appendix B)

D.J. Marchette, J.G. DeVinney, and C.E.Priebe, "Vector Quantization and Classification Through the Dominating Set of a Digraph." Submitted for publication. (Available as Technical Report No. 613, Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD 21218-2682. See Appendix C).

C.E. Priebe, J.G. DeVinney, and D.J. Marchette, "On the Distribution of the Domination Number for Random Class Cover Catch Digraphs." Submitted for publication. (Available as Technical Report No. 611, Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD 21218-2682. See Appendix E)

T. Olson, J.S. Pang, and C.E. Priebe, "A Likelihood-MPEC Approach to Target Classification." Submitted for publication. (Available as Technical Report No. 590, Department of Mathematical Sciences, Johns Hopkins University, Baltimore, MD 21218-2682. See Appendix F)

Related papers will appear in the following upcoming conferences:

Nonparametrics in Large, Multidimensional Data Mining: January 12-13, 2001, Dallas, Texas.

3rd IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition: May 23-25, 2001, Ischia, Italy. JHU DMS TR #613 (submitted for publication)

Recent and upcoming invitations for related work:

Meetings:

DARPA ACMP PI Meeting, Arlington, VA, April 2000.

DARPA Integrated Sensing and Processing Workshop, Boulder, CO, August 2000.

DARPA ACMP PI Meeting, Arlington, VA, April 4-6, 2001.

Doctoral students:

Two graduated doctoral students focusing on methodologies which we apply to the artificial nose and hyperspectral dimension reduction issues:

Jingdong Xie, Ph.D. (1999)
Dissertation Title: Generalizing the Mann--Whitney--Wilcoxon Statistic
Defended: April 1999
Jingdong Xie is now at MedImmune, Inc.: XieJ@MedImmune.com

Adam Cannon, Ph.D. (2001)
Dissertation Title: Approximate Distance Methods in Classification
Defended: May 2000
Adam Cannon is now at Columbia University: cannon@cs.columbia.edu

Three current doctoral students focusing on methodologies which we apply to the artificial nose and hyperspectral dimension reduction issues:

Jason DeVinney

Heng Zhang

Elvan Ceyhan