
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24/May/2001
2. REPORT TYPE

DISSERTATION
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
ATTACK RESISTANT MOBILE AGENTS FOR INTRUSION DETECTION
SYSTEMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
CAPT HUMPHRIES JEFFREY W

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TEXAS A&M UNIVERSITY

8. PERFORMING ORGANIZATION
REPORT NUMBER

CI01-80

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13.SUPPLEMENTARY NOTES

14. ABSTRACT

20010720 035
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

147

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

ATTACK RESISTANT MOBILE AGENTS FOR
INTRUSION DETECTION SYSTEMS

JEFFREY WAYNE HUMPHRIES
Captain

United States Air Force

2001

147 Pages

DOCTOR OF PHILOSOPHY

Texas A&M University

ABSTRACT

The rapid increase in attacks on computer systems has made intrusion detection
systems (IDSs) increasingly popular. An emerging research area involves using mobile
agents in implementing such systems. The lack of security for mobile agents is a primary
factor that has inhibited their widespread use in real-world applications, including
intrusion detection systems. Thus, providing security for mobile agents is key to building
useful applications based on the mobile agent paradigm.

The core problem of such an agent-based system is this: an agent's owner cannot trust
its agent, and mobile agents and their hosts do not trust each other. Worse still, if a host
is penetrated and the attacker gains access to a traveling agent, he will potentially be
given a wealth of new information that will help him attack and further penetrate the
system. If an attacker can obtain detailed knowledge of the detection systems installed at
a particular site, he will be better able to avoid its triggers. Hence, security for these
agents is critical.

The overall intent of this research is to develop a methodology for protecting mobile
agents in intrusion detection systems and to demonstrate the ability of such agents to
address the shortcomings in current host-based systems. This methodology will support
the defense of computer systems through a secure, mobile agent-based architecture. In
support of this research, a secure mobile agent IDS prototype was created. The
capabilities of this prototype as well as experimental results are described.

BIBLIOGRAPHY

[I] W. Jansen, P. Mell, T. Karygiannis, and D. Marks, "Applying Mobile Agents to
Intrusion Detection and Response," NIST Interim Report (IR) 6416, National
Institute of Standards and Technology, Computer Security Division,
Gaithersburg, MD, October, 1999.

[2] R. Heady, G. Luger, A. Maccabe, and M. Servilla, "The Architecture of a
Network Level Intrusion Detection System," Technical Report CS90-20,
Department of Computer Science, University of New Mexico, Albuquerque, NM,
August, 1990.

[3] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, "Network Intrusion Detection,"
IEEE Network, vol. 8, no. 3, March, 1994, pp. 26-41.

[4] M. Crosbie and G. Spafford, "Active Defense of a Computer System Using
Autonomous Agents," Technical Report CSD-TR-95-008, COAST Group,
Department of Computer Sciences, Purdue University, West Lafayette, IN,
February, 1995.

[5] N. M. Karnik and A. R. Tripathi, "Design Issues in Mobile Agent Programming
Systems," IEEE Concurrency, vol. 6, no. 3, July-September, 1998, pp. 52-61.

[6] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik, "Itinerant
Agents for Mobile Computing," IBM Research Report RC 20010, IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY, March 27, 1995.

[7] K. Rothermel, F. Hohl, and N. Radouniklis, "Mobile Agent Systems: What Is
Missing?," in Proc. International Working Conference on Distributed
Applications and Interoperable Systems (DAIS'97), Cottbus, Germany,
September 30, 1997, pp. 111-124.

[8] T. Chia and S. Kannapan, "Strategically Mobile Agents," in Proc. First
International Workshop on Mobile Agents, vol. 1219, Lecture Notes in Computer
Science, K. Rothermel and R. Popsecu-Zeletin, Eds., Berlin, Germany: Springer-
Verlag, 1997, pp. 1-10.

[9] D. Kotz and R. S. Gray, "Mobile Agents and the Future of the Internet," ACM
Operating Systems Review, vol. 33, no. 3, August, 1999, pp. 7-13.

[10] D. B. Lange, "Mobile Objects and Mobile Agents: The Future of Distributed
Computing?," in Proc. European Conference on Object-Oriented Programming,
Brussels, Belgium, July 20-24, 1998, pp. 1-12.

[II] Y. Aridor and D. B. Lange, "Agent Design Patterns: Elements of Agent
Application Design," in Proc. Second International Conference on Autonomous
Agents, Minneapolis, MN, May 10-13, 1998, pp. 108-115.

[12] J. Bredin, D. Kotz, and D. Rus, "Market-based Resource Control for Mobile
Agents," in Proc. Second International Conference on Autonomous Agents,
Minneapolis, MN, May 10-13,1998, pp. 197-204.

[13] M. O. Hofmann, A. McGovern, and K. R. Whitebread, "Mobile Agents on the
Digital Battlefield," in Proc. Second International Conference on Autonomous
Agents, Minneapolis, MN, 1998, pp. 219-225.

[14] A. Fuggetta, G P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE
Transactions on Software Engineering, vol. 24, no. 5, May, 1998, pp. 342-361.

[15] N. Minar, K. H. Kramer, and P. Maes, "Cooperating Mobile Agents for Mapping
Networks," in Proc. First Hungarian National Conference on Agent Based
Computing, Budapest, Hungary, May, 1998, p. 12.

[16] W. R. Cockayne and M. Zyda, Mobile Agents, Greenwich, CT: Manning
Publications Co., 1998.

[17] C. Schramm, A. Bieszczad, and B. Pagurek, "Application-Oriented Network
Modeling with Mobile Agents," in Proc. Network Operations and Management
Symposium, New Orleans, Louisiana, February 15-20, 1998, pp. 696-700.

[18] T. Magedanz, K. Rothermel, and S. Krause, "Intelligent Agents: An Emerging
Technology for Next Generation Telecommunications?," in Proc. Fifteenth
Annual Joint Conference of the IEEE Computer Societies, San Francisco,
California, March 24-28, 1996, pp. 464-472.

[19] M. Crosbie and G. Spafford, "Defending a Computer System Using Autonomous
Agents," Technical Report CSD-TR-95-022, COAST Group, Department of
Computer Sciences, Purdue University, West Lafayette, IN, 1995.

[20] L. Garber, "Denial-of-Service Attacks Rip the Internet," Computer, vol. 33, no. 4,
April, 2000, pp. 12-17.

[21] "Computer Emergency Response Team," Available at http://www.cert.org,
February, 2001.

[22] D. Schoder and T. Eymann, "The Real Challenges of Mobile Agents,"
Communications of the ACM, vol. 43, no. 6, June, 2000, pp. 111-112.

[23] L. L. Kassab and J. Voas, "Agent Trustworthiness," in Proc. ECOOP Workshop
on Distributed Object Security and 4th Workshop on Mobile Object Systems:
Secure Internet Mobile Computations, Brussels, Belgium, July 20-21, 1998, pp.
121-133.

[24] J. J. Ordille, "When Agents Roam, Who Can You Trust?," in Proc. First Annual
Conference on Emerging Technologies and Applications in Communications,
Portland, OR, May 7-10, 1996, pp. 188-191.

[25] J. Riordan and B. Schneier, "Environmental Key Generation Towards Clueless
Agents," in Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag,
1998, pp.15-24.

[26] D. S. Milojicic, F. Douglis, and R. Wheeler, ed., Mobility: Processes, Computers,
and Agents, Reading, MA: Addison-Wesley, 1999.

[27] S. Franklin and A. Graesser, "Is It an Agent, or Just a Program? A Taxonomy for
Autonomous Agents," in Intelligent Agents III: Agent Theories, Architectures,
and Languages, J. Mueller, ed., Berlin: Springer-Verlag, 1997.

[28] C. F. Tschudin, "Mobile Agent Security," in Intelligent Information Agents:
Agent Based Information Discovery and Management on the Internet, M. Klusch,
ed., Berlin, Germany: Springer-Verlag, 1999, pp. 431-446.

[29] J. Vitek and G. Castagna, "Mobile Computations and Hostile Hosts," in Proc.
10th Journees Francophones des Langages Applicatifs (JFLA), Avoriaz, France,
January, 1999, p. 241.

[30] A. D. Rubin and D. E. Geer Jr., "Mobile Code Security," IEEE Internet
Computing, vol. 2, no. 6, November-December, 1998, pp. 30-34.

[31] D. Hagimont and L. Ismail, "A Protection Scheme for Mobile Agents on Java," in
Proc. Third Annual ACM/IEEE International Conference on Mobile Computing
and Networking, Budapest, Hungary, September 26-30, 1997, pp. 215-222.

[32] B. S. Yee, "A Sanctuary for Mobile Agents," Technical Report CS97-537,
Computer Science Department, University of California at San Diego, April 28,
1997.

[33] W. M. Farmer, J. D. Guttman, and V. Swarup, "Security for Mobile Agents:
Issues and Requirements," in Proc. 19th National Information Systems Security
Conference, Baltimore, MD, October 22-25,1996, pp. 591-597.

[34] F. Hohl, "Time Limited Blackbox Security: Protecting Mobile Agents from
Malicious Hosts," in Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-
Verlag, 1998, pp. 92-113.

[35] D. M. Chess, "Security Issues in Mobile Code Systems," in Mobile Agents and
Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp. 1-14.

[36] G. Vigna, "Cryptographic Traces for Mobile Agents," in Mobile Agents and
Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp. 137-153.

[37] L. L. Kassab and J. Voas, "Towards Fault-Tolerant Mobile Agents," in Proc.
Distributed Computing on the Web Workshop (DCW '98), Rostock, Germany,
June, 1998, pp. 96-106.

[38] W. Jansen and T. Karygiannis, "Mobile Agent Security," NIST Special
Publication 800-19, National Institute of Standards and Technology, Computer
Security Division, Gaithersburg, MD, August, 1999.

[39] T. Sander and C. F. Tschudin, "Protecting Mobile Agents Against Malicious
Hosts," in Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag,
1998, pp. 44-60.

[40] T. Sander and C. F. Tschudin, "On Software Protection via Function Hiding," in
Proc. Second International Workshop on Information Hiding, Portland, OR, April
15-17, 1998, pp. 111-123.

[41] N. M. Karnik and A. R. Tripath, "Security in the Ajanta Mobile Agent System,"
Technical Report RZ 2996, Department of Computer Science, University of
Minnesota, Minneapolis, MN, May, 1999.

[42] M. Bellare and B. S. Yee, "Forward Integrity for Secure Audit Logs," Available
at http://www.cs.ucsd.edu/~bsy/pub/fi.ps, February 9, 2000.

[43] K. Smith and R. Paranjape, "Mobile Agents for Web-based Medical Image
Retrieval," in Proc. 1999 IEEE Canadian Conference on Electrical and Computer
Engineering, Edmonton, Alberta, Canada, May 9-12, 1999, pp. 966-970.

[44] D. Rus, R. Gray, and D. Kotz, "Autonomous and Adaptive Agents that Gather
Information," in Proc. AAAI '96 International Workshop on Intelligent Adaptive
Agents, Portland, OR, August, 1996, pp. 107-116.

[45] B. Schneier and J. Kelsey, "Secure Audit Logs to Support Computer Forensics,"
ACM Transactions on Information and System Security, vol. 2, no. 2, May, 1999,
pp. 159-176.

[46] K. Neuenhofen and M. Thompson, "A Secure Marketplace for Mobile Java
Agents," in Proc. Second International Conference on Autonomous Agents,
Minneapolis, MN, May 10-13, 1998, pp. 212-218.

[47] J. Baek, "A Design of a Protocol for Detecting a Mobile Agent Clone and Its
Correctness Proof Using Coloured Petri Nets," Technical Report TR-DIC-CSL-
1998-002, Department of Information and Communications, Kwangju Institute of
Science and Technology, Kwangju, Republic of Korea, 1998.

[48] F. B. Schneider, "Towards Fault-Tolerant and Secure Agentry," in Proc. 3rd
ECOOP Workshop on Mobile Object Systems, Jyvalskyla, Finland, June, 1997,
pp. 1-14.

[49] J. E. White, "Telescript Technology: Mobile Agents," in Software Agents, J. M.
Bradshaw, ed., Menlo Park, CA: AAAI/MIT Press, 1997, pp. 437-472.

[50] J. Tardo and L. Valente, "Mobile Agent Security and Telescript," in Proc. IEEE
COMPCON, Santa Clara, CA, February 25-28,1996, pp. 58-63.

[51] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, "D'Agents: Security in a Multiple-
Language, Mobile-Agent System," in Mobile Agents and Security, G. Vigna, ed.,
Berlin: Springer-Verlag, 1998, pp. 154-187.

[52] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawala, and G. Cybenko, "AGENT TCL:
Targeting the Needs of Mobile Computers," IEEE Internet Computing, vol. 1, no.
4, July-August, 1997, pp. 58-67.

[53] T. Walsh, N. Paciorek, and D. Wong, "Security and Reliability in Concordia," in
Mobility: Processes, Computers, and Agents, D. Milojicic, F. Doughs, and R.
Wheeler, eds., Reading, MA: Addison-Wesley, 1999, pp. 525-534.

[54] J. Baumann, F. Hohl, K. Rothermel, and M. Straser, "Mole - Concepts of a
Mobile Agent System," World Wide Web, vol. 1, no. 3, July-September, 1998,
pp. 123-137.

[55] H. Peine and T. Stolpmann, "The Architecture of the Ara Platform for Mobile
Agents," in Proceedings of the First International Workshop on Mobile Agents,
K. Rothermel and R Popescu-Zeletin, eds., Berlin: Springer-Verlag, 1997, pp. 50-
61.

[56] G. Karjoth, D. B. Lange, and M. Oshima, "A Security Model for Aglets," in
Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp.
188-205.

[57] D. Johansen, R. van Renesse, and F. B. Schneider, "Operating System Support for
Mobile Agents," in Proc. 5th Workshop on Hot Topics in Operating Systems,
Orcas Island, WA, May 4-5, 1995, pp. 42-45.

[58] T. Sandholm and Q. Huai, "Nomad: Mobile Agent System for an Internet-Based
Auction House," IEEE Internet Computing, vol. 4, no. 2, March-April, 2000, pp.
80-86.

[59] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet, "Concordia:
An Instructure for Collaborating Mobile Agents," in First International Workshop
on Mobile Agents, vol. 1219, Lecture Notes in Computer Science, Berlin:
Springer-Verlag, 1997, pp. 86-97.

[60] A. O. Freier, P. Karlton, and P. C. Kocher, "The SSL Protocol, Version 3.0,"
Available at http://home.netscape.com/eng/ssl3/ssl-toc.html, May 11, 2000.

[61] J. Arthursson, J. Engblom, I. Jonsson, R. Mirza, G. Naeser, M. Olsson, R.
Ottenhag, D. Sahlin, M. Schmid, B. Spolander, and E. Zolfonoon, "A Platform for
Secure Mobile Agents," in Proc. Second International Conference and Exhibition

on the Practical Aplication of Intelligent Agents and Multi-Agent Technology,
London, England, April, 1997, pp. 109-120.

[62] G. Cabri, L. Leonardi, and F. Zambonelli, "Mobile Agent Technology: Current
Trends and Perspectives," in Proc. Associazione Italiana per l'lnformatica ed il
Calcolo Automatico (AICA98), Naples, Italy, November, 1998, pp. 1-12.

[63] P. E. Proctor, The Practical Intrusion Detection Handbook, Upper Saddle River,
NJ: Prentice Hall, 2001.

[64] H. Debar, M. Dacier, and A. Wespi, "Towards a Taxonomy of Intrusion-
Detection Systems," Technical Report RZ 3030, IBM Research Division, Zurich
Research Laboratory, Zurich, Switzerland, June, 1998.

[65] G. B. White, E. A. Fisch, and U. W. Pooch, "Cooperating Security Managers: A
Peer-Based Intrusion Detection System," IEEE Network, vol. 10, no. 1, January-
February, 1996, pp. 20-23.

[66] D. S. Alberts, "The Unintended Consequences of Information Age Technologies,"
Available at http://www.ndu.edu/ndu/inss/books/uc/uchome.html, December,
2000.

[67] D. E. Denning, "Protection and Defense of Intrusion," Available at
http://www.cosc.georgetown.edu/%7edenning/infosec/USAFA.html, December,
2000.

[68] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D.
Zamboni, "An Architecture for Intrusion Detection Using Autonomous Agents,"
COAST Technical Report 98/05, COAST Laboratory, Purdue University, West
Lafayette, IN, June 11, 1998.

[69] D. Frincke, D. Tobin, J. McConnell, J. Marconi, and D. Polla, "A Framework for
Cooperative Intrusion Detection," in Proc. 21st National Information Systems
Security Conference, Arlington, VA, October, 1998, pp. 361-373.

[70] J. Evans and D. Frincke, "Trust Mechanisms for Hummingbird," Available at
http://www.acm.org/crossroads/xrds2-4/humming.html, March 30, 2000.

[71] B. C. Neuman and T. Tso, "Kerberos: An Authentication Service for Computer
Networks," IEEE Communications, vol. 32, no. 9, September, 1994, pp. 33-38.

[72] G. G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller, "Intelligent Agents for
Intrusion Detection," in Proc. IEEE Information Technology Conference,
Syracuse, NY, September, 1998, pp. 121-124.

[73] M. Asaka, S. Okazawa, A. Taguchi, and S. Goto, "A Method of Tracing Intruders
by Use of Mobile Agents," in Proc. 9th Annual Internetworking Conference
(INET'99), San Jose, CA, June, 1999, pp. 1-12.

[74] P. A. Porras and P. G. Neumann, "EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances," in Proc. Nineteenth National
Information Systems Security Conference, Baltimore, MD, 1997, pp. 353-365.

[75] B. Schneier, Applied Cryptography, Second Edition, New York: John Wiley &
Sons, Inc., 1996.

[76] A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone, Handbook of Applied
Cryptography, Boca Raton, FL: CRC Press, 1997.

[77] W. Diffie and M. E. Hellman, "New Directions in Cryptography," IEEE
Transactions on Information Theory, vol. IT-22, no. 6, November, 1976, pp. 644-
654.

[78] W. Stallings, Network and Internetwork Security: Principles and Practice,
Englewood Cliffs, NJ: Prentice Hall, 1995.

[79] A. Corradi, M. Cremonini, and C. Stefanelli, "Locality Abstractions and Security
Models in a Mobile Agent Environment," in Proc. Seventh IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Los Alamitos, CA, June 17-19, 1998, pp. 230-235.

[80] H. Vogler, T. Kunkelmann, and M.-L. Moschgath, "An Approach for Mobile
Agent Security and Fault Tolerance Using Distributed Transactions," in Proc.
International Conference on Parallel and Distributed Systems, Seoul, Korea,
December 10-13,1997, pp. 268-274.

[81] M. S. Greenberg, J. C. Byington, and D. G. Harper, "Mobile Agents and
Security," IEEE Communications Magazine, vol. 36, no. 7, July, 1998, pp. 76-85.

[82] T. Thorn, "Programming Languages for Mobile Code," ACM Computing
Surveys, vol. 29, no. 3, September, 1997, pp. 213-239.

[83] P. Felber, R. Guerraoui, and M. E. Fayad, "Putting 00 Distributed Programming
to Work," Communications of the ACM, vol. 42, no. 11, November, 1999, pp. 97-
1.01.

[84] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized Trust Management," in
Proc. 1996 IEEE Symposium on Security and Privacy, Oakland, CA, May 6-8,
1996, pp. 164-173.

[85] J. Kay, J. Etzl, G. Rao, and J. Thies, "The ATL Postmaster: A System for Agent
Collaboration and Information Dissemination," in Proc. Second International
Conference on Autonomous Agents, Minneapolis, MN, May 9-13, 1998.

[86] J. Fiedler, "A Distributed Personalized News System Based on Mobile Agents,"
in Proc. 36th Annual ACM Southeast Conference, Marietta, GA, April 1-3, 1998,
pp. 130-135.

[87] HostSentry, Psionic Software Inc., Available at http://www.psionic.com/, 2000.
[88] PortSentry, Psionic Software Inc., Available at http://www.psionic.com/, 2000.
[89] LogCheck, Psionic Software Inc., Available at http://www.psionic.com/, 2000.
[90] Linux Intrusion Detection System, LIDS.org, Available at http://www.lids.org,

2000.
[91] Open Wall, Open Wall Project, Available at http://www.openwall.com, 2000.
[92] NetSaint Network Monitor, Available at http://netsaint.sourceforge.net, 2000.
[93] CyberCop Monitor, PGP Security, Available at

http://www.pgp.com/products/cybercop-monitor/default.asp, 2000.
[94] Dragon Sensor, Network Security Wizards, Inc., Available at

http://www.securitywizards.com/intro.html, 2000.
[95] Dragon Squire, Network Security Wizards, Inc., Available at

http://www.securitywizards.com/intro.html, 2000.
[96] Patriot IDS, Patriot Technologies, Available at http://patriot-tech.com/ids.htm,

2000.
[97] PreCis Security Toolkit, PRC PreCis, Available at

http://www.bellevue.prc.com/precis/, 2000.
[98] Sygate Enterprise Network, Sygate Technologies, Inc., Available at

http://www.sygate.com/products/sms_ov.htm, 2000.

ATTACK RESISTANT MOBILE AGENTS FOR

INTRUSION DETECTION SYSTEMS

A Dissertation

by

JEFFREY WAYNE HUMPHRIES

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2001

Major Subject: Computer Science

ATTACK RESISTANT MOBILE AGENTS FOR

INTRUSION DETECTION SYSTEMS

A Dissertation

by

JEFFREY WAYNE HUMPHRIES

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

UdoW. Pooch
(Chair of Commh;

.^^4^

Riccardo Bettati
(Member)

JVtichael T. Lotfgnecker
(Member).

Wei Zhao
(Head of Department)

May 2001

Major Subject: Computer Science

Ill

ABSTRACT

Attack Resistant Mobile Agents for Intrusion Detection Systems. (May 2001)

Jeffrey Wayne Humphries, B.S., United States Air Force Academy;

M.S., Georgia Institute of Technology

Chair of Advisory Committee: Dr. Udo W. Pooch

The rapid increase in attacks on computer systems has made intrusion detection

systems (JJDSs) increasingly popular in academic, corporate, and government networks.

While IDSs are not new, research into improving their performance is ongoing. One

new area involves using mobile agents in implementing intrusion detection systems.

Research in this area is in its infancy and has not yet entered the mainstream community.

The lack of security for mobile agents is a primary factor that has inhibited their

widespread use in real-world applications, including intrusion detection systems. Thus,

providing security for mobile agents is key to building useful applications based on the

mobile agent paradigm.

Before these systems can be deployed in real settings, the major obstacle of providing

adequate security for the agents themselves must be overcome. The core problem of

such an agent-based system is this: an agent's owner cannot trust its agent, and agents

and host systems do not trust each other. Worse still, if a host is penetrated and the

attacker gains access to a traveling agent, he will potentially be given a wealth of new

IV

information that will help him attack other hosts in the network and further penetrate the

system. If an attacker can obtain detailed knowledge of the detection systems installed

at a particular site, he will be better able to avoid its triggers. Hence, security for these

agents is critical. Unfortunately, solutions to many of these problems do not currently

exist.

The overall intent of this research is to develop a methodology for protecting mobile

agents in intrusion detection systems and to demonstrate the ability of such agents to

address the shortcomings in current host-based systems. This methodology will support

the defense of computer systems through a secure, mobile agent-based architecture. In

support of this research, a secure mobile agent EDS prototype was created. The

capabilities of this prototype as well as experimental results are described.

DEDICATION

".. .Let us ran with perseverance the race marked out for us." - Hebrews 12:1

I dedicate this dissertation to my loving and gracious wife, Erin, who runs the race by

my side.

VI

ACKNOWLEDGMENTS

I would like to thank Dr. Udo Pooch for his guidance and leadership during this

research. He has been an excellent mentor and guide. His management style gave me

great latitude and freedom to explore the possibilities and productively use my time to

accomplish this work.

I would also like to thank the other members of my committee, Dr. John Yen, Dr.

Riccardo Bettati, Dr. Mike Longnecker, and Dr. Dickson Varner who have all helped me

make this research stronger. Both inside the classroom and out, these professors have

imparted knowledge, ideas, and skills that have enabled me to successfully complete this

research. I thank them for their suggestions and encouragement.

I thank my parents, Buddy and Debbie, who helped me buy my first computer at a

young age. They have always encouraged me to strive in my academic pursuits and

have given me great freedom to explore my interests. More importantly, they raised me

in a loving home where I learned the meaning of character and hard work.

I would also like to acknowledge the wonderful support of my wife, Erin. She has

been a great encouragement to me during this process. She is the consummate helpmeet.

Finally, I would like to acknowledge the tremendous help of many graduate students

with whom I had the pleasure of working and collaborating. Among the many who have

helped me succeed at Texas A&M are John "Buck" Surdu, John Hill, Curt Carver, Mike

Miller, Dan Ragsdale, and Jim Vaglia. I thank them all!

Vll

TABLE OF CONTENTS

Page

ABSTRACT iii

DEDICATION v

ACKNOWLEDGMENTS vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

CHAPTER

I INTRODUCTION 1

A. Motivation 1
B. Research Objectives 4
C. Overview 5

n LITERATURE REVIEW 7

A. Overview 7
B. Mobile Agents 7

1. Mobile Agent Security 10
a. Trusted Environments 12
b. Reputation Servers 12
c. Legal or Contractual Protection 13
d. Execution Tracing 14
e. Software Assertions 15
f. Mobile Cryptography (Computing with Encrypted Functions) 16
g. Obfuscated Code 17
h. Partial Result Encapsulation 19
i. Itinerary Protection 20
j. Clone Detection 21
k. Fault-tolerance 22

2. Example Mobile Agent Systems 23
a. Telescript 23

Vlll

CHAPTER Page

b. D'Agents (Agent Tel) 24
c. Mole 25
d. Ara (Agents for Remote Action) 26
e. Aglets 27
f. TACOMA 27
g. Concordia 28
h. Ajanta 29

3. Mobile Agent Communications 29
C. Intrusion Detection Systems 32

1. Agent-Based Intrusion Detection Systems 33
a. AAFTD (Autonomous Agents for Intrusion Detection) 33
b. Hummingbird 35
c. Intelligent Agents for Intrusion Detection 36
d. Intrusion Detection Agent System 37
e. EMERALD (Event Monitoring Enabling Responses to

Anomalous Live Disturbances) 38
D. Cryptography 39

1. Encryption 39
2. Digital Signatures, Integrity, and Authentication 41

III DESIGN 44

A. Proposed Methodology 44
1. System Overview 44
2. Mobile Agents 45
3. Mobile Agent Servers 51
4. The Agent Coordinator 54
5. Intrusion Detection System Analysis Engine 55
6. Secure Blackboard 56
7. User Interface 57

B. Distributed Availability for Agents 57

IV IMPLEMENTATION 61

A. Introduction 61
B. The Agent Coordinator 62

1. File Operations 63
2. Itinerary Operations 64
3. Agent Dispatch Function 65
4. Send Mail Function 66
5. Handling Returning Agents 67
6. Monitoring Dispatched Agents 68

IX

CHAPTER Page

7. Miscellaneous Functions 69
C. Mobile Agent Servers 71
D. Secure Agent Communications 74
E. Mobile Agents 77
F. Intrusion Detection System Analysis Engine 79
G. User Interface 81

V ANALYSIS AND RESULTS 82

A. Introduction 82
B. Verification 82

1. Mobile Agents 83
2. IDS Analysis Engine 84
3. Agent Coordinator 85
4. Agent Servers 85

C. Validation 86
1. Validating Agent Security 86

a. Modifying Agent Itineraries 86
b. Modifying Agent Payloads 88
c. Modifying Agent Code 89
d. Compromising Agent Confidentiality 89
e. Introducing False Agents 90
f. Dealing with Faulty Servers 92
g. Lost Agents 93

2. Validating Intrusion Detection Functionality 94
a. Value Added of Mobile Agents 95
b. Comparison to Other Systems 98

VI SUMMARY AND CONCLUSIONS 106

A. Summary 106
B. Conclusions and Significance of Research 108
C. Recommendations for Future Work 110

1. Agent Coordinator Ill
2. IDS Analysis Engine Ill
3. Integrated Log Analysis Tool 112
4. Mobile Agents 113
5. Agent Servers 114
6. Agent Communication 115

REFERENCES 116

CHAPTER Page

APPENDIX A: VERIFICATION AND VALIDATION DETAILS 125

APPENDIX B: SOURCE CODE 134

VITA 135

XI

LIST OF TABLES

TABLE Page

1 Sample XML messages 76

2 Number of validation tests performed 84

3 Number of agent security validation experiments performed 87

4 Segment of an encrypted agent 91

5 Segment of an unencrypted agent 91

6 Systems used for validation 99

7 Commercial security products 100

8 Number of intrusion detection validation experiments performed 105

Xll

LIST OF FIGURES

FIGURE Page

1 Client-server and code-on-demand paradigms 8

2 Basic mobile-agent paradigm 9

3 Computing with encrypted functions 17

4 Code obfuscation 18

5 Mobile agent communication taxonomy 30

6 Symmetric and asymmetric cryptography 41

7 Proposed methodology 45

8 Basic structure of a mobile agent 47

9 Protection for a mobile agent 50

10 Agent Coordinator 62

11 File dialog box 64

12 Manually setting agent itinerary 65

13 XML message dialog box 67

14 General options for an agent 70

15 Agent server GUI 72

16 Analysis engine output 80

CHAPTER I

INTRODUCTION

A. Motivation

The rapid increase in attacks on computer systems has made intrusion detection

systems (IDSs) increasingly popular in academic, corporate, and government networks.

It is estimated that approximately $100 million dollars in sales of IDS systems were

made in 1998 [1]. While IDSs are not new, research into improving their performance is

ongoing. One new area involves using mobile agents in implementing intrusion

detection systems. Research in this area is continuing in many universities and labs, but

has not yet entered the mainstream community. The lack of security for mobile agents is

a primary factor that has inhibited their widespread use in real-world applications,

including intrusion detection systems. Thus, providing security for mobile agents is key

to building useful applications based on the mobile agent paradigm.

An intrusion can be defined as "any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource" [2]. Thus, an intrusion detection

system must identify "unauthorized use, misuse, and abuse of computer systems" [3] in a

network. A good IDS should run independently of the processes already on a system,

and should quickly provide information to a system administrator regarding any

This dissertation follows the style and format of IEEE Transactions on Automatic Control.

suspicious activity on hosts in the network [4]. Also, an IDS should be well protected

and resilient to subversion, as it could be the first target of any attack to a system.

A mobile agent is simply "a program that represents a user in a computer network

and can migrate autonomously from node to node, to perform some task on behalf of the

user" [5]. Mobile agents offer several advantages over the more classic client-server and

peer-to-peer paradigms [6-12]. First, when implemented correctly, they can reduce the

overall communication traffic in the network. Because a mobile agent doesn't always

have to stay in contact with its originating host, the number of interactions to carry out

some action can be reduced. Second, mobile agents have the ability to engage in high-

bandwidth communication with a server. Since the code that makes up a mobile agent is

generally much smaller than the data to be operated on, moving the agent instead of the

data can greatly reduce the communications load among hosts on the network [13].

Third, mobile agents allow the user to create specialized services by tailoring agents to a

specific need. Service customization is a major asset provided by code mobility because

re-tailored agents can be quickly designed to perform new functions [14-18].

Using mobile agents in the intrusion detection domain offers several advantages over

more traditional methods. Crosbie and Spafford [19] compared these small, lightweight

agents to current monolithic approaches for IDSs and asserted several advantages. First,

agents are more easily tailored and can be quickly changed to observe new host

behaviors. Security experts recommend that networked organizations should regularly

update their security systems, such as anti-virus and intrusion-detection software [20].

As organizations such as the Computer Emergency Response Team (CERT) [21] and

others find and disseminate information on new vulnerabilities, new agents can be

written and dispatched to look for these problems on network hosts. Second, agents can

be very efficient if they are written to be simple and to consume as few system resources

as possible. These agents can impose a lower overhead on network bandwidth and other

resources than can some of the current, more centralized approaches to intrusion

detection. Third, intrusion detection systems using mobile agents are more fault tolerant

in that the components that makeup the system are moving and are not centrally located.

The failure of a host does not necessarily interfere with a mobile agent as it can easily

reroute itself around problems in the network. This makes such systems more resilient

to subversion. A final advantage of using mobile agents in this domain is that they scale

well to larger systems. As a network grows larger, more agents can be added to migrate

through hosts looking for suspicious activity.

It is clear that using mobile agents for intrusion detection offers many benefits over

traditional approaches; however, before these systems can be deployed in real settings,

the major obstacle of providing adequate security for the agents themselves must be

overcome [22]. The core problem of such an agent-based system is this: an agent owner

cannot trust its own agents (once they have been dispatched), and agents and the hosts

they run on do not trust each other (mutual suspicion) [23, 24]. Even in a closed, so-

called "trusted" environment, these problems are not easily overcome, because there is

no guarantee that hosts and users are (or will remain) benevolent and cooperative [23].

Worse still, if a host is penetrated and the attacker gains access to a traveling agent, he

will potentially be given a wealth of new information that will help him attack other

hosts in the network and further penetrate the system. "If an attacker has detailed

knowledge of the detection systems installed at a particular site, he is better able to avoid

its triggers. As such, it would be better to deploy an IDS whose triggers are not easily

analyzable" [25]. Hence, security for these agents is critical. Chess, et al. summarize

this problem well: "It is difficult to exaggerate the value and importance of security in an

itinerant agent environment. It is, without a doubt, one of the cornerstone issues" [6].

Unfortunately, solutions to many of these problems currently do not exist.

B. Research Objectives

The overall intent of this research was to develop a methodology for protecting

mobile agents in distributed intrusion detection systems and to demonstrate the ability of

such agents to address the shortcomings in current host-based IDSs. This methodology

supports the defense of computer systems through a secure, mobile agent-based

architecture. The following research objectives accomplished this intent:

• Research, develop, and apply mechanisms for securing mobile agents in intrusion

detection systems that:

o Ensure agent confidentiality, integrity, and availability through the use of

cryptographic methods.

■ The confidentiality of mobile agent code and data will be

protected during transit between hosts.

■ The integrity of mobile agent code will be monitored so that any

changes to an agent will be detected.

■ The integrity and confidentiality of data collected during an

agent's lifetime will be ensured so that subsequent hosts cannot

view this data or make changes without detection.

■ Unauthorized changes to an agent's itinerary will be detected,

o Protect mobile agents from denial-of-service attacks.

■ Malicious or malfunctioning hosts that attempt to remove or

suspend agents will be detected.

■ Various hold-back, checkpointing, and other techniques will be

used to ensure that agents are not removed from the system except

by the originator.

o Provide authentication of both agents and hosts to prevent spoofing.

• Measure and compare the capabilities of secure mobile agents.

• Develop a prototype secure mobile agent system to demonstrate the feasibility of

this approach.

C. Overview

Chapter II presents a survey and review of the current literature that serves as

background for this research. The purpose of Chapter II is to describe work that has

been previously done and to provide sufficient background material for this dissertation.

The domain areas described include mobile agents, intrusion detection, distributed

systems, computer security, and cryptography.

Chapter HI describes the proposed methodology for protecting mobile agents in the

intrusion detection domain. This chapter describes the design of each component used

in this methodology, with emphasis on the components that have been prototyped.

Chapter IV provides details of the actual implemented prototype system, including

the mobile agent infrastructure, the security components, and the algorithms used. It

also describes the interactions of the system components and how they support the

methodology.

Chapter V describes the results of this doctoral research. It describes the performance

of the overall system and the details of the testing procedures. This chapter also

describes the experiments used to demonstrate the correctness of the methodology.

Chapter VI gives a summary and presents the major conclusions of this research.

This chapter also summarizes the contributions of this work to the field of computer

science and makes recommendations for future research.

CHAPTER II

LITERATURE REVIEW

A. Overview

The development of an architecture to secure mobile agents in intrusion detection

systems borrows ideas from previous work in computer security, mobile agents,

intrusion detection systems, and distributed systems. While there has been significant

research in intrusion detection and mobile agents, there has been limited research in

providing adequate, integrated security for mobile agents in the intrusion detection

domain that provides agent confidentiality, integrity, and availability. The following

sections survey significant previous work in these areas and discusses these areas in

sufficient detail to provide background for this research.

B. Mobile Agents

Three basic programming paradigms exist for distributed computing [10]. In the

client-server paradigm, a server provides some set of services that allows various clients

in the network to access some system resources as illustrated in Figure la. The code that

provides these services is located locally on the server; that is, the server holds the

"know-how" for implementing the services as well as the processor capability to carry

them out [10].

In the code-on-demand paradigm, the client holds the resources needed for execution,

as well as the processing capability, but may lack the "know-how" to execute its task

Server

(a) Client-Server Paradigm

Server

Client
Know-
how

Know-
how

AIT " —

(b) Code-on-Demand Paradigm

Figure 1: Client-server and code-on-demand paradigms [10].

due to a lack of code [10]. In these instances, another host in the network provides the

needed code in order to allow the client to proceed with its execution (see Figure lb).

An example of this paradigm is a Java applet.

A third programming paradigm is that of the mobile agent. In this paradigm, hosts in

the network are allowed flexibility to possess any mixture of know-how, access to

resources, and processing capability [10]. The know-how is not tied to any particular

host in the network, but is available to any host on the network through mobile agents

[10]. This paradigm offers much greater flexibility in determining how a network's

resources and processing capabilities will be utilized. The mobile agent paradigm is

illustrated in Figure 2.

1

Figure 2: Basic mobile-agent paradigm [10].

The mobile agent paradigm is not new. The notion of a mobile agent developed from

process migration and remote job processing research in the 1970's and mobile

computing and distributed system research in the 1980's [18]. The pervasive use of

computers and ubiquitous network interconnectivity, however, has effected a new influx

in research of agents. This research falls within one of two camps: multi-agent/

intelligent systems and mobile agents in distributed systems. The former group of

researchers focuses primarily on stationary objects that communicate with each other in

a distributed system in order to perform some common task [26]. The latter group is

doing research in areas of agent mobility; that is, the ability to autonomously transfer

code and data between multiple hosts. While the characteristics of what exactly defines

10

a mobile agent vary throughout the literature [27], for purposes of clarity, a mobile agent

will be defined for this research simply as "a program that represents a user in a

computer network and can migrate autonomously from node to node, to perform some

computation on behalf of the user" [5].

1. Mobile Agent Security

There are several vulnerabilities specific to mobile agent systems [23]. First, they

have no inherent privacy - their code and data can be viewed by any host that executes

it. Because an agent must rely on an execution environment in order to run, they have to

expose themselves at some level to the system. This asymmetric power relationship

between hosts and agents make agents very vulnerable [28, 29].

Second, a host can tamper with an agent's code or data. Just because a host can view

an agent's data does not mean that it will necessarily change it. Malicious servers,

however, can tamper with agent code or data in order to change its behavior. Clever

servers can change an agent to actually do something malicious on its behalf. Malicious

servers could even make random changes to an agent, knowing that those changes will

alter the results it obtains or cause it to malfunction in some way.

Third, a malicious host can execute an agent's code incorrectly or incompletely.

There is no guarantee that a host will execute an agent's code to completion, or that it

will execute it at all. A host could execute only selective portions of an agent's code,

bypassing critical subroutines, in order to cause an agent to obtain incorrect or

incomplete results.

11

Fourth, an agent can be interrupted or terminated. A server could simply delete an

agent that it currently hosts. If no mechanisms exist to counter this, the agent would be

permanently lost. Even benevolent servers might inadvertently delete an agent if they

are malfunctioning or experience a power loss.

Fifth, a host can lie about execution results, its own identity, or any other data

gathered while an agent is on its site. Malicious hosts could give an agent incorrect data,

knowing that this data will cause the system to incorrectly evaluate some result.

Sixth, a host can eavesdrop on any agent communication. Servers that are hosting

agents can intercept and read any communication the agent has with other agents or

other servers while on its system. This makes the task of securing these communications

very difficult.

The reciprocal problem of protecting hosts from malicious agents is well-researched,

and many technologies exist to address this problem [30]. The most effective

technology is the sandbox. The basic sandbox model of protection attempts to contain

mobile code in a special environment such that it can cause no harm to the host outside

of that environment. The sandbox accomplishes this by placing special restrictions on

file system and network access. The most common implementation of the sandbox

model is in the Java interpreter running inside most Internet browsers [30]. The Java

approach, while not perfect, does an adequate job of protecting hosts from malicious

agents when implemented correctly.

Despite all of these potential problems, mobile agents offer many advantages over the

more classic client-server and peer-to-peer paradigms [6]. These advantages, however,

12

cannot be fully realized in real-world applications until the problem of providing

adequate security for these mobile agents has been addressed [31]. The following

sections survey significant previous work in the area of mobile agents security and

discuss these areas in sufficient detail to provide sufficient background knowledge.

a. Trusted Environments

The most common approach for protecting agents is simply to restrict agent migration

to trusted hosts [32]. In this approach, agents cannot move to hosts that are unknown or

untrusted. The primary problem with this approach is that it is absolute, in that the

system either fully trusts a host or it does not, and "it relies on blind-faith that all hosts

and agents are consistently benign" [23]. This form of protection is not realistic because

most real-world applications will require agent mobility among unknown or untrusted

hosts in order to function [33], and it is not always clear whether a host is trusted in

advance or not [34]. In addition, this approach severely reduces the number of hosts that

can be visited. One of the primary advantages of using mobile agents is the freedom

they allow in migrating through open and unknown networks. This advantage would be

eliminated by assuming trusted hosts because agents could not migrate to unfamiliar or

newly added hosts. Moreover, even if agents were restricted to fully trusted networks,

nothing prevents these once trusted hosts from later being subverted.

b. Reputation Servers

Another approach to agent protection relies on the ability to detect when a host

misbehaves. These systems suggest using reputation services [34, 35] that provide

13

information on the trustworthiness of principals, similar to that of the Better Business

Bureau for business. Before an agent migrates to an unknown host, it looks up the host's

current reputation based on its past behavior to determine if it is trustworthy. If the host

appears reputable, the agent proceeds with the migration. On the occasion that a host is

found to be "misbehaving", it is reported to one of these services where it loses

reputation because it has not "played by the rules".

This reputation approach suffers from several problems. First, it provides no real

protection for the agent, in that only after something damaging has occurred will future

agents be aware of potential problems. Second, hosts could be subject to "character

assassination" attacks [34], where agents maliciously complain about a host to damage

its reputation even though it has done nothing wrong. Third, it is not always possible to

detect when a host has misbehaved, or even to classify the type or severity of damage

inflicted by a malicious host.

c. Legal or Contractual Protection

Another non-technical approach to protecting agents is through legal or contractual

means [32]. Agent servers promise, usually through some contractual arrangement, that

they will not violate the privacy of agent code or data and that they will not interfere

with an agent's computation [32]. This approach requires no additional technical

mechanisms in order to secure agents as they migrate.

These arrangements, however, suffer from several major problems [32]. First, an

agent owner must be able to detect when a host has breached its contract in order for this

system to be feasible. This is difficult to do without additional technical mechanisms

14

included with each agent. Second, even if an owner could detect that an agent contract

was violated, it must be able to prove through some non-repudiable evidence which host

violated the contract. Third, agent owners must have some legal or other remedy

available in which to penalize hosts that tamper with agents. This is difficult to do

across administrative domains where no legal protections exist.

d. Execution Tracing

Vigna [36] suggests an approach that allows an agent's owner to detect if an agent

has been modified and to prove which host performed the act. Vigna has proposed

cryptographic traces of all computations performed by a mobile agent as it visits each

host. The execution of an agent is recorded in such a manner that it cannot be forged by

the host [36]. Each host must maintain logs of the operations performed by each agent

while resident. Using cryptographic hashes of these traces, agent owners who suspect

foul-play can request these logs which can verify whether an agent has been tampered

with or not. The owner may then "use legal or organizational ways to get its damage

refunded" [34].

This method of agent protection is exploratory and all "current approaches are very

theoretical" [32]. In addition, manual verification of these logs "is an expensive process,

which is likely to be inefficient and error-prone" [37]. In addition, the size and number

of logs that must be maintained in a large system with many hosts and many agents is

enormous [38]. These limitations greatly restrict the feasibility of this approach in any

real-world mobile agent system.

15

e. Software Assertions

Software assertions are functions, usually evaluating to true or false, whose value is

based on some semantic condition of a program's state. They have been used in the past

in software testing, fault detection, and program correctness research. Software

assertions have been proposed as a means of protecting agents by providing agent

owners with snapshots of an agent's state as it migrates [23]. Using these snapshots, an

agent owner can determine if an agent's results should be trusted.

Embedding protective assertions into agents is a complicated process. First, the

agent owner has to employ some form of fault injection which attempts to identify

weaknesses in an agent by simulating potential malicious behavior by a future host. The

fault injection analysis then recommends which software assertions are best suited to

protect the agent from discovered weaknesses [23]. Next, the agent owner must

manually structure the software assertions for each agent and specify where the

assertions should be embedded in the code. The owner must also specify what

information is indicative of untrustworthy data returned from an agent. Following this

process, a parsing tool inserts the assertions into the agent's source code. Finally, an

analysis oracle is generated which runs on a specified machine and is responsible for

collecting the results from agent assertions and analyzing the results. As an agent

executes on a host, the results from each assertion is sent to the oracle for analysis. The

oracle then informs the agent owner if it detected any unusual results.

The authors of this approach admit that it is not foolproof and describe several

shortcomings [23]. First, software assertions still do not prevent a malicious host from

16

tampering with agents, removing assertions, or giving false information. Second, this

approach involves additional overhead because all intermediate results must be shipped

off to the oracle during each execution on every host. Another criticism is that the

process of determining which assertions are needed and embedding them into the agents

can be tedious and slow for a human operator.

f. Mobile Cryptography (Computing with Encrypted Functions)

Sander and Tschudin describe an approach to protect agent code from malicious hosts

by using encrypted functions [39]. Their method uses encrypted programs that can be

run on a foreign host without being decrypted [40]. As Figure 3 illustrates, this approach

allows a host to execute an agent program embodying some encrypted function without

the host being able to determine what the original function is. In other words, a function

is transformed (encrypted) into another function which hides the original functionality,

and this encrypted function is then implemented as a program that can be executed by an

agent server [41]. An agent server can plainly see and execute these functions, but has

no way of obtaining the original functionality.

So far, they have only been successful in using this approach with polynomial and

rational functions. The major drawback is that no known methods exist in which

arbitrary functions can be transformed into encrypted forms for use in mobile agents.

Even if this did work, it would be a dubious prospect to require hosts to allow an agent

to execute arbitrary encrypted functions. Also, while this technique could be powerful if

17

(1) Alice encrypts/.
(2) Alice create a program P(E(fl) which implements E(f).
(3) Alice sends P(E(f)) to Bob.
(4) Bob executes P(E(f)) at x.
(5) Bob sends P(E(F))(x) to Alice.
(6) Alice decrypts P(E(F))(x) and obtains/^.

Alice 6
fix) _ E(f)(x)

1
2 5

3
Bob

■ ' ' ' ' 4
P(f)(x) W/))W < - X

Figure 3: Computing with encrypted functions [39].

extended to use with arbitrary programs, agents are still vulnerable to denial of service

attacks, replay, and experimental extraction [38].

g. Obfuscated Code

Hohl suggests an approach called "time limited blackbox protection" [34] in which

agent code is scrambled (not encrypted) in such a way that it makes its function very

difficult to understand by a third party (see Figure 4). Even though the code remains

readable, its structure, variable names, and control flow are so jumbled, that it would

take someone a long period of time to decipher what the program is doing. In Hohl's

18

approach, he suggests using this method when the code is not intended for long-term

concealment, as obfuscation does not carry the same time protections as encryption does.

There are several problems with this approach. First, it is impossible to determine the

relationship between the amount of code scrambling and the amount of time protection it

affords. This is especially important as many attacks are automated and a computer

would require much less analysis time than a human. Second, there are no known

algorithms that can take arbitrary code and scramble it for time protection of a given

length [38]. Thus, it is impossible to say that a given amount of obfuscation results in a

specified amount of protection.

if (a(b) < c) {
b = s(d(e) + f);

}

Original Code

Obfuscated Code

z = 0;
DO

if (z = 0) then tl=a(b);z=l;continue;
if (z=l) then t2=tl<c;z=2;continue;
if (t2) then t3=d(e);z=3;continue;
if (z=3) then t4=t3+f;z=4;continue;
if (z=4) then b=t4;z=5;continue;
if (z=5) then break;

LOOP

Figure 4: Code obfuscation [34].

19

h. Partial Result Encapsulation

Another approach used to protect agents is called partial result encapsulation, where

results of an agent's actions are cryptographically encapsulated before leaving each host.

When an agent returns to its point of origin, or possibly some intermediate point, the

data can be retrieved and verified in order to detect any modifications. With this

method, agents can ask each host to sign new data and to append this (possibly

encrypted) information to the agent before the agent moves to another host. If

performed correctly, a malicious host will not be able to modify or view the signed data

"because it cannot forge the signatures of other hosts" without access to private keying

material [28]. This method is very useful in preventing potentially malicious hosts,

which always have total access to a mobile agent's state, "from corrupting any partial

results computed while the agent was at a previous host" [32, 42]. The downside of this

method is that an agent that encrypts its data for privacy will not be able to use that data

in any decision making until it returns to its original host. This is not necessarily bad,

because many applications do not require use of intermediate data in order for their

agents to function properly. Another disadvantage is that the size of the agent's data

grows linearly with the number of hosts in an agent's itinerary.

A different method of encapsulating partial results is for an agent, just prior to

migrating to another host, to encapsulate the results generated on the current host and

ship them back in a message to the agent originator [6]. In this stateless scheme, data is

never kept with the agent itself, but is always kept at the owner's site. The primary

benefit of this approach is the immediate acquisition of knowledge of all intermediate

20

operations by an agent. The originator would not have to wait for an agent to return

from its completed route before learning about its results. There are two primary

disadvantages to this approach, however. First, this scheme greatly increases the amount

of communication and bandwidth used on the network. Second, this scheme destroys

the basic idea of autonomous agents - they should require little-to-no interaction with

the agent owner during their operation. In addition, this method would preclude the

possibility of an agent going off-line [23]. This scheme basically degrades to a form of

client/server and thus loses the advantages of using mobile agents in the first place.

i. Itinerary Protection

Several approaches have been suggested for dealing with mobile agent itineraries [5,

41,43]. One approach constructs an ordered sequence of sites to visit and loads this

itinerary into the agent. "The agent uses this list to sequentially move from site to site"

[44] through the network until it reaches its destination, usually the same as its origin. In

this approach, the agent originator is responsible for determining the circuit for an agent

before it begins migrating around the system [32].

In another approach, the itinerary is determined as the agent migrates, based on

decisions it makes on its journey. While this approach allows more flexibility in agent

movement, it is harder to protect these agents from being hijacked. No feasible scheme

currently exists for protecting itineraries in this form.

A third approach maintains a "secure, verifiable audit trail which records the actual

path followed by the agent" [41]. All major operations and sites visited are recorded

during migration and encryption mechanisms are applied to protect the logs from

21

tampering [45]. When an agent reaches its final destination, the audit trail is examined

to see where the agent has been. Any discrepancies or indications of tampering would

then result in further action by the agent owner.

j. Clone Detection

An agent server can easily make copies of mobile agents that migrate to its site. A

malicious server might do so in order to cause confusion for the agent system, or a host

might inadvertently inject a copy of an agent into the network because of some faulty

behavior. Multiple cloned agents would make it impossible to authenticate the original

from the clone and might lead to multiple executions of the same agent [46]. Thus, the

ability to detect agent clones would be beneficial to maintaining the security of a mobile

agent system.

Baek [47] proposed one method of detecting agent clones and identifying which

agent server generated them. In his method, a centralized coordinator executes a

complex and detailed clone detection algorithm. Agent servers send this coordinator

messages regarding an agent that it is currently hosting. The coordinator determines if

any clones are present by examining the messages from all the agent servers. The agent

server with a legitimate mobile agent receives a message back from the coordinator

indicating that it can execute the agent. All clone agents receive messages that stop their

execution.

This scheme suffers from several problems, the most obvious being that all agent

interactions, to include agent creation, execution, movement, and destruction, must be

pre-coordinated through the coordinator. This could be a major bottleneck in the system,

22

as well as a single point of failure. Likewise, the scheme assumes that the agent

coordinator is always trustworthy and that all communications are secure [47], which is

probably not a good assumption to make in a real-world network.

k. Fault-tolerance

Schneider [48] presents a fault-tolerant approach that attempts to deal with the

effects of faulty hosts by replicating the agent at each visited site. The agent visits

multiple hosts and each host sends the agent's output to every subsequent host to be

visited where voting occurs to mask the effect of faulty hosts [37]. This approach uses

significant bandwidth since every host must be notified of an agent's actions. In

addition, this method cannot detect which hosts are faulty, only that a fault occurred

somewhere in the network.

Another fault-tolerant approach has been proposed which "dispatches two identical

agents to a known set of host systems, where one traverses the systems in one direction

and the other agent does the reverse" [32]. The agent owner then compares the results of

each agent when it returns to its originating host. Based on the comparison, the agent

owner can pinpoint if a malicious host made an incorrect entry into an agent's data store.

This approach can waste bandwidth and "the author of this approach acknowledged that

this approach is only successful in detecting at most one malicious system" [37].

Another approach is to flood a system with agents at different entry points into the

network and hope that one makes it successfully. This is a waste of bandwidth and

offers no guarantees of working [37].

23

2. Example Mobile Agent Systems

With both industry and academia sponsoring active research in the area of mobile

agents, many systems based on this paradigm have been developed over the past decade.

These systems were designed to be integrated into any application domain that might

benefit from using mobile agents. The subsequent sections give background information

on the most popular and interesting mobile agent-based systems developed to date.

a. Telescript

Telescript, developed by General Magic in the early 1990s, was the first system

designed for building distributed applications using fully mobile agents [49]. The intent

was to use Telescript to build an "electronic marketplace" [49] in which producers and

consumers of many types of goods and services could do business remotely over the

Internet. Although the system did not succeed commercially, it became the system from

which many other mobile agent-based architectures were subsequently developed.

The system had three major components: a specialized programming language with

which to program agents, interpreters running on each host that could interpret this

language, and communications protocols that allowed agents to move between hosts.

The Telescript language was object-oriented and was portable among hosts with

Telescript engines. The major communications components of the system were

implemented in this language while application portions of each agent could be written

in C or C++. Interpreter engines were located on each host that allowed agents written

in this specialized language to be executed. These engines also implemented protocols

24

that enabled the packaging and transporting of agents to other hosts using high-level

instructions by the programmer.

Telescript had limited security mechanisms. The only security features to protect

agents themselves were very limited forms of authentication and encryption used only

during agent transfer to prevent eavesdropping [50]. Since most of Telescript's security

features were discretionary, there was always a risk of a programmer failing to correctly

use them. Also, since Telescript assumed that all machines were trustworthy [51],

agents did not have to be authenticated on each move [50], providing opportunities for

spoofing, Trojan horses, and other attacks.

Even though Telescript was the first commercial mobile agent system, it failed to

gain market share because the proprietary language was difficult to learn and the

network architecture was difficult to integrate. General Magic subsequently re-

implemented its original ideas on mobile agents in a Java-based product called Odyssey.

Developers can use Odyssey's Java class library to create mobile agent applications for

their particular domain. The security concerns for Telescript, however, also remain for

Odyssey.

b. D'Agents (Agent Tel)

D' Agents, formerly known as Agent Tel, is a mobile agent system developed at

Dartmouth College in which agents are written using Tel scripts, Java, or Scheme [51,

52]. The primary component of a D'Agents system is an agent server that runs on each

host that supports an interpreted execution environment for mobile agents as they travel

through the network. D'Agents also implements a high-level inter-agent

25

communication protocol similar to RPC that enables agents to pass messages to each

other through a procedure call abstraction or by setting up a streaming connection [52].

D'Agents security focus is on protecting machines from malicious agents, not

protecting agents from malicious machines [52]. While D'Agents provides no built-in

mechanisms for protecting agents, it does call an external cryptographic tool, Pretty

Good Privacy (PGP), to perform authentication checks and for encrypting data in transit.

It is not required, however, that an agent's identity be re-verified at each stop [53]

because D'Agents servers are typically configured so that all hosts under a single

administrative domain trust each other [51]. Gray et al. also detail several other

weaknesses of the system's authentication scheme, including serious vulnerabilities to

replay attacks [51]. In addition to these shortcomings, no means exist of ensuring

availability and fault tolerance of agents should they become lost or intentionally

destroyed. If a host goes down while an agent is executing, the agent is lost [52].

c. Mole

Mole, developed in 1994 at Stuttgart University in Germany, was the first mobile

agent system that was developed using the Java programming language [54]. In Mole,

agents are active entities, which move from place to place in order to rendezvous with

other agents and to access various host services. Mole implements agents as multi-

threaded objects where both agent code and data are transferred during migration. Mole

also addresses agent-to-agent communication by supporting both message passing and

remote method invocations (RMI).

26

Mole addresses the protection of its agents by implementing a 'blackbox' [34] out of

an agent using algorithms to obfuscate the agent's code, making it hard to understand

[54]. These techniques offer no guarantee of agent protection because the degree of

security is not quantifiable. The authors of Mole identify other mechanisms that could

be used to afford better protection for their agents, but none of these techniques are

implemented.

d. Ara (Agents for Remote Action)

Ara [55], developed at the University of Kaiserslautern, is a multi-language system

that has recently added support for Java-based mobile agents. Ara depends on an altered

implementation of the Java Virtual Machine (JVM) running on each of its UNIX

platforms. By altering the JVM, Ara supports transparent continuation of an agent at

any arbitrary point of execution after a migration, thus fully preserving agent state. Ara

also implements a form of agent communication based on the client/server style of

interaction, but leaves the actual choice of communication language open to the

developer.

Ara addresses some of the basic issues of agent protection using well-known public

key cryptographic primitives. Agents can be optionally encrypted during migration to

protect them from eavesdropping. In addition, the Ara developers suggest the possibility

of future security measures to provide authentication, but none of these mechanisms are

currently implemented.

27

e. Aglets

Aglets are mobile agents developed by IBM running on a Java-based system [56].

Like other mobile object systems, agents migrate between agent servers located on each

host in the network. Since the agents are written in Java, thread-level execution state

cannot be saved between migrations. Therefore, Aglets use an event-based scheme in

which specific methods are invoked when certain events occur in its life cycle. For

example, before an agent leaves a server for another host, the onDispatching() method

will be called which handles all the details of removing the agent from its current context

and inserting it into its destination context [56].

While providing interesting solutions to protecting hosts from malicious agents,

Aglets currently have very limited support for the security of agents against malicious

hosts. Karjoth et al. briefly describe possible attacks on its system, including

eavesdropping, replay, masquerade, and repudiation attacks [56]. Their current

implementation, however, does not address these agent protection issues [56], instead

leaving room to possibly build these mechanisms in future versions of the system.

f. TACOMA

The TACOMA project [57], another mobile agent system from the early 1990s,

focused primarily on operating system support for agents. Agents are implemented

using Tel and each site on the network runs a Tel interpreter on which agents may

execute. Because agents are written with scripts, thread-level state cannot be saved

when an agent migrates; therefore, all agents restart their programs when they arrive at

another host.

28

TACOMA almost completely ignored the need for security, so no security

mechanisms were implemented. It did, however, provide hooks so that agent authors

could add their own cryptographic subsystems [51]. The TACOMA team also included

a rudimentary form of fault tolerance for its agents, using a combination of

checkpointing and rear-guards for tracking mobile agents as they migrated [57]. This

provided the limited ability to generate a new agent in cases where a failure caused a

previous agent to disappear from the system.

g. Concordia

Concordia is an agent-based framework that supports developing and executing

mobile agents written in Java [53, 58]. An Agent Manager on each host provides the

execution environment for agents as well as the basic mobility mechanisms necessary to

send and receive agents. Concordia provides inter-agent communication based on either

distributed events or agent collaboration [53].

While Concordia provides many useful mechanisms for supporting the mobility of its

agents and inter-agent communication, the security support is limited. Concordia does

protect its agents in transit by encrypting and authenticating them using Secure Sockets

Layer (SSL) encryption [59, 60]. The system also protects persistent agents that are

waiting on disk through a variety of encryption techniques. Concordia assumes that its

servers are trusted, so once an agent reaches a Concordia server, no protections are in

place to protect an agent while present in memory from a malicious host [53].

Concordia provides a reliable queuing mechanism to ensure reliable agent mobility

between host pairs, however this mechanism does not ensure global availability of

29

agents as they traverse the network [53]. For example, if an agent disappears while

executing on a host, no system-wide mechanisms exist for regenerating the agent.

h. Ajanta

Ajanta is a Java-based system developed at the University of Minnesota in which

Java's serialization features are used for agent state capture before migration [5]. Ajanta

contains the basic mechanisms any mobile agent system needs, but differs somewhat

from other systems in the structure of its agents. The code an agent may need is not

carried along with the agent, but rather code is loaded on demand from an agent-

specified server [41]. Communication between agents is achieved using Java's Remote

Method Invocation (RMI) facilities.

Ajanta provides limited mechanisms for protecting privacy and authenticating agents

during migration, but, does not address the issues of agent availability, regeneration in

case of loss, or the prevention of denial-of-service attacks against agents [41].

3. Mobile Agent Communications

Mobile agents may need to interact with other components in an agent-based system

in order to successfully complete their tasks. Agents must have some mechanism in

which to interact with their local execution environment, with other agents, and with

other application components in the network [61]. The models of agent-based

coordination can be classified based on temporal and spatial coupling [62]. In spatial

coupling, agents and other system components "must share a common name space in

order to communicate" [62]. That is, an entity must know the name of the other entity to

30

which it wishes to communicate. In temporal coupling, communication is based on

whether the sender and receiver of any communication must both exist at the time the

actual communication takes place [62]. Temporally coupled communication models are,

by definition, synchronous. This basic taxonomy of mobile agent communication is

shown in Figure 5.

Direct communication is both spatially and temporally coupled. Entities send

messages directly to one another. Recipients of any communication must exist prior to

the communication and senders must know the name of the receiver. While most current

client-server systems use this model for communications, it is not well-suited for mobile

Coupled

Spatial

Uncoupled

Temporal

Coupled Uncoupled

Direct

Meeting-
Oriented

Blackboard-
Based

'Linda-like"

Figure 5: Mobile agent communication taxonomy [62].

31

agent communication for two reasons. First, since components are mobile, a message

sender may not know the location of the receiver at the time of communication. In

addition, if agents are created dynamically, it may be difficult to determine which agents

exist at any given time [62].

Meeting-oriented communication models are temporally coupled, but spatially

uncoupled. An agent does not necessarily have to know the name of the intended

recipient of it communication. Instead, agents join at predetermined meeting points

where they communicate with other entities in the system. However, all parties must

pre-exist for any synchronization and communication to take place [62].

Blackboard-based models are temporally uncoupled, but spatially coupled. These

systems rely on a repository to store and retrieve messages. In this model, the sender

leaves a message in the blackboard where the receiver can retrieve it at some subsequent

time [62]. Because messages are left in the blackboard, there is no need for the sender

and the receiver to exist at the time of the communication. This model is well-suited for

"a highly dynamic environment, such as the Internet, where it is very difficult to know

the presence and the location of a given agent" [62]. This is the model that was chosen

for this research, for reasons indicated in Chapter m.

The fourth coordination model is named "Linda-like" by the authors of the taxonomy

after the Linda parallel programming language [62]. This model is fully uncoupled, both

spatially and temporally. Similarly to the blackboard-based model, a repository exists

for the storage and retrieval of messages. In this model, however, the messages are not

addressed to a particular recipient. Instead, entities retrieve messages using Linda-like

32

tuples in which a pattern matching mechanism permits an agent "to retrieve a message

by specifying only few parts of the message itself [62].

C. Intrusion Detection Systems

The goal of any intrusion detection system is to identify that an intrusion has been

attempted, is currently underway, or has occurred in the past [63]. This usually involves

some form of dynamic monitoring of the actions that are taken in a system and deciding

whether those actions are indicative of an attack [64]. In order to perform this function,

intrusion detection systems need some knowledge-base of known attacks, information on

the current state of the system being monitored, and audit information that describes the

events that have occurred in that system [64]. Based on this information, two significant

questions arise: "what data should be collected and where should the analysis of this data

be accomplished" [65]. Different systems answer these questions in different ways.

Intrusion detection systems, however, are not a cure-all for computer security. As

systems grow and become more connected, the straightforward task of even noticing a

penetration or penetration attempt becomes increasingly difficult. Often times, intrusion

detection systems cannot distinguish between events that can be considered normal and

those events that indicate intrusive behavior [66]. These systems are vulnerable to

mistakenly characterizing normal behaviors as attacks, to missing attacks altogether, to

being disabled, and to incomplete or incorrect knowledge about what should be

considered an attack [67]. The sheer quantity of information itself needed to monitor a

network frustrates an intrusion detection system's ability to rapidly identify problems. In

33

addition, like many other security mechanisms, intrusion detection systems have a very

difficult time dealing with the insider threat.

1. Agent-Based Intrusion Detection Systems

Much of the research currently ongoing in the field of mobile agent-based intrusion

detection systems focuses on either mobile agents or intrusion detection, with little work

on integrating these two into one seamless system. To be successful, both areas need to

be examined together to identify issues that can only be addressed in an integrated

system. While the types and categories for intrusion detection systems are many and

varied, this section describes the previous research that has been done in the area of host-

based intrusion detection systems that have some agent components (whether mobile or

not). Currently, only a few systems have been proposed that approximate this approach.

A survey of these systems follows.

a. AAFID (Autonomous Agents for Intrusion Detection)

Purdue University has proposed an architecture called AAFID (Autonomous Agents

for Intrusion Detection) for building intrusion detection systems that use agents

organized in a hierarchical fashion for data collection and analysis [68]. The system

architecture is built around three primary components: agents, transceivers, and

monitors.

An agent is an entity that constantly monitors activity for a specific host on which it

resides and "reports abnormal or interesting behavior" to a higher-level entity, a

transceiver [68]. For example, an agent could be looking for a large number of login

34

failures. If some threshold is reached, the agent would report the activity to its

corresponding transceiver for action. Agents themselves cannot generate an alarm, but

instead rely on a transceiver or monitor to generate an alarm based on their more

complete knowledge of the system. As transceivers combine the different reports from

the various agents on the host that report to it, it builds a picture of host-level activity for

the specific maphine it is monitoring [68]. All communication between AAFTD agents is

done through a transceiver, which filters the information and decides what to do with it

based on how the agents on the host are configured [68]. Agents can have any

functionality the system developers desire - some can be written as simple monitors for

certain activities and others can be more complex entities that do analysis on a set of

observations. While agents can be updated or added to the system, agents are not mobile

once they have been dispatched to a host transceiver [1].

Transceivers are located on each host in the network and provide oversight of all

agents running on its host. They give local commands to agents on their host and also

perform data reduction on the information provided by the agents. Since transceivers

reside on all hosts that need to be monitored in the network, they can serve as external

interfaces between hosts in the system. Transceivers respond to commands issued by

higher-level monitors and also provide these monitors with information provided by

agents about host activity as necessary.

Monitors are high-level entities that have access to network-wide data to provide

system-wide command and control of the other entities. The functionality of monitors

and transceivers is similar. The main difference between the two entities is that monitors

35

control entities residing on several different hosts, whereas transceivers control only

agents residing on a single host [68]. Monitors have the ability to detect events that

might not be detected by agents or transceivers, such as suspicious behavior among

several hosts. Monitors can themselves be organized hierarchically, to reduce the

amount of data to be processed and to provide for increased scalability. Higher-level

monitors communicate with the user interface to provide feedback on the system and to

obtain command and control information from the user.

While acknowledging that security should be provided for its stationary agents, no

mechanisms are in place to provide for agent protection. Also, the system developers

understand the need for security in the communications components of the system, but

no encryption or authentication mechanisms are currently implemented, making the

system vulnerable to many types of attack. Adding security features to this system has

been noted as future work.

b. Hummingbird

The University of Idaho has developed a prototype IDS called the Hummingbird

System [69]. The system attempts to address many of the issues involved in detecting

intrusions on networks whose sites span across domains that are not under a central

authority. Hummingbird is a prototype distributed system built for managing misuse

data to support this form of cooperative intrusion detection across multiple domains [69,

70].

In Hummingbird, an agent is assigned to a host or set of hosts and communicates with

other such agents in a peer relationship located on different machines in the network. A

36

group of manager entities also exist which are responsible for transmitting commands to

other managers and to their subordinates. Agent communication is not restricted to

entities just within its local domain, but can also communicate with entities on hosts that

reside in other domains. Agents continuously collect data on host activity and perform

simple filtering for both data reduction and data sanitization. Individual agents make

decisions on whether to share data they have collected based on their own locally

controlled policies on trust, information flow, and cooperation between entities [69]. All

communication between agents is encrypted and authenticated using the Kerberos

system [71]. Hummingbird does not provide autonomy nor mobility to its agents, nor

does it address issues of agent availability or prevention of denial-of-service attacks.

Hummingbird does, however, offer some unique mechanisms for distributed data

sharing across administrative domains that might be useful in a mobile agent-based

intrusion detection system.

c. Intelligent Agents for Intrusion Detection

A project at Iowa State University is based on intelligent agents for intrusion

detection [72]. It proposes an artificially-intelligent design and architecture for an IDS

built from distributed components that use data mining techniques to monitor system

activity. This system offers no mechanisms to quickly tailor, specialize, or change its

agents once they are in place. In addition, it would not be fielded as a real system

because of its lack of security for its components. Security is not addressed in their

research and no form of agent protection is provided. It appears that all of the

37

components of this system are vulnerable to attack. Adding protection mechanisms

would greatly enhance the viability of using this system in a real-world setting.

d. Intrusion Detection Agent System

The Information-technology Protection Agency (IPA) in Japan is working on a

project called the Intrusion Detection Agent system (IDA) [73]. IDA has two

characteristics that are uncommon in most conventional IDSs. First, it uses mobile agent

mechanisms for tracing the origin of intrusions among various hosts in the system.

Second, its mechanisms for watching for suspicious behavior are based on watching for

specific events that relate to possible intrusions, rather than analyzing all user activities.

If a suspicious event is detected, mobile agents collect information related to the event in

order to determine its origin.

IDA deploys sensors on each host to monitor system logs in search of activity that

may be indicative of an intrusion. If such activity is found, the sensors send information

to a manager which is responsible for determining if an intrusion has actually occurred.

If a manager makes a positive determination, it will dispatch a series of agents in an

attempt to gather more information on the suspected intrusion and to trace the intrusion

through the network.

IDA employs two types of agents: one to trace the path of a suspected intrusion back

to its point of origin and one to collect information on possible intrusions. When a

sensor reports an indicator of possible intrusion to a manager, the manager first

dispatches a mobile tracing agent to autonomously trace the intrusion from host to host

back towards its point of origin. As it migrates, the tracing agent activates an

38

information-gathering agent for each host it visits. Instead of each host sending its

logging information back to a central server, and thus using massive amounts of

bandwidth, these information-gathering agents collect information related only to the

suspected intrusion and then move to a manager where its data is analyzed. As all of the

tracing and information-gathering agents collect information, they send it to a common

bulletin board where all system entities can get a system-wide view of what is

happening. The manager would then make a determination whether an intrusion actually

occurred by evaluating information in the bulletin board [73].

IDA is being implemented using D'Agents, which means its agents have all the

vulnerabilities previously mentioned for this mobile agent system. While the use of

mobile agents in this IDS are novel and interesting, IDA would benefit greatly if security

mechanisms were added to protect its agents.

e. EMERALD (Event Monitoring Enabling Responses to Anomalous Live

Disturbances)

EMERALD is a distributed intrusion detection system developed by SRI

International that uses "distributed, independently tunable, surveillance and response

monitors" as its primary component [74]. These monitors, similar to agents, analyze and

respond to malicious attacks on local hosts. They also support the EMERALD

framework for coordinating host analyses enabling the system to better detect network-

wide attacks.

While EMERALD'S service monitors are dynamically deployable, they remain

stationary once they are dispatched. Thus, these components cannot be considered

39

mobile agents. EMERALD does, however offer some novel approaches to network-

wide surveillance that can be applied to other intrusion detection systems which are

based on mobile agent architectures.

The only security requirements included in EMERALD involve its messaging

system. Messages between monitors and other components in the system can be

protected using pluggable transport modules [74] to ensure communication security,

integrity, and reliability.

D. Cryptography

The cryptographic algorithms underlying many of the protection mechanisms used in

this system have been well researched for many years. The issues of providing

confidentiality, integrity and authenticity for mobile agents can be addressed by using a

combination of these techniques.

1. Encryption

A number of cryptographic algorithms can be used in order to provide confidentiality

for information that must navigate an insecure network. All modern algorithms use a

mathematical function for both encryption and decryption, in which the function relies

on some key or set of keys in its operation. These key-based algorithms are classified as

either symmetric or asymmetric based on how the keys are used to encrypt and decrypt

information.

In symmetric key algorithms, the key used to encrypt data is the same key used to

decrypt data. In cryptosystems based on symmetric algorithms, the sender and receiver

40

must agree on a key prior to any secure communication. The key must remain secret

from any third party as long as the communication must remain secret. Figure 6

illustrates this process.

Symmetric key algorithms can be classified into two categories based on how the

algorithm processes data to be encrypted. Stream ciphers encrypt data one bit (or byte)

at a time. Stream ciphers are often implemented in hardware because they are efficient

in silicon. Such hardware implementations are often found in digital communications

equipment because bits can be encrypted as they go by [75] and they have no error

propagation [76]. Block ciphers encrypt data in groups of bits called blocks. Block

ciphers are often implemented in software because they avoid time-consuming bit

operations and they more easily operate in computer-sized blocks of data [75].

Asymmetric algorithms, commonly referred to as public-key algorithms, use a pair of

keys: one key is used for encryption and another is used for decryption [77]. These

algorithms are based on the theory that the decryption key cannot be calculated from the

encryption key in any reasonable amount of time. The encryption key can be made

public and thus is called a public key. The decryption key is kept private and is only

known by the owner. Thus, anyone can send a person a secret message by using the

receiver's public key to encrypt the message. Only the receiver with the corresponding

private key will be able to decrypt and read the message. Figure 6 illustrates a typical

public key algorithm.

41

Plaintext

Plaintext

Shared Key Shared Key

Encrypt
Ciphertext

Decrypt

Symmetric Key Cryptography

Asymmetric Key Cryptography

Recipient's
Public Key

Recipient's
Private Key

Encrypt
Ciphertext

Decrypt

-*• Plaintext

-*■ Plaintext

Figure 6: Symmetric and asymmetric cryptography.

2. Digital Signatures, Integrity, and Authentication

Public key algorithms can also be used to produce digital signatures. If a message is

encrypted with the sender's private key, then the recipient of the message can ensure that

the message came from the correct person because only the sender's public key decrypts

it. Using a public key algorithm in this manner provides an excellent means of

authenticating messages.

A cryptographic primitive central to public key cryptography is the one-way function.

One-way functions have a unique property: they are easy to compute, but are

42

significantly difficult to reverse. In other words, given some value x, it is easy to

compute fix), but given fix), it is computationally infeasible to compute x [75, 76].

A special form of a one-way function is the one-way hash function, also commonly

referred to as a message digest, cryptographic checksum, or message integrity check. A

simple hash function takes a variable length input, sometimes referred to as the pre-

image, and converts it to a fixed-length output called the hash value [75]. A one-way

hash function is a hash function that only works in one direction; that is, it is easy to

compute the hash value from the input string, but computationally difficult to generate

an input string that hashes to a particular hash value. A good one-way hash function that

is suitable for use in cryptographic protocols should be collision resistant, meaning that

it is computationally infeasible to generate two different input strings which hash to the

same output [76].

A commonly used one-way hash function algorithm is the Secure Hash Algorithm

(SHA-1). The SHA-1 takes a message of any length less than 264 bits as input, and

produces a 160-bit message digest as output [78]. The SHA-1 is considered secure

because it is computationally infeasible to recover the message corresponding to a given

message digest, or to find two different messages which produce the same digest [75].

The SHA-1 is effective because any change to a message will result in a significantly

different corresponding message digest causing the verification of the signature to fail.

The SHA-1 is based on a similar algorithm for generating message digests, MD4 [76],

but provides increased security against brute-force attacks since it produces a 160-bit

digest compared to MD4's 128-bit output.

43

A variant of the one-way hash function is the message authentication code (MAC),

also known as a cryptographic checksum. A MAC is simply a one-way hash function

with the addition of a secret key [75]. The purpose of a MAC is to provide assurances

about both the source of a message and its integrity [76]. The MAC value is a function

of the input string and a secret key. Only persons with knowledge of the secret key can

verify the hash value.

This technique assumes that two parties that want to communicate, say X and Y,

share knowledge of a secret key Sk. If X wants to send a message to Y, it will calculate

the MAC as a function of the message M and the secret key. The message and the MAC

are then transmitted to Y. Recipient Y then performs the same calculation on the

message that was received and compares the received MAC to the newly calculated one.

If only X and Y have knowledge of the secret key, then the receiver is assured that the

message was not altered and that the message was indeed sent by the alleged sender

[78].

44

CHAPTER III

DESIGN

A. Proposed Methodology

The overall intent of this research was to develop a methodology for protecting

mobile agents in intrusion detection systems and to demonstrate the ability of such

agents to address the shortcomings in current host-based IDSs. This methodology

supports the defense of computer systems through a secure, mobile agent-based

architecture.

The system design to support the proposed methodology for protecting the

confidentiality, integrity, and availability of mobile agents is summarized in Figure 7.

This design involves the interaction of a number of distributed components and tools.

The components and their interactions were designed to provide security for each aspect

of the system. Within each component, a number of functions are outlined. Each of

these various components, their functions, and their interactions are discussed in the

following sections.

1. System Overview

Security is of fundamental importance in this system. In order to build an attack-

resistant architecture in which mobile agents can execute and migrate, each of the

components in the system were designed from the beginning with security in mind.

Although introducing strong security mechanisms appear to conflict with flexibility and

45

IDS Analysis
Engine

Agent Coordinator

Agent Management

Security

Communications

 A—-

V

X
Agent Server

Persistence Manager

Agent Management

Security

Communications

—A

A*
*&

Intrusion
Detection

Components

Secure
Blackboard

 A

V V
Communication Channel

Figure 7: Proposed methodology.

usability, not addressing security issues prevents such mobile agent based systems from

being fielded as real-world applications [79]. The interactions between components and

the security implications of each is described next for each element of the system.

2. Mobile Agents

A mobile agent is simply "a program that represents a user in a computer network

and can migrate autonomously from node to node, to perform some task on behalf of the

user" [5]. Once a mobile agent is dispatched, it becomes independent of the creating

host and can operate asynchronously and autonomously. A fundamental characteristic

46

of mobile agents is that they should only reside on one host at a time; however, since

mobile agents move from host to host, they can occupy different hosts at different times.

In addition, agents should be independent of one another in that their executions can be

performed concurrently on different hosts [16].

Mobile agents in this system are composed of three basic components: interpreted

code, data (or payload), and an itinerary as illustrated in Figure 8. Agents were designed

to either follow a predetermined itinerary that is established by the agent coordinator

(discussed below), or to follow a random path based on user established criteria. Upon

arrival at a host, the agent server first checks the incoming agent's security credentials

before executing the agent's code. Data that results from an agent's execution on a

particular host is stored in a reserved location as payload for that host. Upon the return

of an agent to the agent coordinator, analysis is performed on the collected data to

determine if any indications of security problems are present.

This design used agents in a roaming paradigm. That is, many different agents, with

different functions, are dispatched to roam through the network looking for potentially

intrusive behavior. These agents collect information specific to their particular purpose

as they travel. Agents can be designed very generally to just gather data as they move

from host to host. Others may be designed to look specifically for particular evidences

of security problems. Some agents may be written to deliver information to hosts as

they travel (i.e. delivering new attack signatures to stationary host-based IDS

components). Using an adequate number of functionally disparate agents at a reasonable

frequency will provide sufficient network coverage to detect many potentially serious

<start>

<end>

ABDF
/7t

HostA
Data

HostB
Data

HostD
Data

Code

Itinerary

Payload

47

Figure 8: Basic structure of a mobile agent.

system vulnerabilities and intrusive behaviors. Regardless of the type of agent, however,

an agent's own security must be ensured in order for this approach to be viable.

Mobile agents must be protected from three major threats. First, the confidentiality

of an agent's data and code must be protected. An intruder may gain valuable

information to help him better penetrate a system if he is able to see which mobile agents

are migrating through the network. In addition, if intruders can see data that has been

collected by agents at previous hosts, they might gain an advantage in further exploiting

the system. The confidentiality of agents, therefore, must be protected from

eavesdroppers in the network.

48

Another major threat for mobile agents is tampering. The integrity of mobile agent

code and data must be protected. Any changes to an agent must be detected as quickly

as possible. Agent servers must not execute code that may have been tampered with in

order to prevent malicious changes from doing any harm. In addition, tampered data

must not be relied upon as a true representation of the state of the system, in order to

prevent possible intruders from hiding their tracks through agent manipulation.

Finally, the availability of agents must be protected by ensuring the system is resilient

to denial-of-service attacks and faulty hosts [80]. Mobile agents may be inadvertently

removed from the system by a faulty host or they may be intentionally deleted by a

malicious host or intruder. In either case, the system must be able to detect if an agent is

removed and regenerate lost agents back into the system. The system architecture was

designed to address and counter each of these threats.

In order to achieve the goal of providing confidentiality for mobile agents during

migration, each agent is encrypted before it is transported between hosts. Public key

cryptography offers many ease-of-use benefits over symmetric-key encryption,

especially when supplemented with a public key infrastructure. Besides offering

confidentiality of data, public key encryption also forms the basis of providing mutual

authentication of hosts and agents. All of the components in the designed architecture

were designed to use public-key cryptography for both secrecy and authentication as

described in detail in Chapter IV.

In addition to protecting an agent during transmission, agent confidentiality must also

be protected while agents are resident on agent servers. Because agents must exist in

49

plaintext form in order to be executed, they may be vulnerable to eavesdroppers on the

host while executing. No general solution has been found to protect agent code that is

executing; however, Sander and Tschudin [39] proposed a very limited method of code

protection using encrypted functions. The major drawback of this approach, though, is

that no known methods exist in which arbitrary functions can be transformed into

encrypted forms for use in mobile agents.

Agent data can still be protected, however, using conventional cryptographic

mechanisms. Agents in this system were designed with a secure payload repository that

keeps data private during the course of an agent's travels. Each host places data relevant

to its site in the repository and encrypts that data using public-key cryptography. This

ensures that both the confidentiality and integrity of the payload is protected both during

transmission and while an agent is executing.

In addition to protecting the privacy of agent code and data from eavesdroppers, an

agent's integrity must also be protected. Any changes to an agent's code, data, or

itinerary must be detected as soon as possible before any damage can be done. Digital

signatures are used to detect any tampering of an agent. Public-key cryptography and

SHA-1 generated message digests provide a convenient mechanism for ensuring the

integrity of mobile agents. Agent servers were designed to sign an agent prior to

migration. Upon arrival at its destination, the receiving agent server checks the agent's

digital signature to verify that there was no tampering of the agent during transit.

In addition to signing the entire agent, each of the components that makeup an agent

are also digitally signed as illustrated in Figure 9. The Agent Coordinator signs an

50

r

Encrypted
&
Signed
by sending
host

V

<start>

<end>

Code

ABDF • • •

/ I,/0* d 4 "l"«rary

HostA
Data

HostB
Data

HostD
Data

Payload

{>- Signed by
Coordinator

Signed by
Coordinator

>- Encrypted/Signed
by respective hosts

Figure 9: Protection for a mobile agent.

agent's code and itinerary before dispatching it. This ensures that any tampering of

these components can be detected upon arrival at a subsequent host. Each host also

signs the data it adds to the payload so that any changes made subsequently will be

detected upon the agent's return to the agent coordinator.

Mobile agents and agent servers do not necessarily trust one another. This issue of

mutual suspicion was addressed in the system by ensuring that mechanisms for mutual

authentication were in place. Each time an agent migrates, it authenticates the host on

which it arrives and the receiving agent server authenticates the agent to verify its origin.

Public key cryptography is used as the authentication mechanism. In addition, each

51

agent is assigned a unique and unchangeable agent identifier when it is created, which

helps prevent replay and flooding attacks.

Mobile agents are associated with a security level that can be changed by the Agent

Coordinator prior to dispatch. The security level can be configured by the system

administrator to provide flexibility and an appropriate level of security for the

environment in which agents exist. Level 1 agents are the most secure, in that constant

communication with the coordinator is maintained at each hop. Level 2 agents are

equipped with medium security, in that faulty hosts are circumvented (taken care of by

each agent server) and only asynchronous messaging occurs with the coordinator when

needed. Level 3 is low security, in that no communication occurs with the coordinator

between the dispatch of an agent and its eventual return. Care is taken to recognize

when an agent never returns. In addition, agents may followed randomized itinerary

routes if the system administrator so chooses. The role of these security levels will be

described more in subsequent sections.

3. Mobile Agent Servers

Mobile agent servers provide the actual runtime environment for visiting mobile

agents. Because most networks are composed of heterogeneous components, the

runtime environment provided by agent servers supports an interpreted programming

language [81, 82]. Each agent server must have a unique name and must be running on

each host in the network that will support mobile agent execution. In addition to

providing the runtime environment for mobile agents, these servers also handle the local

52

management, communications, transport, and regeneration of mobile agents. These

functions are handled by subcomponents of each agent server.

The agent management component for an agent server handles all management

functions for the agents currently resident. The agent management functionality serves

as the director of all agent activities for that particular host. It also keeps track of the

agents that are running on the server and answers any queries from the Agent

Coordinator about their status.

The agent transport component supports the migration of agents to and from the host.

This component is responsible for serializing agents prior to their departure and

deserializing them upon their arrival. In addition, the agent transport component works

with the security components to encrypt and decrypt agents, check the code and itinerary

integrity of arriving agents, and authenticate the origin of incoming agents. The agent

transport component is also responsible for ensuring the successful migration to the next

host on an agent's itinerary. Any problems with agent transport are handed off to the

agent management function which then makes decisions on how to address any errors.

The communications component is responsible for all remote interactions between

the agent server and other system components. This includes communications with the

other agent servers, the secure blackboard, and the agent coordinator. All

communication takes place using asynchronous messaging via socket connections.

Four types of duplex communication exists in the system:

• Agents to Agent Server.

• Agent Coordinator to Agent Server.

53

• Agent Coordinator to Agent (through Secure Blackboard).

• Agent to Agent (through Secure Blackboard) - one of the primary motivations

for mobile agents is to avoid remote communications in the first place [16], so

communication between agents takes place asynchronously through a Secure

Blackboard (secure shared memory).

The persistence manager is responsible for storing mobile agents to nonvolatile

storage to aid in the recovery and regeneration of agents that may become lost during

migration to other hosts. "The notion of a partial failure is a fundamental characteristic

of a distributed system: at a given time, some components of the system might have

failed whereas others might be operational" [83]. This function is critical in a distributed

system where defective transmissions, faulty hosts, and malicious components can exist.

An agent is automatically stored to disk before each migration as determined by the

system's fault-tolerant policies described later. In the case of a subsequent fault or

malicious deletion of an agent, the persistence manager may be required to regenerate a

stored agent which can then be reintroduced into the network. Upon notification that an

agent is no longer needed, the persistence manager removes stored agents from the

persistence store to free space for other agents.

The interface between mobile agents and the intrusion detection components on the

local machine takes place through proxy agents. These proxy agents are stationary,

trusted components dedicated to representing the intrusion detection components to the

agent server. The proxy agent oversees the security of all interactions between visiting

mobile agents and the IDS components. These interactions take place through

54

application programming interfaces (APIs) that allow mobile agents access to the IDS

system.

4. The Agent Coordinator

All mobile agents originate at the Agent Coordinator. The Agent Coordinator

maintains information about all components in the mobile agent system, including hosts,

agent servers, and agents. As hosts and agent servers are added to the network, they are

registered with the Agent Coordinator. The Agent Coordinator is also responsible for

the creation and removal of mobile agents from the system. The Agent Coordinator, in

conjunction with individual agent servers, is responsible for detecting breaches in

security of any of its agents, including violations of integrity and availability. Finally,

the Agent Coordinator receives instructions from and sends data to the intrusion

detection system analysis component which performs analyses on data collected by the

mobile agent system.

The Agent Coordinator incorporates three major functions. The agent management

function is responsible for system-wide management functions for all agents and agent

servers in the network. The management component creates agents, assigns each a

unique identifier, and determines the agent's itinerary. This component also maintains

timers on each dispatched agent in order to detect when agents are lost or destroyed.

Timers are also maintained in order to automatically dispatch agents without user

intervention.

The communications component is responsible for all remote interactions between

the agent coordinator and all other system components, including communications with

55

the agent servers, the secure blackboard, and the IDS Analysis Agent. All

communication takes place using asynchronous messaging via socket connections.

The security component of the Agent Coordinator is responsible for detecting

violations of agent integrity and for ensuring the availability of all dispatched agents.

Upon return of an agent to the Agent Coordinator, the security component performs an

analysis of the agent to determine of any security violations have occurred. This

component checks the integrity of the agent's code, itinerary, and payload. If data for a

host that was supposed to be visited on the itinerary is missing, the security component

may perform further analysis to determine the cause as described in the section of

distributed fault tolerance. The management of trust [84] in the system is addressed by

restricting key management of all public keys to the agent coordinator and a public key

infrastructure.

5. Intrusion Detection System Analysis Engine

Agents dump their payload to persistent data logs upon return to the Agent

Coordinator. The IDS Analysis Engine is responsible for analyzing agent payloads for

indications of intrusion or security violations. The IDS Analysis Engine maintains

information on attacks and system vulnerabilities and compares agents' payloads against

this information. If an analysis indicates a possible problem, the IDS Analysis Engine

can then take some corresponding action, usually involving some form of notification to

the system administrator.

The IDS Analysis Engine was designed to be modular, in order to be easily

expandable when new types of analyses must be performed for new types of attacks or

56

vulnerabilities. This enables the system administrator to add additional functions that

look at agent payloads for intrusive behaviors that may not have been previously

defined. Similar to virus scanning engines, the IDS Analysis Agent may have to be

updated by adding additional functionality as new types of vulnerabilities and attacks are

defined that the previous modules were unable to detect.

The Agent Coordinator and the IDS Analysis Agent can communicate directly.

Typically, this communication entails the Agent Coordinator informing the IDS Analysis

Agent that new data has arrived that requires analysis, and the IDS Analysis Agent

loading that data for investigation. The IDS Analysis Agent can also request that

additional actions be taken by the Agent Coordinator, such as dispatching agents or

querying agent servers in order to gather more information about a potential problem.

6. Secure Blackboard

Agents communicate asynchronously through the Secure Blackboard. Agents can

check for messages on the Secure Blackboard when arriving and leaving hosts, or at any

other time during their execution as determined by their authors. The Agent Coordinator

and agent servers, likewise, can check for messages periodically during their execution.

Upon receipt of a message, these entities will then act appropriately based on the type of

message and its content.

The Blackboard is similar to an agent bulletin board system [85], but is shared by all

hosts on the network. Components of the system send messages by sending them to the

Blackboard, where they may be subsequently received at some later time. Since this

communication protocol is temporally uncoupled, but spatially coupled, these systems

57

rely on a repository to store and retrieve messages. Because messages are left in the

Blackboard, there is no need for the sender and the receiver to exist at the time of the

communication. This model is well-suited for the highly dynamic environment that is

required by this research.

7. User Interface

The user interface to the agent coordinator allows the system administrator to manage

and oversee the entire system. Specifically, the user interface allows the user to easily

monitor, create, dispatch, and delete agents from the system. In addition, the user

interface notifies the administrator of potential security violations in the system,

including violations of agent integrity or availability. The user interface was designed to

be a simple window-based system, incorporating menus, icons, and dialog boxes to

facilitate easy interaction with the user. Because the user interface is the gateway into

the entire system, all users' actions are authenticated and logged by the system. The IDS

Analysis Agent and the agent servers also provide graphical user interfaces for

functional, debugging, and maintenance purposes.

B. Distributed Availability for Agents

In addition to addressing the issues of confidentiality, integrity, and mutual

authentication, the issue of agent availability is important because of the threat of denial

of service. Mechanisms must be in place to ensure that the system recognizes when

agents are lost or destroyed, and that lost agents can be recovered. This section explains

the design of the these mechanisms for the proposed methodology.

58

The two primary threats to agent availability are loss of agents (possibly through

malicious intent) and host servers that malfunction. Agents may be lost because of

failures in one of the communication layers of the network or because an agent server

goes down while hosting an agent. Servers may malfunction for a number of reasons,

including hardware problems, software problems, or intrusive activity. Regardless of the

reasons, the system was designed to recognize when agents are lost and when servers

malfunction.

The security level associated with an agent determines the protocol that is followed

for detecting missing agents. Level 1 agents are the most secure, in that constant

communication with the coordinator is maintained at each hop. Because these agents

report back to the Agent Coordinator each time they arrive and depart from a host, the

Agent Coordinator can maintain information on where an agent has been and where it is

going. When an agent is "lost", actions can be taken to discover where the problem

occurred and what should be done as a remedy. A simple scenario will help explain the

protocol.

Given: a Level 1 agent with a sequential itinerary of hosts A, B, C, and D is about to

be dispatched by the Agent Coordinator. When the agent is dispatched, the Agent

Coordinator begins to "track" the agent as it moves from host to host. When the agent

arrives at Host A, it sends a notification message to the Agent Coordinator indicating

that it arrived safely. When the agent departs for the next host, it sends another

notification message indicating that it is leaving Host A with destination of Host B.

Host A saves a copy of the agent to persistent memory prior to transmission. When the

59

agent arrives at Host B, it sends another notification message. Prior to departure, again

Host B saves the agent to persistent memory and transmits a message indicating the

agents departure to Host C.

Assume that some failure occurred at or before Host C. Either the agent never made

it, or Host C went down just after receiving the agent, but before a notification could be

sent to the Agent Coordinator. After some timeout period, the Agent Coordinator will

realize that it has not yet received a notification message from Host C indicating the

successful arrival of the agent. After several attempts of inquiring of Host C, all of

which are unsuccessful, the Agent Coordinator contacts the last known host to

successfully execute and save the agent (Host B). Host B then regenerates the agent

from persistent storage and dispatches the agent to the next host in the itinerary after

Host C. Upon successful arrival at Host D, a notification message is sent, informing the

Agent Coordinator of its next location. This protocol continues until the agent returns to

the Agent Coordinator.

Level 2 agents are equipped with medium security, in that faulty hosts are

circumvented (taken care of by each agent server) and only asynchronous messaging

occurs with the coordinator when needed. The protocol to handle when these agent are

lost is similar to that of Level 1 agents. However, the mandatory messaging can be

turned off, in which case the protocol to handle problems defaults to that used for Level

3 agents.

Level 3 agents possess the lowest form of security, in that no communication occurs

with the coordinator between the dispatch of an agent and its eventual return. Care was

60

taken to recognize when an agent never returns. In addition, Level 3 agents may follow

randomized itinerary routes if the system administrator so chooses. Since no

communication takes place between the agents and the Agent Coordinator, it is

impossible for the Agent Coordinator to know where an agent is at any given time.

To solve this problem, the Agent Coordinator sets a timeout period that is a function

of the number of hosts to be visited on an agent's itinerary. If the timeout period expires

without the return of the agent, several options are available to the Agent Coordinator.

First, it can just simply notify the system administrator that the agent is late. The system

administrator can then take action if necessary. Second, the agent can be dispatched a

second time, with a modified timeout period to give it more time. A third option, is to

increase the lost agent's security level to Level 1 and dispatch the agent again, this time

tracking its activities as it migrates. This may give the Agent Coordinator information

into where the problem in the network resides.

61

CHAPTER IV

IMPLEMENTATION

A. Introduction

In order to demonstrate the efficacy of this research, it was necessary to implement a

prototype based on the design that was described in Chapter in. A secure mobile agent

infrastructure was built to support experimentation. In addition, agent prototypes were

developed to demonstrate their ability to be protected. Finally, intrusion detection

components were constructed to demonstrate the value of using the proposed secure

architecture in this domain. This chapter describes the implemented prototype by

detailing how each component of the system was built. In particular, this chapter will

focus on the implementation of the agent coordinator, the mobile agent servers, the agent

communication system, the mobile agents themselves, and the intrusion detection

components.

All components in this system are written entirely in Java version 2. Java was chosen

primarily because it can be easily executed on most platforms, making the distribution of

components in a heterogeneous networking environment much easier. Java was also

chosen because extensive use was made of the Java Swing API which made the user

interface implementation for this prototype much simpler.

62

B. The Agent Coordinator

The Agent Coordinator serves as the primary interface component between the

system administrator and the secure mobile agent system. As such, it is primarily event-

driven - that is, it awaits user input before some action is taken. The Agent Coordinator

is written as a multi-threaded application because it must be able to handle several

different functions at the same time. Most interactions take place using various menus,

toolbars, and dialog boxes through the graphical user interface provided by the Agent

Coordinator (see Figure 10). Because of the event-driven nature of the Agent

Coordinator, the implementation will be described in terms of the various functions and

actions that this component provides to the system administrator.

i Agent Coordinator - localhost a
File Agent View Options Tools Help

Ö
mm H ;Q i§>

Active Agents Messages

1001 InetAgent.agt Dispatched Thu Dec 14 13:04:08 CST 2000

1004 HFAgent.agt Ready Timer[60]

1011 InetAgent.agt Dispatched Thu Dec 14 13:04:04 CST 2000

1014 PSAgent.agt Ready

1015 ProgAgent.agt Dispatched Timer[60]

1019 LoginAgent.agt Ready

1021 HFAgent.agt Dispatched Thu Dec 14 13:04:06 CST 2000

1022 PSAgent.agt Ready

Figure 10: Agent Coordinator.

63

1. File Operations

The Agent Coordinator provides two primary file functions for loading and saving

mobile agents to secondary storage. Because mobile agents are written in normal Java

source code that must be interpreted in a Java Virtual Machine in order to execute, their

existence in the form of source code is meaningless outside of such an execution

environment. Therefore, the Agent Coordinator saves agents in serialized object form so

that their individual identities and state can be preserved. Agent code, as well as the

current state of all of its data structures is maintained on persistent storage for later

retrieval. Likewise, loading a previously serialized object restores an agent to its state

prior to being saved. It is interesting to note that before an agent's first use, its data

structures and identity must be initialized and serialized to storage in order for the agent

to be placed in a mobile and executable state.

This system uses Java's object manipulation classes to serialize objects for persistent

storage. In order to save an object, a Java Obj ectOutputStream is wrapped around a

FileOutputStream. The agent is then written to this stream which automatically

serializes the agent's code and data structures and writes the agent to a file. These

serialized agent files are named with a .agt extension to make them easily filtered and

recognizable in subsequent file operations.

The file open operation is similar in that it uses Java's object manipulation classes. In

particular, an ObjectlnputStream is wrapped around a FilelnputStream to

deserialize and load saved agents. Any potential errors with file operations (i.e. storage

problems, non-existent files, etc.) are handled using Java's exception mechanism to

Q InetAgent.agt

Q LoginAgent.agt

Q MFAgentagt

D NullAgentagt

Q PSAgentagt

Q ProgAgentagt

Q TestAgent.agt

File name: MFAgentagt

Files of type: Agent File (.agt)

64

Open

"•"' Cancel

Figure 11: File dialog box.

gracefully recover and notify the user. A graphical user interface is used for all file

operations to abstract away these details (see Figure 11).

2. Itinerary Operations

The Agent Coordinator maintains an internal list of all nodes in the network that are

available to host mobile agents. Most agents are initialized with a pre-defined itinerary

when they are loaded as specified by settings in the Agent Coordinator. The system

administrator, however, can specify each agent's itinerary at any time before it is

dispatched (see Figure 12). When a user chooses to change an agent's itinerary, the

Agent Coordinator copies the new host information into the agent's internal itinerary

data structure. This is done by overwriting the agent's itinerary Vector with a new

Vector containing the new itinerary. The agent can then be saved with this new

information to make it persistent, or it can serve as a temporary itinerary for the duration

ga Itinerary

Available Servers

canary

dove

hansolo

hawk

parakeet

parrot

toucan

jabba

penguin

eagle

skywalker

Add*

<Move

OK

itinerary

canary

dove

hansolo

jabba

Figure 12: Manually setting agent itinerary.

65

of an agent's non-persistent lifetime. Based on the security level set for the agent, it will

either follow the itinerary sequentially or randomly once it is mobile.

3. Agent Dispatch Function

The dispatch function is one of the primary functions of the Agent Coordinator.

Many steps must occur before an agent can be successfully transmitted. The first step

involves setting up a communication channel between the Agent Coordinator and the

first host in the itinerary.

The Agent Coordinator queries the agent to obtain the first host in the itinerary. A

socket is then opened with this remote host by connecting to its IP address on a well-

known port. If the socket connection is successful, the destination host's public key is

66

obtained from the PKI and loaded into memory for use. The PKI provides the ability of

hosts to query and obtain another host's public key.

Using this public key, an RSA encrypted Obj ectOutputStream is setup between

the Agent Coordinator and the destination host. The implementation of the RSA

EncryptStream class is implemented in a separate security package that is described in

a subsequent section. This encrypted object stream provides a secure mechanism that

both transmits serialized agents as well as provides link encryption between hops.

Before the agent is actually transmitted, however, the Agent Coordinator first

digitally signs the agent using the SHA-1 algorithm with the Agent Coordinator's own

private key. The SHA-1 algorithm is implemented in the same security package that

also provides all the other security functionality. The signed and encrypted serialized

agent is then written to the open stream. Errors that might occur at any phase of this

process are appropriately handled by the Agent Coordinator with appropriate error

messages given to the system administrator.

4. Send Mail Function

The Agent Coordinator also provides an interface to allow the user to manually send

messages to agent servers and individual agents. Using a GUI dialog box, the user can

enter the destination and message content that is then formatted into proper XML format

(see Figure 13). Each message is encrypted and signed by the Agent Coordinator before

it is transmitted to the system's agent message-handler server. The structure and format

of these messages is described in a subsequent section on secure agent communications.

67

fexML Mail El

<message>

<to> 123/Agent <to>

<from> agent_coord </from>

•l <hea<ier> message </header>

|: <body> recall ▼ <<body>

<lmessa(je>

Send Cancel

Figure 13: XML message dialog box.

5. Handling Returning Agents

In addition to dispatching agents, the Agent Coordinator must also be able to accept

returning agents. The Agent Coordinator implements a listening thread that

continuously listens for incoming agents on a well-known port. When this

AgentAcceptor thread accepts a connection from an agent server, a separate

AgentHandler thread is started that handles the processing of the incoming agent.

Because the incoming agent is returning to the Agent Coordinator, the sending host

will have encrypted the agent with the Agent Coordinator's public key. Hence, the

AgentHandler thread opens a DecryptStream using the Agent Coordinator's private

key in order to decrypt the incoming serialized agent. When the entire agent has been

read, an SHA-1 digital signature is generated using the sending host's public key. This

signature is then compared to the signature carried by the incoming agent. If the

68

signatures do not match, the integrity of the agent has been violated and a message is

generated to alert the system administrator.

If the signatures do match, the incoming agent's payload is then dumped to a file to

await processing by the IDS Analysis Agent. The agent is then saved to persistent

storage and all open sockets are closed. Finally, the AgentHandler thread terminates.

6. Monitoring Dispatched Agents

The Agent Coordinator also provides a mechanism to monitor agents as they traverse

the network. This function allows the Agent Coordinator to detect agent failures and

take appropriate action to remedy the situation. This is accomplished by starting a

separate AgentFollower thread whenever an agent is dispatched.

An AgentFol lower thread allows the Agent Coordinator to detect the two primary

threats to agent availability: the loss of agents (possibly through malicious intent) and

host servers that malfunction. When the AgentFol lower thread is initialized, it is

passed a copy of the agent's itinerary that it is monitoring. The thread then starts a timer

that can be changed by the user to make its duration longer or shorter. Each time the

timer expires, the Agent Coordinator checks for an arrival_notif ication message

from the host that is next in the monitored agent's itinerary. If no message has yet

arrived, the timer is restarted and the Agent Coordinator waits to again check for an

incoming message. After five iterations of this process (can be changed by the user), the

Agent Coordinator assumes that something has occurred to the agent and sends an agent

revive_request to the last known host that successfully executed the agent. This

69

message instructs the host to restore the agent from persistent storage and to transport

the agent to the host as indicated in the message. The next host is usually the server in

the itinerary following that of the host that has failed to send the last notification

message.

Monitoring dispatched agents is handled differently for Level 3 agents since no

communication occurs with the coordinator between the dispatch of an agent and its

eventual return. The only real monitoring that occurs is to take care of recognizing when

an agent never returns. To monitor these type of agents, the Agent Coordinator sets a

timeout period using a Java Timer that is a function of the number of hosts to be visited

on an agent's itinerary. The value of the timer can be changed manually by the system

administrator or can be updated periodically based on past performance. If the Timer

expires without the return of the agent, the Agent Coordinator can either notify the

system administrator that the agent is late, dispatch the agent a second time with a

modified timeout period to give it more time, or it can increase the late agent's security

level to Level 1 and dispatch the agent again, this time tracking its activities as it

migrates. This may give the Agent Coordinator information into where the problem in

the network resides. All of the options are user selectable.

7. Miscellaneous Functions

The Agent Coordinator provides several other functions that enhance its

functionality. First, the Agent Coordinator provides the ability to add timers to

individual agents. These timers allow the system administrator to indicate that an agent

should be automatically dispatched by the Agent Coordinator at specified time periods.

70

These time periods can be seconds, minutes, hours, or day. In addition, the user can

specify an exact time of day when an agent should be dispatched (see Figure 14). These

timing functions are implemented using Timer threads that are started whenever the

user selects an appropriate time interval. Each agent may have up to one Timer thread

associated with it. When a Timer thread indicates that the desired interval has expired,

it notifies the Agent Coordinator which subsequently dispatches the agent with no user

interaction. The Timer thread then resets itself and begins its monitoring anew.

The Agent Coordinator also allows the user to set security related parameters for

individual agents. The user may specify the security level for a given agent (low,

medium, or high). These settings are stored internally with each agent so that this

information is available to agent servers. Agent servers use this information to make

security related decisions concerning encryption, routing, and fault handling.

IH!General Options Ell

Timer Interval Security Level

0 seconds level 2 ▼!

15 | minutes

0 hours Failed Agents

O Manual reroute

® Auto reroute

00:00:00 Time of Day

OK

Figure 14: General options for an agent.

71

C. Mobile Agent Servers

Mobile agent servers provide the actual runtime environment for visiting mobile

agents. An agent server must be running on each host in the network that will support

mobile agent execution. In addition to providing the runtime environment for mobile

agents, these servers also handle the local management, security, communications,

transport, and regeneration of mobile agents.

Mobile agent servers may be executed in one of two modes. Interactive mode

provides a graphical user interface to allow the system administrator to make changes to

various server settings while the agent server is executing (see Figure 15). In addition,

interactive mode provides substantial feedback to the system administrator that allows

for monitoring and debugging of all activities taking place on a specific host. Non-

interactive mode runs as a normal operating system daemon and restricts changes to

settings and monitoring to only those things supported through secure messaging with

the Agent Coordinator. This would be the normal operating mode of an agent server

unless the system administrator had some particular interest in monitoring the activities

for an individual host. This could be done by exporting the display to the system

administrator who may then observe a host's behavior or make changes to its settings.

72

mAgent Server - jabba

File Help
3ÜI

Br

Server started : ServerSocket[addr=0.0.0.0/0.0.u.0,port=rj,localport=10365]
Waiting for new connection...
Agent arrived here at jabba from 'canary*
Received Agent: 1217
Saving Agent to persistent storage!
InetAgentgoO running. hopsnow=17
*** Sending Email notification ***

Figure 15: Agent server GUI.

Agent servers are implemented as multi-threaded applications capable of handling

many agents simultaneously. The primary function of these agent servers are to wait for,

accept, and execute incoming agents. The main method of an agent server implements a

loop that continuously listens for incoming agents on a well-known port. Whenever an

agent server accepts a connection from another host, an AgentHandler thread is started

that handles the processing of the incoming agent.

The sending host will have encrypted the agent with the destination host's public key.

Hence, the AgentHandler thread opens a DecryptStream using its own private key

in order to decrypt the incoming serialized agent. When the entire agent has been read,

an SHA-1 digital signature is generated using the sending host's public key. This

signature is then compared to the signature carried by the incoming agent. In addition,

the itinerary and code segments are checked for integrity by comparing their digital

signatures using the Agent Coordinator's public key. If any of these signatures do not

73

match, the integrity of the agent has been violated and a message is generated to alert the

system administrator. In addition, the agent is not executed, but rather is returned

directly to the Agent Coordinator for checking.

Assuming that the decryption and signature checking is successful, the agent server

then contacts the message server to download any messages that may be pending for the

agent that just arrived. These messages are maintained in a large array that the agent

may access when executed. In addition, any messages for the agent that may require the

server's intervention, such as recall messages, are handled by the agent server prior to its

execution. After checking the agent's security level, the agent server will send an agent

receipt notification message to the Agent Coordinator for all Level 1 (high) secure

agents.

The incoming agent is then executed by calling its go () method as an entrance into

the agent. After the agent has completed its execution, the agent is then saved to

persistent storage as an encrypted, serialized Object in case of future failure.

The agent server then prepares to send the agent to another host. For a Level 1 or

Level 2 agent, the agent server chooses the next host stored in the agent's itinerary. For

Level 3 agents, a host is randomly chosen from the remaining unvisited hosts in the

itinerary. The agent server then attempts to open a socket and an encrypted

Obj ectOutputStream to the next host. If the connection setup is successful, the agent

server encrypts and signs the agent as described previously and writes that object to the

encrypted stream. If the socket setup and stream cannot be successfully established with

the next host (for example, the host is down or not responding), then a failure is logged

74

and the agent server attempts to select the next host in the itinerary. This process

continues until a successful connection is established or all possible hosts have been

tried. If the agent server is not successful with any of the remaining hosts, the agent is

returned to the Agent Coordinator.

In addition to checking for messages intended for a currently hosted agent, agent

servers also periodically check for messages intended for itself. A shutdown message

will cause the agent server to finish executing any currently hosted agents before closing

all connections and ports. The server then terminates and will no longer accept mobile

agents unless it is restarted. Query messages are directed at an agent server by the Agent

Coordinator when particular information is requested about a server's status, such as the

number of agents currently executing.

D. Secure Agent Communications

All communications in this system take place through a secure message server. This

message server runs on a well-known host and port so that all components of the system

have access to the communications system. The location of the message server can

easily be changed, but all components must be notified so that they know which host is

handling the messages.

Agents and agent servers "need knowledge about the semantics of the information"

and an agreed upon protocol in order to communicate [46, 86]. All communications in

this system use Extensible Markup Language (XML) formatted messages as a

75

standardized protocol language. XML was chosen because it is extensible, easy to

format, and human-readable. Some example messages are shown in Table 1.

The message server continuously listens on a well-known port for incoming requests.

When connections are established, the message server starts a new MailHandler thread

to handle the processing of each new request. All messages are encrypted and signed by

the sender using the destination server's public key and the sender's private key,

respectively. As with securing agents, RSA is used for encryption and SHA-1 is used to

generate the digital signatures. The message server has access to the PKI in order to

access the necessary keys used to secure each message.

When an XML formatted message intended for an agent or an agent server arrives at

the message server, it is parsed into its components. The <to> field is used to determine

the message's intended destination. The message is then placed into the recipient's

message box awaiting subsequent retrieval.

Message boxes are persistent message files that store all messages for a particular

entity. These files consist of one or more messages in ASCII readable XML format that

is stored on the message server's host drive. A separate message file is setup for each

agent and agent server in the system. These files are created and initialized each time

one of these components enters the system. For example, when an agent server is first

started, it sends a secure XML-formatted message to the Agent Coordinator indicating

that it is up and running. The message server, in response to such a message, creates and

initializes a message file for the agent server.

76

Table 1: Sample XML messages.

<arrival_notification>
<to> jabba </to>
<from> 1001/Agent </from>
<header> arrival_notification </header>
<body> canary/128.194.132.192 </body>
</arrival_notification>

<message>
<to> jabba </to>
<from> hansolo/128.194.135.217 </from>
<header> message </header>
<body> server_started </body>

</message>

<message>
<to> hansolo </to>
<from> jabba </from>
<header> system_message </header>
<body> shutdown_server </body>
</message>

When a request to retrieve messages arrives at the message server, the message box

for the requesting entity is opened and read. Each message in the file that has been

added to the message box since it was last checked is then sent sequentially, in order of

arrival, to its destination. After each request has been serviced and all messages have

been processed, the MailHandler thread handling the particular request closes all its

connections and terminates.

77

E. Mobile Agents

This system implements an Agent base class as an abstract, serializable class

in Java. This base class defines the methods and data structures that all other derived

agents must implement. The reason to establish this common interface is to establish a

basic form to define the components that are in common for all mobile agents. This

standard agent template allows all components of the entire system to interact in the

same way with any agent, regardless of its functionality.

The most important method that all agents must implement is the go () method. This

method provides the entry point into an agent's functional code. As an agent moves

from host to host, agent servers execute the go () method which executes the agent. For

most agents, their only differences exist in their go () methods. As such, in order to

write a new agent, the system administrator will only have to rewrite or modify an

agent's go () method in order to perform some new function. Agents also implement

other methods such asinitializeO, hop Address (), and dump () that perform

necessary housekeeping functions such as initializing an agent's data structures,

returning hosts from its itinerary, and releasing its payload.

The Agent base class also defines the data structures that all agents must contain.

The four most critical are the itinerary, payload, agentID, and sec_level. The

itinerary and payload structures are implemented as Java vectors. As their name

indicates, they contain an agent's current travel itinerary and the data collected from

each host. The agentID contains the unique agent identification number assigned by

78

the Agent Coordinator. The sec_level maintains the agent's current security level as

determined by the system administrator at the Agent Coordinator prior to its dispatch.

In addition to these data structures, each agent also carries the digital signatures

necessary to prove the integrity of its components to each agent server. These signatures

are stored as ASCII strings, but are not visible to a potential interceptor because the

entire structure of an agent is encrypted as described previously during its traversal.

Agent code is written in Java because it is easy to learn, ubiquitous, and simple. The

advantages of Java are many. Because Java is interpreted, it is highly portable and easier

to secure. Also, Java interpreters can be embedded in a variety of network devices.

Network computing today is necessarily heterogeneous. Even in "closed" organizations,

both hardware and software are often different. Thus, Java offers obvious advantages in

a heterogeneous environment.

Java does have some disadvantages, but they do not greatly impact the design of the

system. Programs written in Java are inefficient compared to native machine code,

although just-in-time compilation mechanisms are greatly increasing the speed at which

Java code is executed. Also, thread-level state cannot be saved in Java, which does not

permit the resumption of execution of agents to take place at the thread-level [79]. The

term "state" is typically defined as "the agent attribute values that help it determine what

to do when it resumes execution at its destination" [10]. Most applications, however, do

not require such fine-grained maintenance of program state across migrations. In this

system, saving the high-level state of an agent by persistently maintaining the values of

all of its data structures was sufficient.

79

Current Java-based mobile agent systems have many things in common. In addition

to using the same programming language, most of them also use standard versions of the

Java Virtual Machine (JVM), although a few have altered the JVM in order to

implement thread-level state migration. Also, most of the current systems use Java's

object serialization mechanisms in their transport protocols. These systems differ,

however, in how agents are transported and the communication mechanisms that are

implemented [10].

This system implements its mobile agents using Java 2.0 running on standard

versions of the Java Virtual Machine that execute on Windows NT, Solaris 7.0, and

Linux 2.2 platforms. This system was implemented without making changes to either

the operating system or the JVMs.

F. Intrusion Detection System Analysis Engine

Upon return to the Agent Coordinator, agents dump their payload to persistent data

logs. The IDS Analysis Engine, which runs concurrently with the Agent Coordinator, is

responsible for analyzing these payload logs and alerting the system administrator to

potential problems. Upon notification of a possible security violation, the system

administrator can then take action to investigate and remedy the problem (see Figure

16).

H*Analysis Engine

File Help

Of
Warning! dmispd daemon- DoS vulnerability- running on Hansolo
Warning! dmispd daemon - DoS vulnerability- running on Canary
Warning! dmispd daemon-DoS vulnerability- running on Dove|

Warning! tftp running on Canary
Critical! Trinoo Denial-of-service shell found on Parakeet

Failure Info- Server failure on Dove

Warning! sprayd daemon running on Hawk

Figure 16: Analysis engine output.

80

Hü

The IDS Analysis Engine begins by loading a rule set for each different type of agent

in the system. As agents return to the Agent Coordinator and deposit their payload, the

IDS Analysis Agent compares portions of the payload against triggers in the agents'

corresponding rule set. If a trigger is indicated, the actions associated with it is

performed, usually involving a written notification via the terminal to the administrator

for further action.

For example, one type of agent may gather information concerning which processes

are currently running on each host in the network. When the agent returns the Agent

Coordinator, it will dump this information. The IDS Analysis Engine, seeing a new

payload from the agent, will analyze its contents by comparing each running process in

the log against a set of trigger processes in the rule set. When a match is found, the IDS

Analysis Agent notifies the system administrator through an alert.

81

Agents which collect information whose analysis is more complex than pattern

matching can be handled by adding new modules to the EDS Analysis Engine. The

system administrator can add additional functions that look at agent payloads for

intrusive behaviors that may not be easily defined through a rule set.

G. User Interface

As stated earlier, Java was chosen primarily because it can be easily executed on

most platforms, making the distribution of components in a heterogeneous networking

environment much easier. Java was also chosen because extensive use was made of the

Java Swing API which made the user interface implementation for this prototype much

simpler. All interfaces for each component were written using standard APIs to

maintain the portability and standard "look and feel" across platforms. User interfaces

were written in Java 2 Platform version 1.2.

82

CHAPTER V

ANALYSIS AND RESULTS

A. Introduction

This chapter describes the analysis and results of this research. The process used to

test and evaluate the prototype for this system is also described.

There are currently no existing systems that implement intrusion detection

functionality through the use of mobile agents as described in this research. As

described in Chapter n, many intrusion detection technologies exist, some of which rely

on agents with very limited mobility capabilities. However, none of these systems rely

on the roaming agent paradigm described in this research, and none provides security for

its components that make the proposed approach feasible. Since there are no other

existing equivalent systems with which to compare the methodology proposed in this

research, an alternate method of evaluation was used as described in the following

sections.

B. Verification

Verification is the process of ensuring that the implemented system performs as

designed. This is done by comparing the conceptual design to the actual implementation

of the system in a programming language. Testing each component to ensure that it

accomplishes its purpose is a straightforward process. It is typical for verification to be

conducted as a sequential and iterative process as components are designed and

83

implemented. As with other systems, this is the approach that was taken for this

research. Specific details of the verification process are provided in Appendix A. Table

2 shows the number of tests performed for each component.

1. Mobile Agents

The mobile agents were the easiest components in this system to verify. Because

each agent was designed with a specific purpose in mind, it was simply a matter of

dispatching each agent into the network and watching its behavior in terms of movement

and execution to determine if they were behaving correctly. When the agents returned,

their payloads were analyzed to ensure that they were carrying the correct information.

This process can be illustrated using an example. The PSAgent was designed to

travel to a series of hosts as determined by the system administrator, and collect a list of

running processes on each host it visits. To verify it was working correctly, the agent

was dispatched and its progress was monitored by watching where it migrated. Its actual

migration path was compared to that given by the system administrator. When the agent

returned, its payload was compared against the actual list of processes running on each

host it visited. In all test cases, each agent performed as designed.

In other cases, simple "triggers" were strategically placed on various hosts in the

network to verify that different agents detected problems as designed. By monitoring

their progress and results, it was easily verifiable that the agent implementations did

what they were designed to do.

84

Table 2: Number of validation tests performed.

Mobile Agents 40
IDS Analysis Engine 24
Agent Coordinator 60
Agent Servers 24

2. IDS Analysis Engine

Once the agent implementations were verified, the IDS Analysis Engine could be

tested. The technique used to verify this component was to compare its results with

known correct answers. That is, did the IDS Analysis Engine actually generate a

detection when positive results from returning agents indicated possible intrusive

behavior?

A series of agents was dispatched into the network, each looking for different signs of

intrusive behavior and other system vulnerabilities. Several hosts were intentionally

"seeded" with malicious indications that would be picked up by roaming agents. Upon

the return of each agent, the IDS Analysis Engine was observed to see if it correctly

analyzed each agent's payload. In each case, the IDS Analysis Engine gave proper

indication of intrusive behavior for each type of intrusion that was planted throughout

the network.

85

3. Agent Coordinator

The functionality of the Agent Coordinator was verified against its design iteratively

as it was developed. It was observed during its execution to ensure that it functioned

correctly. Because the Agent Coordinator is primarily event driven based on user input,

it was relatively easy to see that the Agent Coordinator responded correctly to the user.

In addition, the non-interactive functions such as the monitoring of dispatched agents

and the timing of automatic dispatches were tested with a variety of scenarios to ensure

that they behaved properly and as designed. To aid in the monitoring of the Agent

Coordinator, a debug log was turned on to provide visibility into its functionality as it

executed.

4. Agent Servers

In a similar manner, the agent servers were verified against their design by observing

their functionality during execution. An optional debugging log was kept on each server

to examine its behavior in handling migrating agents and agent execution. The results of

agent executions were monitored to ensure that the servers were correctly executing

agents when they arrived. In addition, the security functions of the servers were

observed by analyzing incoming and outgoing agents to ensure that they were being

properly signed and encrypted. It was also straightforward to verify that the agent

servers were correctly saving agents to persistent storage and reviving them upon request

by observing the persistent resources allocated to each agent server.

86

C. Validation

Validation is the process of ensuring that the design of the system solves the desired

problem. That is, it is desirable to know how accurately the system performs its

intended function. The validation of this system posed a few challenges. Since the

intended purpose of the proposed system is to provide a methodology for protecting

mobile agents in intrusion detection systems and to demonstrate the ability of such

agents to address the shortcomings in current host-based IDSs, the validation of the

system entails both determining the security of the system as well as its ability to detect

intrusions when they occur. Appendix A provides specific details of the validation

experiments.

1. Validating Agent Security

As described in Chapter IV, a prototype system was built to demonstrate the

feasibility of this research. Using the completed prototype, many experiments were

conducted for the purpose of verifying and validating the security of the entire agent

architecture. The number of experiments run to validate each aspect of the agent's

security is provided in Table 3.

a. Modifying Agent Itineraries

This first set of experiments involved testing the ability of the components in the

system to detect when an agent's itinerary had been modified in any way. The primary

purpose of these experiments was to simulate what an attacker might attempt to do if

87

access to an agent was obtained and what would happen if he changed the itinerary to

suit a malicious purpose. For example, an attacker might change an agent's itinerary to

send it off to some network "black hole" or to reroute it around a host that had already

been compromised in order to escape detection.

In these experiments, the itineraries of several agents were altered after the agents had

left the Agent Coordinator and were migrating "in the wild". Without fail, the next

component in the system to receive such a modified agent, whether an agent server or

the Agent Coordinator, detected that a modification to the itinerary had occurred. These

systems immediately notified the system administrator and halted any further processing

of the agent.

In another set of experiments, the itinerary of an agent was changed and a new digital

signature for that itinerary was generated to replace the signature originally generated by

the Agent Coordinator. Again, in each case, the next component to receive the agent

recognized that the signature was a counterfeit because the Agent Coordinator's private

key was not used to generate it.

Table 3: Number of agent security validation experiments performed.

Modifying Agent Itineraries 10
Modifying Agent Payloads 10
Modifying Agent Code 10
Compromising Agent Confidentiality 10
Introducing False Agents 6
Dealing with Faulty Servers 18
Lost Agents 18

88

b. Modifying Agent Payloads

A second set of experiments involved testing the ability of the components in the

system to detect when an agent's payload had been modified. The primary purpose of

this experiment was to simulate what an attacker might attempt to do if access to an

agent was obtained and what would happen if he altered or deleted portions of an agent's

payload. For example, an attacker might change an agent's payload to erase evidence of

an intrusion in order to escape detection.

In these experiments, the payloads of several agents were altered during some part of

their migration "in the wild". In each case, both agent servers and the Agent

Coordinator detected that a modification had occurred. These systems immediately

notified the system administrator and halted any further processing of the agent. In

addition, the location of the alteration was identified, since each host has a separate

payload "bay" that is signed and encrypted by the respective host.

In a another set of experiments, the payload of an agent was changed by altering the

information in one bay for a particular host. A new digital signature for that host was

generated to replace the signature originally generated by the host whose information

was contained in that slot. The Agent Coordinator immediately recognized that the

signature, and thus the data for that slot, was bogus because the respective host's public

key would not yield a correct decryption.

89

c. Modifying Agent Code

The next set of experiments involved testing the ability of the components in the

system to detect when an agent's code segment had been modified in any way. The

primary purpose of these experiments was to simulate an attacker changing an agent's

code for malicious purposes. An attacker might change an agent's code to render it

impotent in detecting certain behaviors. Even worse, an attacker might want to change

an agent's code so that it would perform some malicious act against the system it was

designed to protect.

In these experiments, the code of several agents was altered after the agents had left

the Agent Coordinator and were migrating "in the wild". In each case, the next

component in the system to receive these modified agents detected that a change had

been made to its code. These systems immediately notified the system administrator and

halted any further processing of the agent.

Like the previous set of experiments, the code of an agent was changed and a new

digital signature for that code was generated to replace the signature originally generated

by the Agent Coordinator. In these cases as well, the next component to receive the

agent recognized that the signature was bogus.

d. Compromising Agent Confidentiality

This set of experiments involved testing the ability of the system to protect the

confidentiality of agents as they migrated from host to host. The primary purpose of

these experiments was to simulate an attacker attempting to view an agent as it was

90

migrating across the network. If an intruder could see what agents were in the system

and what they were doing, he might be able to evade their detection.

In these experiments, an agent was viewed as it was being transferred between hosts.

In every case, the agent was indecipherable. Table 4 shows a portion of an agent as it

looks when transmitted as designed using public key encryption. Table 5 shows the

same portion of the agent when no encryption is used. As can be seen from Table 5,

critical elements can be viewed when encryption is not used, including the agent's name,

itinerary, digital signature, and other key information that might help an intruder.

As described in Chapter IV, this prototype uses the RS A cryptosystem to provide

both secrecy and authentication. Its security is based on the intractability of the integer

factorization problem as described in Menezes, et. al [76]. The strength and security of

RSA public-key encryption has been well studied and thoroughly tested. This

abundance of previous literature was relied upon in determining to use the RSA

cryptosystem. The foundation of this previous research gives confidence to the security

of the system.

e. Introducing False Agents

This next set of experiments involved testing the ability of the components in the

system to detect when a false agent was introduced into the system to masquerade as a

real agent. This simulates what an attacker might attempt to do if he were to introduce

an imitation agent into the system for some malicious purpose. For example, an attacker

91

Table 4: Segment of an encrypted agent.

C_[±_ÄE6"€_räÜ_ä_>]ä-2e_Ö~X_<DÖ/s ie->ß5 >D}NI_€E§d/§t/<E) \Jw" 3i <„3ül...-
IäzÄ YA_hEii/ Ä~OZ%^üELS0F_,■-Ä?<:oe_G_Ä±•L, E_-e>S-
s£ + lÖ'v_Jxt6«t#ilö}£t_e_eaCE_Öj%EÖY «Ä_<:ü_t _|t>ß(y2 ' fr %yÄg$IÄ 'n= /Iaä_
Z_cs nE§&I,5
iEä|elä2_u -p_i 0|Ä<q"Ex
x<üg_ "_j„üMZ_!Ü_ßJCö_s3_\3i»€t+nRSiu€P,ü...6GRrIböo_ö_-i_>VY'_

äÖÖü>3/4§<¥N 0 fB"z_@Y&,Ülf 7_äst_C DHf $ü®, 0yx_:y4ÖE7>=4AIÄüÖ< ±e_* R
UE &o_„YZOÄD1ÜÜ%6K«1/4&#SCED§/zÜ? #_# (5=V l

_1/42§-oxd€_z7RhIa "ÖMÜnytY%3 c_äNÄ'2_ÖgJS_3>ü_0>¥oö@HoübWW_?Vä ? "bx_t
Ö>d iae_g£Ä} Üü_5L£ÖEÄCaiY§X')Ä®_a_SI;<_-MffiSCä ö?'« 3<bö©/VT_K

eü'"Xxv~Y_E+öuYl, WÄnTl, nÄÄffii [Z€V_ör~aeND$ü@R3 %0 31/ , R
y2o*lStscpv ,Y%i"@WiS

£ifÄM®i Ü=Ei_mÖÖ-
~|ÜdÜi>XiY" [g© 3_Y5e-Ü_> fifJEÄ #=.@ää,5D]1@ , {iü-q ö!~ü-
#EÄ_%I _B CäB\HxAi-"_ eznjce_i*k_klG-^Äl~b_
Üt 0sSi,_:_<_§äE_ l/ÖÜ©+tN~u~EB- ,ÖAJÖ2HoaiJ0Ia_,Ä| Xa-f A°IS_y95Ei | Ö46 ' -
l6_«2äi6<LB*iEÖTÖ/E_®,y4_*S "P,/
uZ-_/ 'lYÄ_A1/4lF. ~f_zä A...+®*lhOu-sl_}ü;») § Öce>_¥..._ö7öl_«ü

j ,V~" [E~V4a©ä+T#m5nYiö™Ea„< ' x _^..'§Ü©g_e§Lp...g-HpD©w2€öe'_Ö*
™#_ä_Y&i~ |Öu v_iyi2(E_Ä"(Ey_wiE_kO"Mjpö8_6%*7_Äi_2»üH(TCo_ÖufÖ_OY_ÜS-->ü/€
psXaÖ*5iä €N]X i,Nji<m',h0±'_k Näy"2_-_eU;4b,

Table 5: Segment of an unencrypted agent.

sec levell timer_secL
->i _sr _mabids . agent. MFAgent Y/x~U_..A_
I _agentIDI _hop_counterI _iNumberI

itineraryt _Ljava/util/Vector;L
itinerary_sigt _Ljava/lang/String;L _payloadq ~ _L _rndt
_Ljava/util/Random;L _visitedq ~ _xr _mabids.agent.Agent€_=ämm— I
_agentIDI _hop_counterI _iNumberI sec_levelL itineraryq ~ _L
itinerary_sigq - _L _payloadq ~ _xp pt
ESignature(053558eclab34952e80cclcb652ab754f8971be594134662b5800c699dfe
490896037853dll57deb289f5a07456b5ce80970aa8abfe905641621clbac64e3e37 , SH
Al,Fingerprint(SHAl,b068802601e8d431c750a0340bbf636bcf4aeal7))p _e
_ sr _java.util.VectorÜ-}[€;" I _capacitylncrementl
_elementCount[_elementDatat _[Ljava/lang/Object;xp _ _ur
_[Ljava.lang.Object; lXY_s)l_ xp
sr _java.net.InetAddress->W~YäeÜ I _addressl _familyL _hostNameq ~
_xp€Ä„Ä _t _canarysq ~ _€Ä„Ä _t _dovesq ~ _€Ä*Ü _t _hansolosq ~
_€Ä^™ t _jabbapppppppsq ~ _ _ uq ~

PPPPPPPPPPsr _java.util.Random62-4Kö
S Z _haveNextNextGaussianD _nextNextGaussianJ
g_4M_sq - _ _ uq ~

_seedxp

92

might create an agent that benefits him by performing data collection on his behalf and

gathering information on how the system is configured.

In these experiments, rogue agents were created and were sent migrating "in the

wild". In each case, the receiver of such an agent detected that an illegitimate transfer

was being attempted. Because the attacker does not have access to the private keys for

any of the components in the system, he cannot properly encrypt and sign these false

agents. Therefore, these systems recognize an incorrectly transmitted agent and

immediately notified the system administrator.

f. Dealing with Faulty Servers

The next set of experiments involved testing the ability of agents and agent servers to

deal with faulty servers. The primary purpose of this experiment was to simulate what

might happen if some servers happen to be down, either by chance or by malicious

intent. An attacker, for example, might bring down a server or series of servers in an

attempt to hide his activity.

In cases where the next server on an agent's itinerary was down prior to the start of

its migration, the sending agent server also recognized the communication failure,

notified the system administrator, and then routed the agent to the next server in its

itinerary. In cases where multiple servers were down, the sending server keeps trying

subsequent hosts in an agents itinerary until it finds one that is up. If the list of hosts is

exhausted, agent servers send the agent back to the Agent Coordinator. In addition, the

93

Agent Coordinator, in all cases, detected when a host that was in the agent's itinerary

was not visited and notified the system administrator.

g. Lost Agents

This set of experiments involved testing the ability of the components in the system

to detect when an agent is lost and the ability to recover from such a situation. Agents

could be lost for a variety of reasons, including hardware or software failure of a host

while an agent is executing, malicious destruction by an intruder, failure of some

communication mechanism in the network, etc. Regardless of the reason, the system

must be able to detect this situation and correct the problem.

In these experiments, agents were subjected to loss through intentional malfeasance

while they were migrating "in the wild". Agents were deleted from the system or

hampered from future migrations in order to test the ability of the system to detect and

correct this potential problem. In cases involving Level 1 or Level 2 agents, the Agent

Coordinator detected that agents failed to report their activities after a short period of

time. Following these detections, the Agent Coordinator issued a revive_request

message to the last known server that was successfully visited by the missing agent.

Once the agent was successfully revived and migrating effectively again, its progress

continued to be monitored in case of future problems. In all test cases, it was not

possible to delete an agent without the system quickly detected the problem. Similarly,

Level 3 agents were intentionally deleted to test the system's ability to handle this

94

potential problem. In all cases, the Agent Coordinator notified the system administrator

that missing agents had not returned within an expected amount of time.

2. Validating Intrusion Detection Functionality

One method that is often used when validating software is to compare it with other

comparable applications. In the case of this research, the comparisons that were done

were limited for two primary reasons. First, this prototype has no real equivalences in

that it was designed with its entire architecture based on mobile agents with security

mechanisms designed to make this methodology viable. No other system is designed in

this way. The second reason these comparisons to other existing systems was limited, is

that it was not possible to obtain, nor test against, many of the other existing IDS

systems. Many commercial systems are not freely available, nor do they attempt to do

what this research does. This research is unique and hence can really only be tested

against its intended purpose, thus limiting the significance of using other systems for

comparison.

In order to accomplish validation, however, a number of scenarios were developed

which were designed to validate that the prototype does indeed protect its agents as well

as detect intrusive behaviors in the intended manner. A comprehensive validation of the

system's ability to detect intruders is impossible since it is not possible to know a priori

all possible methods potential intruders can use to penetrate a system. Instead, the

scenarios mimic common techniques used to break into system and imitate behaviors

that are indicative of intrusive behavior. These scenarios are based on many of the most

95

common techniques used by intruders that are readily obtained from the existing

literature on computer security and hacking (specific details provided in Appendix A).

a. Value Added of Mobile Agents

The roaming agent paradigm provides the ability to detect some intrusive behaviors

that are not identified by other host-based intrusion detection systems. For example,

certain classes of distributed attacks can be identified by agents roaming the network in

ways that other systems, because of their inherent design, cannot. In addition, the

roaming agent paradigm allows for detection of intrusion attempts and other anomalous

activities that might raise suspicion. The roaming agent paradigm also provides the

ability to detect system vulnerabilities that might make the organization easier to attack.

As a consequence, these agents serve the dual purpose of both helping prevent attacks

through vulnerability assessment and of detecting attacks by finding intrusive behavior.

The first class of attacks that roaming agents are uniquely designed to detect are

system-wide "guessing" attacks, such as doorknob rattling. These attacks are a variant

of common "guessing" attacks - those performed on a single computer that is connected

to the Internet to see if it has any vulnerabilities that can be exploited. The objective of

system-wide attacks, however, is to avoid detection by local host-based detection tools

by spreading the probes out over multiple, independently monitored hosts. Because

these attacks involve a small number of attempts, the intruder can evade detection by

remaining below the threshold of detection on any given host. Even though these attacks

may not register as attacks from the local host perspective, the overall organization may

96

indeed be under attack. These kinds of attacks are not detectable by existing host-based

systems, as aggregation and correlation of activity from many different hosts is required.

Since roaming agents are capable of analysis across multiple systems, however, this type

of attack is easily detectable.

To illustrate, consider a normal password guessing attack. A potential intruder

attempts to guess the password for a given user multiple times on the same host, hoping

to eventually find the correct input. If the intruder makes too many attempts, a host-

based IDS will notice the repeated login failures and indicate a possible violation. If,

however, the intruder attempts to guess passwords on many machines, while ensuring

that the number of guesses always stays below the threshold for login failures on any one

machine, the attack will go unnoticed by conventional security tools. Roaming agents

allow this type of distributed attack to be recognized and detected.

Mobile agents also provide the unique ability to detect system-wide vulnerability

scanning, such as distributed port sweeps. While most host-based intrusion detection

systems detect port sweeps on the individual host it is monitoring, the ability to detect

sweeps below detectable thresholds occurring on multiple hosts can only be done when

data is shared among hosts in the network. Roaming agents provide an effective

mechanism with which to detect when potential intruders are scanning an organization's

networks for possible weaknesses.

As an example, TCP scans are typically detected by host-based intrusion detection

systems when a large number of ports are scanned within a short period of time. These

systems flag suspicious behavior when some minimum port threshold is indicated. That

97

is, these systems trigger when the number of connections to destination ports on the local

machine being monitored exceeds the number of connections allowed by a single remote

host. The problem with this technique is that a potential intruder can successfully scan a

series of ports on multiple machines in a network, each of which is below the threshold

for remote connections on any one machine. This gives the would-be attacker as much,

if not more information, without ever triggering that a potential attack has ever taken

place. Roaming agents, however, can detect these types of distributed scans by

collecting and correlating information on scans from each host to detect whether a

distributed scan has taken place.

Detecting staged attacks is another unique capability of using mobile agents for

intrusion detection. Staged attacks are attacks that take place in phases over time and

may involve many different hosts. The recent distributed denial-of-service attacks such

as Trinoo, Tribe Flood Network, and others are one form of such attacks. Typically,

these attacks begin by the intruder gaining access to a legitimate account on one or more

hosts. The intruder then installs additional tools to help him further the attack. Usually,

a time bomb, daemon, or some other remotely controlled entity is created and is setup to

wait for future commands. At some point in the future, possibly many month later, the

attacker can initiate his attack by contacting these entities that were previously produced.

If all of these steps were conducted on a single host or within a short span of time,

conventional host-based intrusion detection systems could probably detect these attacks.

Newer forms of these attacks, however, can be divided into phases over many hosts for

longer periods of time, thus escaping detection by these systems. Using the roaming

98

agent paradigm, these forms of attacks can be detected because agents can correlate

network-wide events that might indicate that one of these attacks has occurred. For

example, a roaming agent could detect that a number of new daemons, all of which may

have different names in order to evade detection, are listening to the same set of ports on

multiple machines.

In addition to all of these advantages, the roaming agent paradigm also allows the

intrusion detection system to be tailored to new threats and vulnerabilities much faster

and easier than traditional host-based systems. Because new agents can be quickly

written when recently discovered vulnerabilities are published, organizations using this

paradigm can be protected faster than those that rely on commercial production of new

patches and detection signatures, many of which take months to be published,

distributed, and installed. This is a critical advantage, because most attackers exploit

recently discovered vulnerabilities knowing that most systems have already been

hardened against older ones. Vigilant system administrators can move to rapidly

implement new security measures by creating or altering mobile agents to reduce the

window of vulnerability from these attacks.

b. Comparison to Other Systems

As mentioned earlier, the validation of this system, particularly the efficacy of the

roaming agent paradigm in detecting intrusions, posed a few challenges. Because no

comparable systems exist, comparisons were made against other host-based intrusion

detection systems that are representative of the current state of IDS technology. Table 6

99

Table 6: Systems used for validation.

Psionic HostSentry (Psionic Software, Inc.) [87]
Psionic PortSentry (Psionic Software, Inc.) [88]
Psionic LogCheck (Psionic Software, Inc.) [89]
LIDS (Linux Intrusion Detection System) [90]
Openwall Project IDS [91]
NetSaint Network Monitor [92]

lists the systems that were obtained and tested. In addition to those that were actually

acquired for testing, several other systems were considered and their architectures were

analyzed from publicly available literature, but were not acquired because they are

commercial products that require a fee. These systems are listed in Table 7.

Because the prototype for this research was built to show the feasibility and value of

the roaming agent paradigm to intrusion detection, it does not provide complete

coverage for every conceivable security vulnerability. Were this approach to be

implemented as a commercial product, many more agents would undoubtedly be written

to provide detection for all currently known intrusive behaviors. Hence, the validation

of the system to ensure that the design of the system solves the desired problem is

intended to show the additional value and functionality that secure, roaming agents

provide over that of current host-based intrusion detection systems.

It is instructive to briefly describe the systems used to help validate this prototype.

Psionic Software, Inc. is an Austin-based computer security company. Three of their

key products, HostSentry, PortSentry, and LogCheck are designed to work together to

100

Table 7: Commercial security products.

CyberCop Monitor (Network Associates, Inc.) [93]
Dragon Sensor (Network Security Wizards, Inc.) [94]
Dragon Squire (Network Security Wizards, Inc.) [95]
Patriot IDS (Patriot Technologies, Inc.) [96]
PreCis Security Toolkit (PRC, Inc.) [97]
Sygate Enterprise Network (Sygate Technologies, Inc.) [98]

provide better coverage of potential vulnerabilities [87]. These tools are host-based

intrusion detection and vulnerability assessment products that look for problems for the

host on which the reside.

HostSentry [87] is the intrusion detection component that primarily checks for login

anomalies. By monitoring interactive login sessions to the host, it can detect unusual

activity that might be indicative of intrusive behavior. While this function is beneficial

for the host it is running on, HostSentry does not interact with other hosts to detect more

sophisticated distributed attacks.

PortSentry [87] is the Psionic component designed to detect and respond to port scans

against the host. This function is essential for detecting actual attacks or precursors to

attacks that often occur when potential intruders are gathering information. Like

HostSentry, PortSentry is a great product that does a good job detecting problems at a

single host. However, this product has no capability of interacting with other hosts to

detect more sophisticated forms for this attack.

101

Logcheck [87] is the final component to Psionic's software suite that provides the

ability to process UNIX log files generated by the other components. In addition,

LogCheck does a good job at detecting a variety of other operating system specific

violations and other out of the ordinary system events. While LogCheck uses the email

system to send reports to system administrators about the logs for the host on which it

resides, it provides no mechanism to examine log files across hosts.

LIDS (Linux Intrusion Detection System) [90] is an intrusion detection system that is

built into the Linux kernel and is installed as a patch. It was designed to implement

those security features that are not part of the native Linux kernel, such as mandatory

access control, port scan detection, and some forms of file protection. Because these

features are added into the kernel, it makes turning these mechanisms off much more

difficult for the potential intruder. While LIDS does an excellent job in hardening the

security tools for a single host, it does not provide mechanisms to detect intrusive

behaviors across hosts and thus misses many of the new, more advanced attacks. In

addition, because the tools are built into the kernel, any changes to the security

applications must involve a rebuild of the kernel on each system. This would be

unacceptable for large organizations that intend to stay up-to-date on protecting their

systems from newly discovered vulnerabilities.

Openwall [91] is similar to LIDS, in that it provides a series of patches to the

standard operating system kernel. Openwall and LIDS are compatible, however, and can

coexist. Openwall provides an additional set of intrusion detection tools, such as the

ability to detect some forms of buffer overflow attacks, data spoofing attacks, and denial

102

of service attacks. While these improvements are good, Openwall suffers from the same

problems as LIDS: it is unable to detect distributed attacks and requires changes to the

kernel in order to be effective. Openwall and LIDS used in conjunction are very

effective at hardening individual hosts, but do nothing to detect attacks across hosts in an

organization.

NetSaint Network Monitor is a program [92] designed to monitor hosts and services

on a network. It was written and designed to operate primarily on most Unix/Linux

based platforms and can execute as a daemon to periodically run checks on user

specified activities. NetSaint was designed primarily to monitor network services (such

as SMTP, POP3, HTTP, etc.) and host resources (i.e. processor load, disk usage, etc.),

although it can be expanded to check for other user-developed problems using a plugin

interface. As with the other systems mentioned, NetSaint does an excellent job in

monitoring the hosts on which it is running. It is not capable, however, of sharing and

correlating distributed attacks such as password guessing and network-wide port

scanning.

The first set of scenarios for validation were designed to illustrate the ability of the

prototype of detect distributed "guessing" attacks that other conventional host-based

tools could not. In these scenarios, a potential intruder attempted to guess the password

for a given user one or two times on many different hosts on the network. Care was

taken to ensure that the simulated intruder did not make too many attempts on any one

host, in order to prevent the conventional host-based systems from detecting the repeated

login failures on a single host which is indicative of a possible violation. Fabricated

103

usernames and passwords were used so as not to interfere with real users on the system.

In all test cases (see Appendix A), the roaming agent prototype detected these distributed

"guessing" attacks and notified the system administrator of the problem. None of the

other security tools that were tested detected this type of attack and were limited to

single host notifications only.

Mobile agents also provide the unique ability to detect system-wide vulnerability

scanning, such as distributed port sweeps. The next set of tests were designed to show

that the prototype could detect these types of attack and that the other security tools

could not. In these attacks, a variety of different ports were swept across several hosts.

In cases where these TCP scans attempt to open a large number of ports on a single host,

all of the security tools capable of detecting port sweeps detected that a port sweep

occurred on that host. In cases where the number of sweeps was low and occurred on

multiple hosts in the network, only the roaming agents provided an effective mechanism

with which to detect these attacks. Because the other tools did not record, nor share

incidents with other hosts of "trivial" port sweeps, they were incapable of detecting these

attacks.

Using mobile agents in a roaming paradigm also provides the ability to detect

interesting behaviors across hosts that may be indicative of intrusion, including forms of

staged attacks. To test this ability, a number of dummy daemons were created and

brought up on various hosts in the network. These daemons were given different names,

but were all listening on the same port. The daemons mimicked possible zombies that

many distributed denial-of-service tools use in early stages of an attack. By examining

104

the running processes on each host, along with the network statistics for each host's

ports, the prototype was able to detect that a possible problem existed on several

machines in the network. By correlating the port numbers rather than the daemon

names, the agents detected that new daemons were listening where none had been

previously detected. None of the conventional systems could detect this type of attack.

In addition, tests were run to detect unusual resource usage across hosts in the

network, indicative of a possible problem. While increased resource usage, such as

enlarged CPU utilization on a single host, would not usually be anything out of the

ordinary, if many systems in a network suddenly have increased usage that is sustained

for a period of time, it might indicate that something is wrong. Reports have surfaced in

the past of unauthorized employees farming out processing to many different machines

in his organization for his own purposes, in essence stealing CPU cycles. Unless

detection of this activity is shared across hosts, it is impossible to know that a problem

exists. By starting a series of mathematically intensive dummy programs on each host,

the CPU utilization was decreased for each machine. The prototype detected such

problems by using agents to gather performance and resource usage statistics from many

hosts and correlating the results with the IDS Analysis Engine. Using previous and

current data, the prototype detected that a trend existed across hosts and notified the

system administrator. None of the other systems detected this form of attack. Table 8

indicates how many tests were performed to validate the value-added functions provided

by this approach. Details of each test are given in Appendix A.

105

In addition to all of these advantages, the roaming agent paradigm also allows the

intrusion detection system to be tailored to new threats and vulnerabilities much faster

and easier than traditional host-based systems. Adding or modifying agents is relatively

simple. In comparison, all of the other tools examined often require very tedious

routines to install new modules or rules to look for recently discovered vulnerabilities.

In addition, many of the existing systems require changes to the operating system kernel

on each machine. Most of the commercial systems require patches to be installed

periodically, sometimes with long periods between update availability. This is an

obvious disadvantage to the conventional approach.

Table 8: Number of intrusion detection validation experiments performed.

Guessing Attacks 24
Vulnerability Scanning 24
Staged Attacks 20
Resource Usage 10

106

CHAPTER VI

SUMMARY AND CONCLUSIONS

A. Summary

The purpose of this research was to develop a methodology for protecting mobile

agents in intrusion detection systems and to demonstrate the ability of such agents to

address the shortcomings in current agent-based, host-based EDSs. This methodology

supports the defense of computer systems through a secure, mobile agent-based

architecture.

The first step in conducting this research was to complete a literature survey to

investigate previous research in mobile agents, computer security, and intrusion

detection systems. From this survey, a new approach and methodology based on secure

mobile agents was developed to address the limitations in these other systems. After the

design of the system architecture was developed, a prototype was built to demonstrate

the viability of this proposed approach. Finally, the implementation was verified and

validated.

Mobile agents offer several advantages over conventional client-server and peer-to-

peer paradigms. When implemented correctly, they reduce the overall communication

traffic in the network. Since the code that makes up the functionality of a mobile agent

is generally much smaller than the data to be operated on, transporting the agent rather

than the data greatly reduces the communications load among hosts on the network. In

addition, mobile agents allow users to quickly create specialized services by tailoring

107

agents to a specific vulnerability or threat. Such customization is a major asset provided

by code mobility because re-tailored agents can be designed to perform new functions

rather quickly using existing agents for the basic framework.

Mobile agents offer several advantages when used in the intrusion detection domain

over conventional host-based methods. Because agents are more easily tailored, they

can be quickly added or changed to observe new host behaviors. As new intrusive

indicators or vulnerabilities are discovered, new agents can be written and dispatched to

look for these problems on network hosts. In addition, agents can be very efficient if

they are written to be simple and to consume as few system resources as possible. These

agents can impose a lower overhead on network bandwidth and other resources than can

some of the current, more centralized approaches to intrusion detection. Intrusion

detection systems using mobile agents are more fault tolerant in that the components that

makeup the system are moving and are not centrally located. The failure of a host does

not necessarily interfere with a mobile agent. This makes such systems more resilient to

subversion. A final advantage of using mobile agents in this domain is that they scale

well to larger systems. As the size and demands of a network grow larger, more agents

can be added to migrate through hosts looking for intrusive indicators.

Even though using mobile agents for intrusion detection offers many benefits over

traditional approaches, the major obstacle of providing adequate security for the agents

and the infrastructure must be eliminated before these systems can be deployed in real

settings. The largest hurdle to a real-world implementation of such an agent-based

system is this: agents and hosts cannot trust each other. In addition, if a host is

108

penetrated and the attacker gains access to an agent, he may gain access to information

that will help him attack other hosts in the network and further penetrate the system. If

an attacker can obtain detailed knowledge of the detection systems installed at a

particular site, he will be better able to avoid its triggers; thus, it would be better to

deploy an IDS whose triggers are not easily analyzable. Hence, security for these agents

is critical.

This research solves these many problems by ensuring agent confidentiality, integrity,

and availability through a variety of methods. In addition, the problem of mutual

suspicion is solved since agents and hosts can verify the authenticity and origin of each

component in the system. The confidentiality of mobile agent code and data is protected

during migrations between hosts. The integrity of mobile agent code is monitored so

that any changes to an agent will be detected. The integrity and confidentiality of data

collected during an agent's lifetime are ensured so that subsequent hosts cannot view this

data or make changes without detection. Unauthorized changes to an agent's itinerary

are detected. Finally, agents are protected from denial-of-service attacks.

B. Conclusions and Significance of Research

The implemented prototype shows that this methodology is sound and feasible. The

implementation demonstrates several features that are unique compared with other host-

based intrusion detection systems. The principle contribution of this research is to

provide a methodology for protecting mobile agents in intrusion detection systems and

to demonstrate the ability of such agents to address the shortcomings in current host-

109

based IDSs. This methodology supports the defense of computer systems through a

secure, mobile agent-based architecture. The following issues were addressed by this

research:

• Integrated mechanisms can be applied for securing mobile agents in intrusion

detection systems that ensure agent confidentiality and integrity through the use

of cryptographic and other methods. The confidentiality of mobile agent code

and data is protected during migration between hosts. The integrity of mobile

agent code is monitored so that any changes to an agent will be detected. The

integrity and confidentiality of data collected during an agent's lifetime is

ensured so that subsequent hosts cannot view this data or make changes without

detection. In addition, unauthorized changes to an agent's itinerary are detected.

Authentication of both agents and hosts is provided to prevent spoofing.

• Mechanisms can be applied for securing mobile agents in intrusion detection

systems that ensure agent availability. Mobile agents can be protected from

denial-of-service attacks. Malicious or malfunctioning hosts that attempt to

remove or suspend agents can be detected. Various hold-back, persistence, and

other techniques can ensure that when agents are removed from the system by

anyone other than the originator, it will be detected.

• The roaming agent paradigm provides the ability to detect intrusive behaviors

that are not identified by other host-based intrusion detection systems. Certain

classes of distributed attacks, including common threats such as doorknob

110

rattling, can be identified by agents roaming the network in ways that other

systems, because of their inherent design, cannot.

• The roaming agent paradigm allows the intrusion detection system to be tailored

to new threats and vulnerabilities much faster and easier than traditional host-

based systems. This provides a mechanism to quickly add new detection and

defense components to a system as soon as vulnerabilities are discovered, rather

than having to wait for weeks before new patches or rule sets are produced by the

tool's designer.

• Using secure mobile agents provides a scalable solution to intrusion detection.

As the size of an organization's network grows, additional agents can be

deployed to provide extended coverage.

• Secure mobile agents provide platform independence. Agents can run in

heterogeneous environments without having to be rewritten for any particular

hardware or operating system configuration.

C. Recommendations for Future Work

The prototype implemented for this research was never intended to be used "as is" in

a real world application. While the implementation fully addresses the goals established

at the beginning of this research, any project of this size has many areas that can be the

subject of further and continuing research. Because the prototype was written solely as a

demonstration of the feasibility of this research, a large amount of work would be

required before it could be deployed as a real world application. A commercial

Ill

realization of this research would require large monetary and personnel commitments,

and would probably take several man-years to complete.

1. Agent Coordinator

The first area that could benefit from future work is the Agent Coordinator. The user

interface to the Agent Coordinator could be written to be more user-friendly. While

more than adequate for this prototype, standardizing the interactions with the system to

conform to what most user's expect from a commercial product would be helpful. For

example, by adding right-click popup menus, the user could do in one step what now

takes several mouse clicks. In addition, adding features such as drag and drop and color

highlighting might make the interface easier to use.

In addition to these cosmetic changes, several functional changes could be made to

the implementation in order to allow multiple, redundant agent coordinators to coexist in

the system at the same time. These redundant agent coordinators would provide

redundancy in case of failure and would create additional components for an intruder to

defeat in order to be successful. The problem of a central point of failure would be

eliminated, but some care would have to be taken to ensure that the agent coordinators

coordinate among themselves to prevent them from duplicating efforts.

2. IDS Analysis Engine

The IDS Analysis Engine written for this research is able to analyze a small variety of

possible intrusive indicators. This is sufficient to show the viability for the proposed

112

research methodology, but in a real-world manifestation, the IDS Analysis Engine would

need to have many more modules capable of analyzing a much wider variety of activity.

In addition, a richer rule set should be provided to supplement these modules in order to

expand the coverage of protection offered by this system.

In order to make the system easier to use, the functionality of the IDS Analysis

Engine could be integrated into the Agent Coordinator. This would provide just one user

interface for the system administrator to learn and use in order to operate and monitor

the system. Care must be taken, however, to leave hooks available for additional

modules to be added to the analysis engine so that it remains expandable.

3. Integrated Log Analysis Tool

A system such as the one proposed in this research is not intended to be used in

isolation. In a real-world environment, many security tools would be running in

conjunction with the roaming agent system to provide coverage for an entire

organization's infrastructure. In addition to other forms of intrusion detection, such as

host-based or network-based tools, vulnerability analyzers, port scanners, and other tools

would also be used. It would be ideal if an integrated log analysis tool could be

developed that could take inputs from these varied security tools and perform analyses.

The advantages of such a tool are numerous. First, a centralized analysis engine

would obviate the need for many different tools doing much of the same thing. In

addition, analyzing outputs from many different tools could provide indicators of

security problems that analyses from these outputs in isolation might not provide.

113

Before such a tool could be developed, however, the problem of resolving the many

differing formats from all of these tools must be adequately addressed. This problem

alone makes this a difficult proposition.

4. Mobile Agents

Several different types of mobile agents were written to demonstrate the feasibility of

this research. While this was sufficient for the prototype, many additional agents need to

be written to examine a much broader category of intrusive behavior. The task of simply

writing an agent to find a published vulnerability is easy, but doing so for all of the many

security vulnerabilities that exist will take some time. In addition, the rule sets for the

IDS Analysis Engine will need to be updated for every new agent that is written.

In addition to adding more agents to the system, some interesting research could be

done in the basic functionality of the agents themselves. It would be interesting to see

what benefits could be obtained by integrating artificial intelligence algorithms and

techniques into the agents. Rather than simply being reflexive, agents could be outfitted

with goal-based or utility-based algorithms in making decisions about what data to

collect or which hosts to visit. In addition, agents could be equipped with basic planning

or reasoning capabilities in order to make decisions on their own. Research into

providing agents with learning and adaptation capabilities would also be very

interesting.

114

5. Agent Servers

Agent servers provide the basic mechanisms that allow agents to migrate and execute

on hosts in the network. It might improve the functionality of the entire system if agent

servers had some additional capabilities. For example, if agent servers could place

restrictions on the number of resources on its host that could be used by agents, they

could ensure that no one host is ever overloaded with too many agents. This would also

allow servers to restrict the number of agents attempting to migrate to the host and

restrict the number of agents executing at any given time. Research has already been

done in this area, but the functionality would have to be added to this system to

determine what impact it might have on the implementation.

In addition, it would make the system more flexible if the system administrator could

choose one of several encryption protocols to use in protecting agents as they migrate

from server to server. Currently, the RS A public-key cryptosystem is the only supported

protocol. Giving the user more options, such as using the new AES cryptosystem, would

provide application compatibility and ensure expandability in the future as new

encryption algorithms are developed.

Likewise, the current implementation could be made more expandable by providing

hooks to link new digital signature and hash function routines as options for the system

administrator. Currently, the system uses SHA-1 as the only algorithm for generating

hash codes. Adding the availability of other functions, such as MD4, MD5, or RIPEMD,

would give the user greater flexibility in configuring the system for an organization's

particular network.

115

6. Agent Communication

Communication between components in this system was done using XML. Several

types of XML formatted messages were defined in order to describe the communication

protocol. In addition to these messages, additional message formats could be developed

in the future that provide a richer set of exchanges. XML was designed to be extensible,

allowing new communication tags to be defined as needed to enlarge the universe of

things that can be described.

116

REFERENCES

[1] W. Jansen, P. Mell, T. Karygiannis, and D. Marks, "Applying Mobile Agents to
Intrusion Detection and Response," NIST Interim Report (IR) 6416, National
Institute of Standards and Technology, Computer Security Division,
Gaithersburg, MD, October, 1999.

[2] R. Heady, G. Luger, A. Maccabe, and M. Servilla, "The Architecture of a
Network Level Intrusion Detection System," Technical Report CS90-20,
Department of Computer Science, University of New Mexico, Albuquerque,
NM, August, 1990.

[3] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, "Network Intrusion Detection,"
IEEE Network, vol. 8, no. 3, March, 1994, pp. 26-41.

[4] M. Crosbie and G. Spafford, "Active Defense of a Computer System Using
Autonomous Agents," Technical Report CSD-TR-95-008, COAST Group,
Department of Computer Sciences, Purdue University, West Lafayette, IN,
February, 1995.

[5] N. M. Karnik and A. R. Tripathi, "Design Issues in Mobile Agent Programming
Systems," IEEE Concurrency, vol. 6, no. 3, July-September, 1998, pp. 52-61.

[6] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik, "Itinerant
Agents for Mobile Computing," IBM Research Report RC 20010, IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY, March 27, 1995.

[7] K. Rothermel, F. Hohl, and N. Radouniklis, "Mobile Agent Systems: What Is
Missing?," in Proc. International Working Conference on Distributed
Applications and Interoperable Systems (DAIS'97), Cottbus, Germany,
September 30, 1997, pp. 111-124.

[8] T. Chia and S. Kannapan, "Strategically Mobile Agents," in Proc. First
International Workshop on Mobile Agents, vol. 1219, Lecture Notes in Computer
Science, K. Rothermel and R. Popsecu-Zeletin, Eds., Berlin, Germany: Springer-
Verlag, 1997, pp. 1-10.

[9] D. Kotz and R. S. Gray, "Mobile Agents and the Future of the Internet," ACM
Operating Systems Review, vol. 33, no. 3, August, 1999, pp. 7-13.

[10] D. B. Lange, "Mobile Objects and Mobile Agents: The Future of Distributed
Computing?," in Proc. European Conference on Object-Oriented Programming,
Brussels, Belgium, July 20-24, 1998, pp. 1-12.

117

[11] Y. Aridor and D. B. Lange, "Agent Design Patterns: Elements of Agent
Application Design," in Proc. Second International Conference on Autonomous
Agents, Minneapolis, MN, May 10-13,1998, pp. 108-115.

[12] J. Bredin, D. Kotz, and D. Rus, "Market-based Resource Control for Mobile
Agents," in Proc. Second International Conference on Autonomous Agents,
Minneapolis, MN, May 10-13, 1998, pp. 197-204.

[13] M. O. Hofmann, A. McGovern, and K. R. Whitebread, "Mobile Agents on the
Digital Battlefield," in Proc. Second International Conference on Autonomous
Agents, Minneapolis, MN, 1998, pp. 219-225.

[14] A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE
Transactions on Software Engineering, vol. 24, no. 5, May, 1998, pp. 342-361.

[15] N. Minar, K. H. Kramer, and P. Maes, "Cooperating Mobile Agents for Mapping
Networks," in Proc. First Hungarian National Conference on Agent Based
Computing, Budapest, Hungary, May, 1998, p. 12.

[16] W. R. Cockayne and M. Zyda, Mobile Agents, Greenwich, CT: Manning
Publications Co., 1998.

[17] C. Schramm, A. Bieszczad, and B. Pagurek, "Application-Oriented Network
Modeling with Mobile Agents," in Proc. Network Operations and Management
Symposium, New Orleans, Louisiana, February 15-20, 1998, pp. 696-700.

[18] T. Magedanz, K. Rothermel, and S. Krause, "Intelligent Agents: An Emerging
Technology for Next Generation Telecommunications?," in Proc. Fifteenth
Annual Joint Conference of the IEEE Computer Societies, San Francisco,
California, March 24-28, 1996, pp. 464-472.

[19] M. Crosbie and G. Spafford, "Defending a Computer System Using Autonomous
Agents," Technical Report CSD-TR-95-022, COAST Group, Department of
Computer Sciences, Purdue University, West Lafayette, IN, 1995.

[20] L. Garber, "Denial-of-Service Attacks Rip the Internet," Computer, vol. 33, no.
4, April, 2000, pp. 12-17.

[21] "Computer Emergency Response Team," Available at http://www.cert.org,
February, 2001.

[22] D. Schoder and T. Eymann, "The Real Challenges of Mobile Agents,"
Communications of the ACM, vol. 43, no. 6, June, 2000, pp. 111-112.

118

[23] L. L. Kassab and J. Voas, "Agent Trustworthiness," in Proc. ECOOP Workshop
on Distributed Object Security and 4th Workshop on Mobile Object Systems:
Secure Internet Mobile Computations, Brussels, Belgium, July 20-21, 1998, pp.
121-133.

[24] J. J. Ordille, "When Agents Roam, Who Can You Trust?," in Proc. First Annual
Conference on Emerging Technologies and Applications in Communications,
Portland, OR, May 7-10,1996, pp. 188-191.

[25] J. Riordan and B. Schneier, "Environmental Key Generation Towards Clueless
Agents," in Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag,
1998, pp. 15-24.

[26] D. S. Milojicic, F. Douglis, and R. Wheeler, ed., Mobility: Processes,
Computers, and Agents, Reading, MA: Addison-Wesley, 1999.

[27] S. Franklin and A. Graesser, "Is It an Agent, or Just a Program? A Taxonomy for
Autonomous Agents," in Intelligent Agents III: Agent Theories, Architectures,
and Languages, J. Mueller, ed., Berlin: Springer-Verlag, 1997.

[28] C. F. Tschudin, "Mobile Agent Security," in Intelligent Information Agents:
Agent Based Information Discovery and Management on the Internet, M. Klusch,
ed., Berlin, Germany: Springer-Verlag, 1999, pp. 431-446.

[29] J. Vitek and G. Castagna, "Mobile Computations and Hostile Hosts," in Proc.
10th Journees Francophones des Langages Applicatifs (JFLA), Avoriaz, France,
January, 1999, p. 241.

[30] A. D. Rubin and D. E. Geer Jr., "Mobile Code Security," IEEE Internet
Computing, vol. 2, no. 6, November-December, 1998, pp. 30-34.

[31] D. Hagimont and L. Ismail, "A Protection Scheme for Mobile Agents on Java,"
in Proc. Third Annual ACM/IEEE International Conference on Mobile
Computing and Networking, Budapest, Hungary, September 26-30, 1997, pp.
215-222.

[32] B. S. Yee, "A Sanctuary for Mobile Agents," Technical Report CS97-537,
Computer Science Department, University of California at San Diego, April 28,
1997.

[33] W. M. Farmer, J. D. Guttman, and V. Swarup, "Security for Mobile Agents:
Issues and Requirements," in Proc. 19th National Information Systems Security
Conference, Baltimore, MD, October 22-25, 1996, pp. 591-597.

119

[34] F. Hohl, "Time Limited Blackbox Security: Protecting Mobile Agents from
Malicious Hosts," in Mobile Agents and Security, G. Vigna, ed., Berlin:
Springer-Verlag, 1998, pp. 92-113.

[35] D. M. Chess, "Security Issues in Mobile Code Systems," in Mobile Agents and
Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp. 1-14.

[36] G. Vigna, "Cryptographic Traces for Mobile Agents," in Mobile Agents and
Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp. 137-153.

[37] L. L. Kassab and J. Voas, "Towards Fault-Tolerant Mobile Agents," in Proc.
Distributed Computing on the Web Workshop (DCW '98), Rostock, Germany,
June, 1998, pp. 96-106.

[38] W. Jansen and T. Karygiannis, "Mobile Agent Security," NIST Special
Publication 800-19, National Institute of Standards and Technology, Computer
Security Division, Gaithersburg, MD, August, 1999.

[39] T. Sander and C. F. Tschudin, "Protecting Mobile Agents Against Malicious
Hosts," in Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag,
1998, pp. 44-60.

[40] T. Sander and C. F. Tschudin, "On Software Protection via Function Hiding," in
Proc. Second International Workshop on Information Hiding, Portland, OR,
April 15-17, 1998, pp. 111-123.

[41] N. M. Karnik and A. R. Tripath, "Security in the Ajanta Mobile Agent System,"
Technical Report RZ 2996, Department of Computer Science, University of
Minnesota, Minneapolis, MN, May, 1999.

[42] M. Bellare and B. S. Yee, "Forward Integrity for Secure Audit Logs," Available
at http://www.cs.ucsd.edu/~bsy/pub/fi.ps, February 9, 2000.

[43] K. Smith and R. Paranjape, "Mobile Agents for Web-based Medical Image
Retrieval," in Proc. 1999 IEEE Canadian Conference on Electrical and
Computer Engineering, Edmonton, Alberta, Canada, May 9-12, 1999, pp. 966-
970.

[44] D. Rus, R. Gray, and D. Kotz, "Autonomous and Adaptive Agents that Gather
Information," in Proc. AAAI '96 International Workshop on Intelligent Adaptive
Agents, Portland, OR, August, 1996, pp. 107-116.

[45] B. Schneier and J. Kelsey, "Secure Audit Logs to Support Computer Forensics,"
ACM Transactions on Information and System Security, vol. 2, no. 2, May, 1999,
pp. 159-176.

120

[46] K. Neuenhofen and M. Thompson, "A Secure Marketplace for Mobile Java
Agents," in Proc. Second International Conference on Autonomous Agents,
Minneapolis, MN, May 10-13,1998, pp. 212-218.

[47] J. Baek, "A Design of a Protocol for Detecting a Mobile Agent Clone and Its
Correctness Proof Using Coloured Petri Nets," Technical Report TR-DIC-CSL-
1998-002, Department of Information and Communications, Kwangju Institute
of Science and Technology, Kwangju, Republic of Korea, 1998.

[48] F. B. Schneider, "Towards Fault-Tolerant and Secure Agentry," in Proc. 3rd
ECOOP Workshop on Mobile Object Systems, Jyvalskyla, Finland, June, 1997,
pp. 1-14.

[49] J. E. White, "Telescript Technology: Mobile Agents," in Software Agents, J. M.
Bradshaw, ed., Menlo Park, CA: AAAI/MIT Press, 1997, pp. 437-472.

[50] J. Tardo and L. Valente, "Mobile Agent Security and Telescript," in Proc. IEEE
COMPCON, Santa Clara, CA, February 25-28, 1996, pp. 58-63.

[51] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, "DAgents: Security in a Multiple-
Language, Mobile-Agent System," in Mobile Agents and Security, G. Vigna, ed.,
Berlin: Springer-Verlag, 1998, pp. 154-187.

[52] D. Kotz, R. Gray, S. Nog, D. Rus, S. Chawala, and G. Cybenko, "AGENT TCL:
Targeting the Needs of Mobile Computers," IEEE Internet Computing, vol. 1,
no. 4, July-August, 1997, pp. 58-67.

[53] T. Walsh, N. Paciorek, and D. Wong, "Security and Reliability in Concordia," in
Mobility: Processes, Computers, and Agents, D. Milojicic, F. Doughs, andR.
Wheeler, eds., Reading, MA: Addison-Wesley, 1999, pp. 525-534.

[54] J. Baumann, F. Hohl, K. Rothermel, and M. Straser, "Mole - Concepts of a
Mobile Agent System," World Wide Web, vol. 1, no. 3, July-September, 1998,
pp. 123-137.

[55] H. Peine and T. Stolpmann, "The Architecture of the Ara Platform for Mobile
Agents," in Proceedings of the First International Workshop on Mobile Agents,
K. Rothermel and R. Popescu-Zeletin, eds., Berlin: Springer-Verlag, 1997, pp.
50-61.

[56] G. Karjoth, D. B. Lange, and M. Oshima, "A Security Model for Aglets," in
Mobile Agents and Security, G. Vigna, ed., Berlin: Springer-Verlag, 1998, pp.
188-205.

121

[57] D. Johansen, R. van Renesse, and F. B. Schneider, "Operating System Support
for Mobile Agents," in Proc. 5th Workshop on Hot Topics in Operating Systems,
Orcas Island, WA, May 4-5,1995, pp. 42-45.

[58] T. Sandholm and Q. Huai, "Nomad: Mobile Agent System for an Internet-Based
Auction House," IEEE Internet Computing, vol. 4, no. 2, March-April, 2000, pp.
80-86.

[59] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet, "Concordia:
An Instructure for Collaborating Mobile Agents," in First International
Workshop on Mobile Agents, vol. 1219, Lecture Notes in Computer Science,
Berlin: Springer-Verlag, 1997, pp. 86-97.

[60] A. O. Freier, P. Karlton, and P. C. Kocher, "The SSL Protocol, Version 3.0,"
Available at http://home.netscape.com/eng/ssl3/ssl-toc.html, May 11, 2000.

[61] J. Arthursson, J. Engblom, I. Jonsson, R. Mirza, G. Naeser, M. Olsson, R.
Ottenhag, D. Sahlin, M. Schmid, B. Spolander, and E. Zolfonoon, "A Platform
for Secure Mobile Agents," in Proc. Second International Conference and
Exhibition on the Practical Aplication of Intelligent Agents and Multi-Agent
Technology, London, England, April, 1997, pp. 109-120.

[62] G. Cabri, L. Leonardi, and F. Zambonelli, "Mobile Agent Technology: Current
Trends and Perspectives," in Proc. Associazione Italiana per I'Informatica ed il
Calcolo Automatico (AICA'98), Naples, Italy, November, 1998, pp. 1-12.

[63] P. E. Proctor, The Practical Intrusion Detection Handbook, Upper Saddle River,
NJ: Prentice Hall, 2001.

[64] H. Debar, M. Dacier, and A. Wespi, "Towards a Taxonomy of Intrusion-
Detection Systems," Technical Report RZ 3030, IBM Research Division, Zurich
Research Laboratory, Zurich, Switzerland, June, 1998.

[65] G. B. White, E. A. Fisch, and U. W. Pooch, "Cooperating Security Managers: A
Peer-Based Intrusion Detection System," IEEE Network, vol. 10, no. 1, January-
February, 1996, pp. 20-23.

[66] D. S. Alberts, "The Unintended Consequences of Information Age
Technologies," Available at
http://www.ndu.edu/ndu/inss/books/uc/uchome.html, December, 2000.

[67] D. E. Denning, "Protection and Defense of Intrusion," Available at
http://www.cosc.georgetown.edu/%7edenning/infosec/USAFA.html, December,
2000.

122

[68] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D.
Zamboni, "An Architecture for Intrusion Detection Using Autonomous Agents,"
COAST Technical Report 98/05, COAST Laboratory, Purdue University, West
Lafayette, IN, June 11,1998.

[69] D. Frincke, D. Tobin, J. McConnell, J. Marconi, and D. Polla, "A Framework for
Cooperative Intrusion Detection," in Proc. 21st National Information Systems
Security Conference, Arlington, VA, October, 1998, pp. 361-373.

[70] J. Evans and D. Frincke, "Trust Mechanisms for Hummingbird," Available at
http://www.acm.org/crossroads/xrds2-4/humming.html, March 30, 2000.

[71] B. C. Neuman and T. Tso, "Kerberos: An Authentication Service for Computer
Networks," IEEE Communications, vol. 32, no. 9, September, 1994, pp. 33-38.

[72] G. G. Helmer, J. S. K. Wong, V. Honavar, and L. Miller, "Intelligent Agents for
Intrusion Detection," in Proc. IEEE Information Technology Conference,
Syracuse, NY, September, 1998, pp. 121-124.

[73] M. Asaka, S. Okazawa, A. Taguchi, and S. Goto, "A Method of Tracing
Intruders by Use of Mobile Agents," in Proc. 9th Annual Internetworking
Conference (INET'99), San Jose, CA, June, 1999, pp. 1-12.

[74] P. A. Porras and P. G. Neumann, "EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances," in Proc. Nineteenth National
Information Systems Security Conference, Baltimore, MD, 1997, pp. 353-365.

[75] B. Schneier, Applied Cryptography, Second Edition, New York: John Wiley &
Sons, Inc., 1996.

[76] A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone, Handbook of Applied
Cryptography, Boca Raton, FL: CRC Press, 1997.

[77] W. Diffie and M. E. Hellman, "New Directions in Cryptography," IEEE
Transactions on Information Theory, vol. IT-22, no. 6, November, 1976, pp. 644-
654.

[78] W. Stallings, Network and Internetwork Security: Principles and Practice,
Englewood Cliffs, NJ: Prentice Hall, 1995.

[79] A. Corradi, M. Cremonini, and C. Stefanelli, "Locality Abstractions and Security
Models in a Mobile Agent Environment," in Proc. Seventh IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Los Alamitos, CA, June 17-19,1998, pp. 230-235.

123

[80] H. Vogler, T. Kunkelmann, and M.-L. Moschgath, "An Approach for Mobile
Agent Security and Fault Tolerance Using Distributed Transactions," in Proc.
International Conference on Parallel and Distributed Systems, Seoul, Korea,
December 10-13, 1997, pp. 268-274.

[81] M. S. Greenberg, J. C. Byington, and D. G. Harper, "Mobile Agents and
Security," IEEE Communications Magazine, vol. 36, no. 7, July, 1998, pp. 76-85.

[82] T. Thorn, "Programming Languages for Mobile Code," ACM Computing
Surveys, vol. 29, no. 3, September, 1997, pp. 213-239.

[83] P. Felber, R. Guerraoui, and M. E. Fayad, "Putting 00 Distributed Programming
to Work," Communications of the ACM, vol. 42, no. 11, November, 1999, pp.
97-101.

[84] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized Trust Management," in
Proc. 1996 IEEE Symposium on Security and Privacy, Oakland, CA, May 6-8,
1996, pp. 164-173.

[85] J. Kay, J. Etzl, G. Rao, and J. Thies, "The ATL Postmaster: A System for Agent
Collaboration and Information Dissemination," in Proc. Second International
Conference on Autonomous Agents, Minneapolis, MN, May 9-13, 1998.

[86] J. Fiedler, "A Distributed Personalized News System Based on Mobile Agents,"
in Proc. 36th Annual ACM Southeast Conference, Marietta, GA, April 1-3, 1998,
pp.130-135.

[87] HostSentry, Psionic Software Inc., Available at http://www.psionic.com/, 2000.

[88] PortSentry, Psionic Software Inc., Available at http://www.psionic.com/, 2000.

[89] LogCheck, Psionic Software Inc., Available at http://www.psionic.com/, 2000.

[90] Linux Intrusion Detection System, LIDS.org, Available at http://www.lids.org,
2000.

[91] OpenWall, OpenWall Project, Available at http://www.openwall.com, 2000.

[92] NetSaint Network Monitor, Available at http://netsaint.sourceforge.net, 2000.

[93] CyberCop Monitor, PGP Security, Available at
http://www.pgp.com/products/cybercop-monitor/default.asp, 2000.

[94] Dragon Sensor, Network Security Wizards, Inc., Available at
http ://w w w. security wizards .com/intro.html, 2000.

124

[95] Dragon Squire, Network Security Wizards, Inc., Available at
http://www.securitywizards.com/intro.html, 2000.

[96] Patriot IDS, Patriot Technologies, Available at http://patriot-tech.com/ids.htm,
2000.

[97] PreCis Security Toolkit, PRC PreCis, Available at
http://www.bellevue.prc.com/precis/, 2000.

[98] Sygate Enterprise Network, Sygate Technologies, Inc., Available at
http://www.sygate.com/products/sms_ov.htm, 2000.

125

APPENDIX A

VERIFICATION AND VALIDATION DETAILS

Verification Experiments

To verify correct implementation of design for mobile agents, the following actions
were taken for each mobile agent written:

InetAgent
LoginAgent
MFAgent
ProgAgent
PSAgent
NullAgent
Test Agent 1
TestAgent2
TestAgent3

This test involved loading the agent into the Agent Coordinator and setting its itinerary
to the following: canary, dove, hansolo, jabba. Each agent was dispatched into the
network, with each agent server set to debug output mode. The sequence of hops was
compared against the following:

1 - arrival at canary
2 - arrival at dove
3 - arrival at hansolo
4 - return to Agent Coordinator (jabba)

Upon return, the payloads of each agent was analyzed against known results as follows:

InetAgent - contents of inetd.conf
LoginAgent - failed login attempts for each machine
MFAgent - malicious files intentionally placed on each machine (Trinoo, Tribal Flood,
etc) as triggers
ProgAgent - detection of triggers - unauthorized executing programs (i.e. tftp)
PSAgent - list of currently executing processes
NullAgent - no payload
Test Agent 1 - test file on each host for Test Agent 1 as trigger

126

TestAgent2 - test file on each host for TestAgent2
TestAgent3 - test file on each host for TestAgent3

To verify correct implementation of design for the IDS Analysis Engine, the following
actions were taken for each mobile agent written:

InetAgent
LoginAgent
MFAgent
ProgAgent
PSAgent
NullAgent

This test involved loading the agent into the Agent Coordinator with a predetermined
itinerary. Each agent was dispatched into the network, with each agent server set to
debug output mode. Upon return, the IDS Analysis Engine was observed for each agent
as follows:

InetAgent - Warning! sprayd daemon running on (host name) for each host
LoginAgent - Warning! Possible Doorknob rattling by user: (username) on (host names)
MFAgent - Trinoo Denial-of-service shell found on (host name)
Possible Trinoo master located on (host name)
Possible Trinoo client daemon located on (host name)
Possible Tribal Flood client located on (host name)
Warning! Possible Tribal Flood daemon localed on (host name)
ProgAgent - Warning! tftp running on (host name)
PSAgent - Warning! TFTP daemon running on (host name)
Warning! dmispd daemon — DoS vulnerability - running on (host name)
NullAgent - no output

Sprayd was executing on each host in the network. A bogus username bill was
attempted with guessed passwords on canary, dove, and hansolo. Trinoo and Tribal
Flood shells were installed on canary and dove. TFTP was executed on hansolo. The
dmispd daemon was executing on each host.

To verify correct implementation of design for the Agent Coordinator, the following
actions were taken for each agent:

InetAgent - automatic timer set for 15 seconds
LoginAgent - automatic timer set for 30 seconds

127

MFAgent - automatic timer set for 1 minute
ProgAgent - automatic timer set for 5 minutes
PS Agent - automatic timer set for 15 minutes
NullAgent - automatic timer set for 1 hour

This test involved loading the agent into the Agent Coordinator with a predetermined
itinerary. Each agent had a timer set for automatic dispatch into the network. The Agent
Coordinator was observed to see if the timers worked correctly in each case for the time
set. In addition, to these tests, the monitoring function of the Agent Coordinator was
tested for each agent as follows (each with an itinerary of canary, dove, hansolo):

InetAgent - server on canary was stopped prior to dispatch
LoginAgent - server on dove was stopped prior to dispatch
MF Agent - server on hansolo was stopped prior to dispatch
ProgAgent - server on canary was stopped while executing ProgAgent
PS Agent - server on dove was stopped while executing PS Agent
NullAgent - server on hansolo was stopped while executing NullAgent

In all cases, agents automatically routed around servers that were stopped before they
arrived. In the cases where agents were stopped while executing, the Agent Coordinator
successfully notified the last known server to successfully host the agent and revive it to
continue to the next host in the itinerary.

To verify correct implementation of design for the Agent Servers, the following actions
were taken for each server and each agent:

InetAgent
LoginAgent
MFAgent
ProgAgent
PSAgent
NullAgent

Agent servers were placed in debug mode to observe their behavior as agents arrived,
executed, and departed. In addition, stream sniffers were placed on the incoming and
outgoing links for each server to observe the state of agents in transition. Finally, the
persistent stores were observed to see if servers were successfully saving and restoring
agents.

128

Validation of Agent Security

Modifying Agent Itineraries

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo,
and jabba. To test, each of the following agents were subjected to modifications of their
itineraries as follows:

InetAgent - the host parrot was inserted into the itinerary
LoginAgent - the host dove was removed from the itinerary
MFAgent - the entire itinerary was deleted
ProgAgent - the itinerary was rearranged as hansolo, dove, canary, jabba
PSAgent - a random modification was made to the itinerary (by displacing one byte)
In an additional set of tests, the itineraries were changed as follows, but the digital
signature for the itinerary was also changed:

InetAgent - the host parrot was inserted into the itinerary
LoginAgent - the host dove was removed from the itinerary
MF Agent - the entire itinerary was deleted
ProgAgent - the itinerary was rearranged as hansolo, dove, canary, jabba
PSAgent - a random modification was made to the itinerary (by displacing one byte)

In both sets of experiments, the modifications were made at each of the following
locations for each agent:

Between the Agent Coordinator and canary
Between canary and dove
Between dove and hansolo
Between hansolo and jabba (Agent Coordinator)

Modifying Agent Payloads

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo,
and jabba. To test, each of the following agents were subjected to modifications of their
payloads as follows:

InetAgent - the canary payload was modified
LoginAgent - the dove payload was deleted
MF Agent - the entire payload was deleted
ProgAgent - the payload was rearranged as hansolo, dove, canary, jabba
PSAgent - a random modification was made to the payload (by displacing one byte)

129

In an additional set of tests, the payloads as before, but the digital signature for the
payload was also changed. In both sets of experiments, the modifications were made at
each of the following locations for each agent:

Between the Agent Coordinator and canary
Between canary and dove
Between dove and hansolo
Between hansolo and j abba (Agent Coordinator)

Modifying Agent Code

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo,
and jabba. To test, each of the following agents were subjected to modifications of their
code as follows:

InetAgent - a new go() method was added to the agent
LoginAgent - one line was added to the go() method
MFAgent - a line was removed from the go() method
ProgAgent - the go() method was deleted
PS Agent - a random modification was made to the code (by displacing one byte)

In an additional set of tests, the code was changed as follows, but the digital signature
for the code was also changed:

InetAgent - a new go() method was added to the agent
LoginAgent - one line was added to the go() method
MF Agent - a line was removed from the go() method
ProgAgent - the go() method was deleted
PSAgent - a random modification was made to the code (by displacing one byte)

In both sets of experiments, the modifications were made at each of the following
locations for each agent:

Between the Agent Coordinator and canary
Between canary and dove
Between dove and hansolo
Between hansolo and jabba (Agent Coordinator)

130

Compromising Agent Confidentiality

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo,
and j abba. To test, each of the following agents were sniffed in the following locations
during migration, both using encryption and without:

InetAgent
LoginAgent
MFAgent
ProgAgent
PSAgent

Between the Agent Coordinator and canary
Between canary and dove
Between dove and hansolo
Between hansolo and j abba (Agent Coordinator)

Introducing False Agents

Each of the following agents was preloaded with an itinerary of canary, dove, hansolo,
and j abba. To test, each of the following false agents were manually dispatched in the
following locations:

Test Agent 1
TestAgent2
TestAgent3

From the Agent Coordinator and canary
From canary to dove
From dove to hansolo
From hansolo to jabba (Agent Coordinator)

Dealing with Faulty Servers

The following actions were taken for each agent with a preloaded itinerary of canary,
dove, hansolo, and jabba:

InetAgent
LoginAgent
MFAgent
ProgAgent
PSAgent

131

NullAgent

Agent servers were placed in debug mode to observe their behavior as agents arrived,
executed, and departed. In addition, stream sniffers were placed on the incoming and
outgoing links for each server to observe the state of agents in transition. The following
servers were intentionally shutdown for each agent for each run:

Canary
Dove
Hansolo

Lost Agents

The following actions were taken for each agent with an itinerary of canary, dove,
hansolo, andjabba:

InetAgent - Level 1
LoginAgent - Level 3
MFAgent - Level 2
ProgAgent - Level 1
PSAgent - Level 3
NullAgent - Level 2

On each test run, the agent was dispatched and the following servers were brought down
in the following order on each pass as they were executing the agent:

Canary
Dove
Hansolo

Validation of Intrusion Detection Functionality

Value-Added Validation

To test the value-added of distributed "guessing" attacks, LoginAgent was altered to
retrieve as payload all failed logins on each host visited within a specified time interval.
The following was completed:

Canary - attempted failed login twice with username bill and guessed password
Dove - attempted failed login once with username bill and guessed password
Parrot - no attempted logins
Hawk - no attempted logins

132

Hansolo - attempted failed login once with username bill and guessed password

This was run twelve times, each time resetting the simulated loginlog.

In addition, the following was completed:

Canary - attempted failed login once with username John and guessed password
Dove - attempted failed login once with username John and guessed password
Parrot - no attempted logins
Hawk - attempted failed login once with username John and guesses password
Hansolo - no attempted logins

This too was run twelve times, run both with manual resets of loginlog and without.

To test the value-added of distributed scanning attacks, a ScanAgent was written to
retrieve low-level scans below a specified threshold on each host visited within a
specified time interval. This process was aided by modified scanlogd output. All
connections were logged to file that were collected by the agent. Correlations between
connection made from the same source within a specified amount of time were
considered suspicious. The file contents were simulated for testing purposes for control
after verifying the process worked in a non-simulated environment. The following was
completed:

Canary - single scan on port 10001 from j abba
Dove - single scan on port 10001 from jabba
Parrot - no scan attempts
Hawk - no scan attempts
Hansolo - single scan on port 10001 from jabba

This was run twelve times, each time resetting the simulated scan file.

In addition, the following was completed:

Canary - single scan on port 10001 & 12001 from jabba
Dove - single scan on port 10001 from jabba
Parrot - single scan on 12001
Hawk - no scan attempts
Hansolo - single scan on port 10001 & 12001 from jabba

This too was run twelve times, both with manual resets of the scan log file and without.

133

To test the value-added of staged attacks, MFAgent was altered to look for program
files installed in special locations, indicative of several staged denial-of-service attacks.
The following files were planted as follows:

Canary - trin.sh
Dove - no files
Parrot - trib.c
Hawk - no files
Hansolo - td.c

This was run ten times.

In addition, the following was completed:

Canary - no files
Dove - master.c
Parrot - no files
Hawk - ns.c
Hansolo - no files

This was run ten times.

To test the value-added of resource usage attacks, ResourceAgent was written to
periodically measure the CPU usage for each host in the itinerary. By comparing results
to those gathered earlier, possible trends can be discovered. For this test, the following
hosts were measured before and after several programs were started to use CPU time:

Canary - no CPU processes
Dove - CPU processes
Parrot - CPU processes
Hawk - no CPU processes
Hansolo - CPU processes

This was run ten times, each time measuring current CPU usage statistics.

134

APPENDIX B

SOURCE CODE

All the source code for the secure mobile agents prototype is provided on the

accompanying compact disk. The compact disk was written as a standard computer data

disk which should be readable on any computer. All utilities written or used specifically

for this research are also included. All source code was written in Java 2.0. This code is

readable in any standard text editor or Java development environment.

135

VITA

Jeffrey Wayne Humphries was born on August 19,1970 in Tallahassee, Florida, but

spent most of his childhood living in Perry, Florida. He graduated from Taylor County

High School in 1988. He is a 1992 graduate of the United States Air Force Academy

where he earned a Bachelor of Science degree in Computer Science and was

commissioned as a Second Lieutenant in the United States Air Force. He has served in a

number of positions in the Air Force, achieving the rank of Captain as of this date.

During his time in the Air Force, he earned a Master of Science degree in Computer

Science from the Georgia Institute of Technology in 1993. He has also served at the Air

Force Information Warfare Center and the U.S. Air Force Academy as an instructor in

the Computer Science department. In 2001, he was awarded a Doctor of Philosophy

degree in Computer Science at Texas A&M University in preparation for his return as a

faculty member at the U.S. Air Force Academy.

Jeffrey W. Humphries' permanent address is 5105 Roping Lane, Perry, Florida,

32347.

