IDENTIFICATION OF PREFERRED OPERATIONAL PLAN
FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST
THESIS

David J. Wakefield, Jr., Captain, USAF

AFIT/GLM/ENS/01M-24

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

£¢0 61901002



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense or the U.S.
Government.



AFIT/GLM/ENS/01M-24

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN
FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

THESIS

Presented to the Faculty
Department of Operational Sciences
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

David J. Wakefield, Jr., B.S.

Captain, USAF

March 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/GLM/ENS/01M-24

IDENTIFICATION OF PREFERRED OPERATIONAL PLAN
FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

David J. Wakefield, Jr., B.S.
Captain, USAF

Approved:

Af\_ N J—OW T Maie <

Lt Col Alan W. Johnson, Advisor Date
Assistant Professor of Logistics Management
Department of Operational Sciences

/Qé‘g .S < a MAR p|

Major Stephen M. Swartz, Co-Advisor Date
Assistant Professor of Logistics Managenient
Department of Operational Sciences

. /
7 e v
/%u%f @W DAL Z

(Dr. Gar))?{ Lamont, Readér ' Date

Professorfof Electrical Engineering
Department of Electrical and Computer Engineering




Acknowledgements

While I am the author of this thesis, many other people have made significant
contributions to its very existence.

First and foremost, I dedicate this to my wife, daughter, and son for knowing that
my job is not an easy one, and doing everything they can to make it easier. Thanks also
to dad, “J”, and “G” for the moral support and knowing that I’'m not anti-social, I’m just
an egghead. Special thanks to my mom, who can always be depended on for help.

I’m also very grateful to my thesis committee for their help during this research:

- Lt Col Alan Johnson, for keeping the leash long, letting me work through the

hard stuff, and discover what it means to do research.

- Maj Stephen Swartz, for helping get into AFIT (something he may now regret).

- Dr. Gary Lamont, for inviting me into the EA fold and keeping me involved.

I was very fortunate to have a large group of supporters during my year and a half
here at AFIT. I mention a few of them here:

- The other “Golden Boys”, for sticking it out with me.

- The “Back Row Gang”, for never letting me forget how late I am.

- Jonathan, for the shoes.

- Steve Oliver, Hakan Bal, and Mike Colvard, for helping me make the 2000 lab a

24 hour operation.
Finally, I am deeply indebted to Capt Jesse Zydallis, who gives of himself freely

even when he himself bears a heavy burden.

David J. Wakefield, Jr.

v



Table of Contents

Page

ACKNOWIEAZEMENLS. ... ettt v
LiSt Of FIZUIES. . 1. vteneneneee et e vii
|5 TS ) 21 o) (LT P 1X
N 03 5 - Y1 St X
R 5113 0T LD o1 To ) VAR ROt 1
Background ........c.ooeeeiiriioiiiiciiie e 1
Problem STAtEIMENT ........ccvieuieriieieeiieere ettt et s s 4
Research QUESHIONS ......eeuirireiieenienieiii ittt 4
Research MethodOIOZY .....c.coueeieiiiiiiieieiceceereeicte e 5
ASSUIMIPLIONS ...ttt st ber e bbbt e e b e e ebane s 5
SCOPE/LIMITAIONS. ...c.ceveeenieuierenieniriire sttt a e s b 6
SUMINATY .ottt sttt e a e ae et e s be s e ss b esseensessenses 7

II LHerature REVIEW. .. ...uintit ittt et e ettt et ettt e e e e 9
INTOAUCTION ...ttt et a e e as e n e et 9
IMOP OVEIVIEW.....uveieeuiieeeeeeeierteesieeessteeiteesieeesieeesesesessaeesaesessaeesastessiatesansssnnesenaesasens 9
Global OPHMIZAION. «...eeveevtieeieieee ettt ae e 11
Techniques for Solving MOPS ...t 12
Modern Methods for Handling MOPS.........cccooiiiiieniinienienerre e 13
Local Search in ObJectiVe SPACE. ....c.ceeruiruieereiereieicteee e 14
Population Based AppProach ...........ccceceviiiiriniiiiiiiiiiiiiiinnic e 16
GeNetic AIZOTIERIMS .....eoiieieiieiecit ettt e 17
Basic OPEration. ... ... .cccocrirrereneniiiieeiiisie ettt s b esees 18
INItHAHZAtION. ...ttt ettt e 19
ReEPIresentation. .... ... cocceeiiriiiieiiiiniiiiiniccrcr sttt 19
Fitness Evaluation. .. .....ccceoviereiiiiiieeeecieeis e 21
GENELIC OPEIAOTS. .. tevveueeeirreeietiereri ettt ettt s e en e 21
Parameter SEHNES. .. «ooevrererreierieree ettt 25

The Schema TheOTeM. .......oiiviiiiiiiieeiieee ettt e 28
Constraint Handling. .......coccoveviiiininiiiinieceeeicnrcis i 30
MUHIODJECHVE GAS.. ettt et 31
SUIMIMATY ..ottt sa e sab e sas s s ba e e n e e b re e esaseasens 41

III. MethOdOIOZY . ..o ettt e e 42
INETOAUCHION ...ttt 42
Mode] FOrMUIALION .....vvieieiitieeieecteeeie ettt ettt esen e aaesmeesanesaneenneas 42
MOP FOIMUIALION. ...ceeeeieeeiieeecieeecite ettt ettt ettt eesebecebaeesaeesbaeeaneeas 45



Target MOP ...ttt 49

Motivation and ODBJECLIVES ....cc.eeuieiiciriirenieee et 53
Performance IMEASUIES ........covuveervieeenirieiieereeeie e et st sane s et ean e s re e 59
Experimental DESIZ ........ccceeiiuiiiiiiiiiiiieicictcec e 60
Computational Environment. .........ccocooeeiiiioiniiiiiiiiiieeiiese 61
MOMGA-II Parameter SEHNES ....oeevvveeriieirieeeieeeiieeeeeetr et 64
SUIMIMIETY .vvvvevieneenie ettt ettt ettt st sa s sae et e s rseaeeae b e b s ereere s 64

TV . RESUIES. .ottt ettt e et e e e e e 65
INETOAUCTION ..ttt eeeee ettt et sttt e b et e e s eabeesmeesneemsesisessnssassosnsssasesnseens 65
StatistiCAl ANALYSIS ..eevrereeiieerieierieercre sttt ettt st sas e a s sre e ereens 65
Absolute Performance COmPariSON.........cocuerierierrieerieenrenneeeens s sesesrne s e 65
Execution Timing ANALYSiS .......cccoceeiriviriiiiniiiiniciiie s 67
Demonstration of Level-wise Nondominated Force Mix Sets.......c.ccocvveeeiivininnns 68
SUIITIATY .vovvivieeeeeeneet ettt ettt et s e essa s b e sa s a e nm s e n et e ebe b s 70

AV ©43 103 L T T ) s D PPN 71
INEEOAUCTION ..ttt ettt et s c et san e st s e sn s n e snsenaneens 71
CONCIUSIONS ....cvvvieieitreiee e ettt e e et e st e s e e e st e e s e sbee e e s santeeessan e s e st aesesbraessanbbessernnes 73
LIINIEAIOIIS 1. veeeeeeeee ettt et e et e eteeetteete e eebeseeessbesaee s s e ameeeabeenaeesenesmsesanerabeese e sesesaeenbeenas 74
RECOMMENAATIONS ....vvevvveriieiieieieiiete ettt est e e s sresee b sar s be st e senanesteebesmnesasens 76
Future RESEarch......c.ooooviiiiiiieeie ettt 77
SUIMIMATY ..eeiiieiereeiteet ettt e s e s s a e b s be s e be s e e eba e bseeabeeaaeaanes 79
Appendix A: Pareto Concepts...........ooiuiiiiiiiiiiii 80
Appendix B: Advanced Logistics Program (ALP) Pilot Problem........................... 81
Appendix C: Source Code for ENUMERATION.C...........cooooiiiiiiin 86
Appendix E: Source Code for Pareto_processing.C............ocoeuveeiuiiiiniinininiininnnnn 97
Appendix F: Raw Data and Experimental Statistics.................oooii 105
Appendix G: 3D Plots of PF,. and PFows Using Alternative Parameter Values...... 111
Appendix H: 3D Plots of PFyuown for Resource Levels 1 5. 116
BIblOZIaPRY . .ottt 119
A4 17 VPP OO 125

vi



List of Figures

Figure Page
1. ALP Operational CONCEPL ......ccverereruirererreieseeereseicsese et stesassesesesssssssesesosesssseseesesanes 2
2. Global and Local MaXima........c..cceueieireininierresereresseesesesesssssesssesessssssssssssssssssssesens 12
3. Pseudo Code for a Simple Genetic AIGOTIthIM ..........c..ocvovuiiieiieiieeece st eeeeeneneas 19
4. Example of Single-point CrOSSOVET .......ccevuveiirieierreieieeeeesteererereseseeeesssesssesessesesesenns 23
5. Pseudo Code for a Messy Genetic AlZOrithm..........ceeverueveviverernercreeereeeeesese e 36
6. Example of Cut-n-Splice OPEration...........cceueveeeuerererereresererssseseseresesessesssssssesoseses 37
7. MOP Processing MOGEL ........c.ooorierieuicieieieceeeeecec sttt s st se st eaese st esesen 43
8. Thread Of PrOZIESSION ...cvcvcvevvevieeriietcecetetectceee e e s s e e s et seeesnens 44
9. MOMGA-II String Length vs. Memory Required .............ccoevvvvveieeierereeernenereeseseenes 55
10. Three Views of the Target MOP Tri-objective Space for Resource Level 1............. 58
11. Problem Size vs. EXECULION TiME ......cceveveuieiereririeirerereieieetevesese s eseveseves e seesesneas 68
12. Matching ReSOUICES t0 TASKS......cceuerererererererererereterere st sssssesesssnens 83
13. Kruskal-Wallis H-Test Results for Final Generational Distance...............cccuuuc.... 109
14. Kruskal-Wallis H-Test Results for ONVG ......cccceuereriuererereeeeeeeeceeeeeeeeeeesesnens 110
15. Plot of PF e and PFpoun TOT BB SIZE 4 ..o eeeeeeeeereeeseaeessesssssssesssenes 111
16. Plot of PF e and PFipopn for BB SIZ€ 8 ...t e 112
17. Plot of PF e and PF 00 TOT BB SIZE 2 ..o eeeeeeesevessesasaeasesssessasssens 112
. 18. Plot of PF e aNd PEyown TOT Pyt = 0o eee e eeeseeseeeaeeeneseeeenns 113
19. Plot of PF e and PFppommn TOT Pryt = 0.2 oo eeeeeeeeeeeeeeeeeeeeeseneneanes 113
20. Plot of PF e and PFpouwn TOT Poplice = 0.8.cucuinieeiririeiriririserissssissssssssssssessssesens 114
21. Plot of PF e and PFiown 1O Poplice = 0.6.vuverureeirierrersinreieiesnieeeseessssssesesesesenns 114
vii




22.

23.

24.

25.

26.

27.

28.

Plot of PF,,e and PF oy, for initial population size = 600...........coevvveveerrerrverennen. 115

Plot of PF e and PFjy,.y, for initial population size = 1200.........ccceveeevrerererevenenes 115
PFoun Plotted With PF . for RESOUrce LEVEL 1 ..o.uvvveereeeeeeeeeeeeeeeeeeeereereeveereesens 116
PFown Plotted for Resource Level 2.........vvveviveieiererceiercreeeeereeeeeeeeveeene s 117
PFown Plotted for RESOUICE LEVEL 3 ..ottt eeveeeeeeeseeseeeeesaesesessessessenes 117
PFown Plotted for ReSOUrce LEVEL 4 ......o.ooveveeeeieieeeeeeeeeeeeeeeeeeeee e se e eeee s 118
PFnown Plotted for Resource Level 5.........covviiiecerineeceieeeeessese e 118



List of Tables

Table Page
Lo TaSKS oottt ettt stk a bbb st st s e e an e r e s nasat e sre e s 50
2. ReESOUICE LEVEIS ...ooeiieiieieieeeeeee ettt s s s e 50
3. Desired Task Capability Ratios ........ccceveriereniineiiciiienicicicieiie e 51
4. Desired Capability MatriX.......ccoceviveriiiriiiiniiiiiniiiicicseneeis s 51
5. Task Suitability / Lift Consumption MatriX.......ccccceeeveeviiomeniiiiniiciiiiiicneeieeieicnns 51
6. Experimental Parameter SEttNES .......cccovvevveviriiiiiiiiiiiiicciceecrne e 63
7. MOMGA-II Parameter SEtNZS......ccccvreeruveiniieeeiiereeeeieeeeeecieeeiee st et eane s 63
8. Asset-Mission Task Preference MatriX........ccoocvvveierieiienienieninieeecenciee e 81
9. Raw Data for Final Generational DiStance ..........c.cccooeeveeiiieiiecieniennencceninnccnens 105
10. Descriptive Statistics for Final Generational Distance..........ccccocccecirveniiiiiiinnnne. 106
11. Raw Data for Overall Nondominated Vector Generation............cccceeeevvcrcverernennens 107
12. Descriptive Statistics for Overall Nondominated Vector Generation...................... 108

ix



AFIT/GLM/ENS/01M-24

Abstract

AFIT research in support of the Advanced Logistics Project is directed at
developing a Mission-Resource Value Assessment Tool for rationally assigning relative
value to resources and identifying alternative force mixes to logistics and operational
planners. Research of factors that affect force mix composition has been strictly limited
to how the operating environment of USAF combat aircraft influences their performance
in specified aerospace missions. In contrast, this research makes use of an aircraft's
designed suitability to perform specified aerospace missions in order to examine the
tradeoff between mission suitability and the amount of lift needed to deploy and operate
the asset.

An Evolutionary approach was applied to a tri-objective constrained optimization
problem with 15 decision variables with the goal of producing five Pareto optimal sets of
force mixes corresponding to five progressively larger sortie capability levels. Analysis
of the results includes absolute performance comparisons using different operating
parameter settings, and time complexity in relation to problem scale. Preliminary results
were also generated from a version of the algorithm that uses a solution repair function.
These results help to assess the viability of using a multi-objective fast messy genetic

algorithm to identify well balanced force mixes.
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IDENTIFICATION OF PREFERRED OPERATIONAL PLAN
FORCE MIXES USING A MULTIOBJECTIVE METHODOLOGY

TO OPTIMIZE RESOURCE SUITABILITY AND LIFT COST

1. Introduction

Background

Death by inventory is the concept of stockpiling excessive inventory to
compensate for poor logistics management. This is a difficult and expensive business
practice, and unfortunately, is employed in DoD operations. Take, for example, the
strategic movement of personnel and equipment during the Gulf War. Although branded
a success by our leaders in DoD, the war served to highlight logistical problems. “One of
USTRANSCOM’s most intractable and high-visibility problems during Desert
Shield/Desert Storm was a backlog of sustainment cargo at aerial pots of embarkation,
primarily in the United States” (Matthews and Holt, 1996:84). The amount of arriving
cargo also overwhelmed the destination points. “Half of the 40,000 bulk containers
shipped into the theater had to be opened in order to identify their contents, and most of it
failed to contribute in any way to our success on the battlefield” (Muczyk, 1997:89).
These problems illustrate a serious gap in what the combatant commander or operator
wants to accomplish and what the logistician can make available. This disconnect
between operations and logistics is important, as Paul Judge notes:

The warfighting commander demands visibility of assets and requires confidence
in rapid availability. Without direct knowledge that commodities and reparables



are available and capable of supply in a specified time period, the field
commander is forced to stock-pile anticipatory requirements. (1998:25)

Judge also noted that recent studies concerning modern defense logistics supports
a solution that implements “a near real-time information system that cuts across all
logistic functional areas and is not excessively dependent on manual entry for raw
information™ (1998:8).

The Advanced Logistics Project (ALP) is an effort by the Defense Advanced
Research Projects Agency (DARPA) to develop a distributed computing architecture that
links current and planned logistics information systems to the deliberate and crisis action
planning processes, databases, and policies--an end-to-end system linking operations and

logistics.

Operational Concept

Feed Back Logistics
Supportability

Tight Ops /Log
Partnership

) . 'End-to-End
Specify Operational . f Develop
Requirements ! Logistics Detailed Plan
System

10

Figure 1. ALP Operational Concept (Carrico, 2000)



The deliverable program is expected to give logistics planners a tool that uses
real-time data to rapidly develop a campaign specific logistics plan and perform dynamic
replanning (Carrico, 2000).

ALP leverages the revolution in technology to narrow the gap between operations
and logistics, giving planners the capability to review multiple deployment plans that are
based on current information. But when comparing numerous plans and scenarios, how
does one answer, “What is best?” In other words, from a pool of available resources, is
there a mix of those resources that would be preferred by the combatant commander over
all others? AFIT research in support of ALP is directed at developing a Mission-
Resource Value Assessment Tool (M-R VAT) that “rationally assigns relative value to
material resources” (Swartz, 1999) and identifies alternative force mix compositions to
planners.

A Mission Ready Resource (MRR) is a combination of an asset type and its
resources, e.g. aircraft, pilot, fuel, munitions, support equipment and personnel, etc., that
is designed to have a certain suitability for a single task. A combination of MRR types is
defined to be a MRR set or force mix. To demonstrate, assume that a notional aircraft F,
has two configurations, F; and Fz, which constitutes two MRR types. Further, if the
aircraft could be prepared and flown three times per day, then it would represent three
MRRs per day. These three MRR’s could either be all F; configurations, or all Fz
configurations, or some combination of the two configurations. A MRR is consumed in
the performance of its task, i.e. fuel, munitions, engine cycles, etc. The goal of a
logistics plan is to provide the combatant commander with the Mission Ready Resource

(MRR) sets that satisfy the time-phased need for those resources. In other words, the




combatant commander desires to fulfill a task with the best combination of MRRs that is
dependent on resource suitability to a given task, resource level, and time, along with
theater-specific factors. There is most likely a number of acceptable MRR sets for which
certain combinations of MRRs may be assessed as having equivalent suitability. It is
desirable for the planner to select the MRR combination that best maximizes the time-
and resource level dependent suitability.

An MRR set provides a certain suitability and capability to the combatant
commander, but at a cost: consumption of lift resources. The finite lift capability of the
U.S. military is a key constraint on the amount and timing of resources flowing into a
target area. Therefore, it is desirable to deliver an MRR combination that minimizes lift.
There are then two competing objectives that the planner must deal with in order to
present the best MRR combination to the decision maker: maximize asset suitability and

minimize lift consumption.

Problem Statement

Given a choice among time-phased asset sets, simultaneously minimize lift

resource consumption (cost) and maximize asset set suitability over time.

Research Questions

1. Which methodologies can be used to trade-off lift cost and asset suitability and result
in an asset mix that is preferred over others?
2. What are the forms of decision and objective spaces?

3. How should the multiobjective optimization approach be evaluated?



4. Does the selected approach result in an acceptable solution to the research problem in

a reasonable amount of time?

Research Methodology

The two objectives, maximize suitability/minimize lift, are in conflict, so it may
be that no single optimum solution exists with respect to both objectives. It is desirable
to ascertain whether an exact solution can be obtained within reasonable time. If not, an
acceptable compromise solution must be found. Candidate approaches exist and are well
documented in literature. Candidate approach selection is based on its applicability to the
problem, its overall utility, and its utilization of computational resources.

For any acceptable asset set, the combination of lift costs for all asset sets over a
given period is constrained by the maximum throughput of the transportation pipeline
during that period. For the initial model formulation, it is assumed that the combined lift
will not exceed the maximum available lift. A constraint can be added to subsequent

models in a way that limits asset set selection to allocated lift consumption.

Assumptions

The combinatorial nature of this research necessitates the use of a relatively small
set of assets with which to explore the algorithmic search for an acceptable solution.
Additionally, actual asset capability with regard to specific missions may be classified.
Therefore, this research is constructed around a notional Air Expeditionary Force,
comparable in size and diversity to that depicted in the ALP Pilot Problem (Swartz,

1999). No actual assessments of aircraft suitability or lift cost will be used. The results



of this research may be sensitive to scale in terms of time required to produce a set of
acceptable solutions.

It is difficult to determine what the actual logistical footprint is for a given asset
set. The logistics support for a force is often undefined until just hours prior to
movement (Judge, 1998:32). It was noted during Desert Storm that “the actual material
shipped grew in size without anyone’s knowledge and certainly without any tools to
predict the eventual impact” (Lynn, 1997:15). To be of use, this research assumes that
asset set lift consumption is both sufficiently accurate and available for planning.
Research conducted by Matt Goddard suggests that, for F-16s, the relationship of asset

quantity to consumption is linear (2001).

Scope/Limitations

In their research on a campaign planning decision support tool, Christopher Buzo
and Paul Filcek proposed a comparison of competing sets of combat aircraft assets based
on two criteria (Buzo, 2000:2, Filcek, 2001). The first criterion is the intrinsic suitability
of a MRR to one or more specific missions. For instance, a properly configured F-16C is
capable of adequately performing many roles such as Air Interception, Short-Range
Reconnaissance, and Air-to-Air. In contrast, a B-2’s intrinsic suitability is relatively
confined to Strategic Bombing.

The second criterion is based upon situation specific or extrinsic factors of the
campaign itself. Such factors modify the task suitability of MRRs in certain scenarios.
For example, a planner with knowledge of an enemy with a high anti-air capability would

alter a force mix in favor of aircraft with a high absolute suitability in air defense



suppression. Political issues are also extrinsic factors of a campaign, forcing planners to
consider over-flight rules, coalition participation, and beddown constraints, to name a
few.

Buzo’s and Filcek’s research of factors that would affect force mixes was strictly
limited to extrinsic factors of USAF combat aircraft to perform specific aerospace
missions (2000, 2001). In contrast, this research makes use of the intrinsic suitability of
MRRs to examine the tradeoff of between MRR suitability against MRR lift cost—
extrinsic factors are not considered.

Discussion of operational plans and actual task suitability may be classified.

Therefore, this research and its conclusion is restricted to the unclassified realm.

Summary

This chapter illustrated the disconnect between operations planners and logistics
planners and ALP’s intention to close that gap. AFIT research is centered on providing a
decision support tool that would help campaign planners select the best force mix from a
pool of combinations. The problem of force mix selection can be handled as a
multiobjective optimization of two competing objectives: minimize lift resource
consumption (cost) and maximize MRR task suitability. This research proposes to
develop a methodology for presenting the decision maker with a set of acceptable force
mixes after which an extrinsic assessment is then made and the user-defined best force
mix is selected.

Chapter II provides a background on multiobjective optimization, discusses global

versus local optimization, and reviews classic and modern multiobjective techniques.



Chapter III describes the methodology used to construct the multiobjective problem and
evaluate the solution approach. Chapter IV details the results using the selected
multiobjective optimization methodology. Chapter V provides conclusions on research

contributions and makes recommendations for further research.



II. Literature Review

Introduction

Mathematical optimization is the formal title given to the branch of computational
science that seeks to answer the question ‘What is best?’ for problems in which the
quality of any answer can be expressed as a numerical value. Such problems arise in all
areas of mathematics, the physical, chemical, and biological sciences, engineering,
architecture, economics, and management, and the range of techniques available to solve
them is nearly as wide. In practical problems, we often want to optimize more than one
measure of performance at once.

This research is concerned with a particular problem class: multiobjective
optimization problems (MOPs). The purpose of this chapter is to provide a broad
overview of the field in order answer the first research question: “which methodologies
can be used to trade-off lift cost and asset suitability and result in an asset mix that is
preferred over others?” Following an overview on the MOP class, modern approaches to

handling MOPs are presented.

MOP Overview

The goal of an optimization problem can be formulated as follows: find the
combination of parameters (independent variables) that optimize (maximize or minimize)
a given quantity, possibly subject to some restrictions on the allowed parameter ranges.
The objective function is the quantity to be optimized. The parameters that can be

changed are the decision variables that represent discrete solutions of a combinatorial



problem (Reeves, 1995:2). The restrictions on parameter values are termed constraints.
For convenience of mathematical treatment, all problems in this thesis are assumed to
have minimization objectives unless stated otherwise.

To solve a decision-making problem analytically, it is helpful to state the problem
in numerical terms. Given that an objective, O, has a corresponding n-dimensional set of
alternatives, X, the criterion for the objective is defined as an objective function:

f:X->R (2.1)
where fis a mapping that may be linear or non-linear (Van Veldhuizen, 1999:2-2). The

general form of an MOP with p objectives is

minimize:
Fx)=(f(x), /,(x),..., f,(x)) overx € X (2.2)

subject to:
¢.(x)=0 i=12,...,m (2.3)
()20  i=m'+l...,m (2.4)

where x is the column vector of the » independent variables, and c4(x) is the set of
constraint functions that, depending on the situation, may or may not be included in the
problem (Sawaragi, et al., 1985:2).

In an MOP, it is difficult to obtain a unique optimal solution. This is because the
problem’s objectives are usually in conflict with one another: one cannot improve the
performance of a particular objective without causing a corresponding deterioration in
performance in one or all of the others. Examples of conflicting objectives may be

maximizing speed and safety in a vehicle, or minimizing acquisition cost and schedule of

10



a new aircraft while maximizing its performance. Classical methods of dealing with this
problem produce a solution by combining objectives in some way that is usually a
subjective expression of an a priori not well understood trade-off surface (Fonseca and
Fleming, 1993:1, Horn et al. 1993:1, Deb, 1999b:4, Ehrgott and Gandibleux, 2000:12,
Taber et al., 1999:1). By treating the problem as multiple, competing objectives, the
result is a set of solutions in decision variable space whose components represent a trade-
off in the objective function space. A decision maker implicitly chooses an acceptable
solution (or solutions) by selecting one or more of these alternatives (Van Veldhuizen,
1999:2-2). Ideally, the alternatives should be selected from a set of equally preferred
solutions called the Pareto optimal set, or simply P. Pareto optimal solutions are also
termed efficient or admissible solutions (Yu, 1985:22). The mapping of P to the
objective space forms the Pareto front, PF. The Pareto front is also known as the
nondominated front. The reader is referred to Appendix A for additional discussion of
Pareto concepts.
Global Optimization. The desired solution to an optimization problem is the true
or global optimum. The strict definition of the global optimum (minimum) x’ of f{x) is
f(X)< f(y)forallyeV(x), y#x, (2.5)
where ¥(x) is the set of feasible values of the decision variables x (Allen, et al., 1996). A
complication that arises in nonlinear optimization is that a local optimum need not be a
global optimum. For example, consider the function of a single variable plotted in Figure
2. Over the interval 0 < x < 20, this function has three local maxima—x = 3.8, x = 10.2,

and x = 16.7—but only one of these—x = 3.8—is the global maximum.

11
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Figure 2. Global and Local Maxima

Finding the global optimum of a general mixed integer MOP is NP-Complete and
MOP solutions that satisfy all constraints and globally optimize all objective functions
may not even exist (Van Veldhuizen, 1999:2-2).

Techniques for Solving MOPs. Techniques for solving MOPs have existed for
years and usually rely upon either enumerative or approximation approaches (Ehrgott and
Gandibleux, 2000:12, 20). For MOPs, it is from the Pareto optimal set that an informed
decision maker chooses a compromise solution. Ideally, the presented set is the true
Pareto optimal set P, that corresponds with the true Pareto front PF,,.,.. However,
complete enumeration of solutions for even a reasonable MOP is impractical from both
computational and decision making standpoints.

A MOP is required to pare down the solution set to one in which the decision
maker can feasibly use to select a solution that represents the best tradeoff between
objectives. In a real-world problem with real-valued solutions, the presented Pareto

optimal set Pyuo 18  discretized approximation or subset of a continuous Pye.
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According to Reeves, this kind of solution tends to favor an approximate or heuristic
approach to finding it (1995:11). While an exact model to a real-world problem is
beyond our reach, “it may be possible to model the real-world problem rather more
accurately than is possible than if an exact algorithm is used” (Reeves, 1995:11). A
heuristic allows us to solve optimization problems “in ways that are less than perfect yet
of considerable practical value” (Harel, 1987:344).

Deterministic heuristics, whose members include, but are not limited to, greedy
algorithms, descent algorithms, and deterministic linear / non-linear programming
methods, use problem domain knowledge to shrink the solution space (Van Veldhuizen,
1999:2-10). For any heuristic, a reduction in computational cost comes without being
able to guarantee either feasibility or optimality. Further, deterministic algorithms, when
applied to MOPs, suffer from their poor handling of irregularities in the search space—
high-dimensional, discontinuous, multimodal, and / or NP-Complete—and can be
expected to produce only local solutions (Van Veldhuizen, 1999:1-3, 2-12, Reeves,
1995:6). MOPs are usually better handled by flexible and more robust heuristic
approaches (Reeves: 1995:11).

When systematic search methods fail, stochastic techniques are used. The

algorithms discussed in the following sections all employ some form of random search.

Modern Methods for Handling MOPs

Heuristic approaches are typically designed for a specific problem and are not
suited for a wide range of applications (Ehrgott and Gandibleux, 2000:15). In contrast, a

metaheuristic employs a master strategy to take advantage of the search space and guide
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the search (Ehrgott and Gandibleux, 2000:15). Metaheuristics are much more general in
their application. Recent advances in computational power have pushed metaheuristics to
the forefront. Simulated Annealing (SA), Tabu Search (TS), and Evolutionary
Algorithms (EAs) are examples of metaheuristics that have been researched in great
depth and have produced superior results, in terms of both solution quality and
computational efficiency, in a wide variety of applications (Ehrgott and Gandibleux,
2000:15). All methods rely heavily on computing skills for practical implementation.

There are two main approaches used by metaheuristics: 1) local search in
objective space and 2) population based.

Local Search in Objective Space. Based on the principle of search directions, this
approach starts from some initial solution and proceeds in a given search direction to
focus on a portion of the nondominated front. The search proceeds iteratively in other
search directions in order to approximate the entire Pareto front. “At any time the search
mechanism uses only one solution and an iteration tries to attract the solution generated”
towards the Pareto front along the given direction (Ehrgott and Gandibleux, 2000:16).

Hill Climbing, Simulated Annealing (SA) and Tabu Search are examples of the
first approach. Hill climbing begins with a single random solution that is perturbed to
change its evaluation. After several such perturbations, the best evaluation is chosen as
the next starting point. Continuing on in this way eventually results in reaching an
optimum. However, it is not known whether it has reached local or global optimum. The
search space can be explored by starting repeatedly with a new random solution in hopes

of finding a better solution (Caryl, no date).
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SA employs an analogy between the way in which a metal cools and freezes into
a minimum energy crystalline structure, and the search for a minimum in a general
system. At high temperatures, the molecules of a liquid move freely. As the liquid cools,
that mobility becomes restricted and the molecules achieve crystalline form and the
system’s minimum energy state, i.e. global optimum.

Like hill climbing, SA randomly perturbs the objective function in a way that
will, for a given change, causes a decrease and for another change causes an increase.
But instead of selecting the best evaluation and continuing on (analogous to rapidly
cooling the liquid), SA introduces an element of randomness: a change that does not
improve upon the current optimum is executed with a probability p < 1. This is typically

based on the Boltzmann probability distribution:

E

P(E)~e ¥

where E is the energy of the state, & is Boltzmann’s constant, and 7'is the temperature.
This equation means that the probability of finding a particle with energy E is
proportional to the exponential of —E divided by the product of k£ and T (Rappe, no date).
So at a given temperature, a system can be in a range of possible energy states. A higher
temperature increases the likelihood of a high energy state. Simulated annealing makes
use of the fact that at low temperatures, there is still of chance of being in a high energy
state, thus allowing a jump out of a local minima. This random perturbation gives an SA
its ability to avoid being trapped at a local optimum (Reeves, 1995:26).

An SA implementation tends to be problem specific. The choice of the

temperature or annealing schedule depends on the expected range of function values and
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the shape of the function surface. Experimentation is required to obtain a method that
works well for a particular problem.

TS is can also be employed as a stochastic method, but rather than using random
moves, TS employs a directed search along with a memory to imitate intelligent
processes (Reeves, 1995:13). TS is a form of neighborhood search. Beginning with a
solution within a defined neighborhood, the algorithm proceeds iteratively to visit a series
of locally optimal solutions. At each iteration, a best neighbor is chosen to replace the
current solution. To allow the search to move beyond local optima, a list of moves that
are not allowed or tabu is used. This list prevents recently visited solutions from being
considered for a given number of iterations of the algorithm (Reeves, 1995:83, 86-88).

Population Based Approach. The population based approach takes advantage of
information carried by a population of solutions. Heuristics using this method
predominantly fall under the category of Evolutionary Algorithms (EAs), a class that uses
the evolutionary concepts of survival of the fittest and generational improvement as its
inspiration.

Despite the probabilistic nature of EA operators, EAs are not completely random
searches and are directed by the information carried by the population. Contrary to the
local search methods, where only one individual is attracted toward the Pareto front, here
the entire population contributes to the evolutionary process toward the Pareto front by
searching for many nondominated solutions at once. It is this characteristic that makes the
population based approach very attractive for solving MOPs, but it comes at a relatively
higher computational cost since many fitness evaluations are required (Ehrgott and

Gandibleux, 2000:16, Fonseca and Fleming, 1993:1).
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Recent research by Van Veldhuizen catalogued 206 multiobjective EAs (MOEAs)
(1999:A-1). A widespread implementation of the population-based approach is a type of
EA called the Genetic Algorithm (GA). Its broad applicability, ease of use, and success
in handling MOPs makes it “no surprise that a number of different multi-objective GA
implementations exist in the literature...” (Deb, 1998:4). A GA, in a single run, can
provide “a number of Pareto-optimal solutions” (Deb, 1998:26) and has the “ability to
find global optima while being able to cope with discontinuous and noisy functions”
(Fonseca and Fleming, 1993:7). A detailed discussion of GA theory, operation, and types
of MOEAs can be found in the next section.

The limit of any optimization method is succinctly expressed by the No Free
Lunch theorems (Wolpert and Macready, 1996), which tell us that “used blindly, there 1s
an equal chance that any optimization technique will perform the same” (Practical Guide,
no date). The choice of which optimization method to use should be based on what is
known about the system being optimized. Even though a GA has no guarantee of
performing better than another method in a given application, in most cases a GA’s

parameters and configuration can be tailored to achieve adequate search performance.

Genetic Algorithms

The Genetic Algorithm (GA) is based on the biological processes of evolution as
described by Charles Darwin (1936). An organism is made up of genetic material
embedded with environmental knowledge. Natural selection sees to it that those
individuals that are better suited to their environment survive to pass-on their good

genetic material. The less fortunate die and take their bad genes with them.
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Reproduction happens in an environment where the selection of who gets to mate is

largely a function of individual fitness. Reproducing pairs or parents, produce offspring

with chromosomes containing information from each parent. Evolution uses mutation to

stimulate diversity in the population. Mutated individuals do not always survive, but

occasionally there are those that are better suited to their environment and more

competitive than the others. Their environmental advantage is passed on to their

offspring and ultimately to future generations (Caryl, no date).

Basic Operation. There are five characteristic components in every GA (Caryl):

1.

2.

A way to create an initial population of potential solutions
A genetic representation for solutions to the problem

An evaluation function that plays the role of the environment,
rating solutions in terms of their fitness

Genetic operators that alter the composition of children during
reproduction

Values for various parameters that the genetic algorithm uses
(population size, probability of applying genetic operators)

The pseudo code for the basic algorithm is presented in Figure 3:

Start GA

// start with an initial time
t=0;
// initialize random population of individuals
initialize P(¢);
// evaluate fitness of all initial individuals of population
evaluate P(¢);
// test for termination criterion
while not done do
// increment the time counter
t=t+1;
// select a sub-population for offspring production
P'(t) = parents from P(¢);
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// recombine the "genes" of selected parents
recombine P'(t);

// perturb the mated population stochastically
mutate P'(¢);

// evaluate its new fitness

evaluate P'(?);
// select the survivors based on fitness
P(t) = survive P(t), P'(?),
end do
end GA.

Figure 3. Pseudo Code for a Simple Genetic Algorithm (Osyczka and Kundu, 1995:95)

A single iteration of the while loop constitutes a generation.

Initialization. A GA maintains a population of solutions, all of which are
potential parents. The first generation’s population is initialized, usually with randomly
generated individuals. Another technique is to initialize the population with high-quality
solutions. This approach has shown to increase the speed of convergence, but with an
increased possibility of premature convergence to only a portion of the Pareto front
(Reeves, 1995:164).

Representation. A GA can be thought of as a “DNA simulator” where
nonbiological structures could be modeled in terms of bit strings that could be changed
through transformations analogous to evolution. In the traditional GA, a genotypic
representation scheme encodes n decision variables into »n sequences of binary bits that
together form a bit string or chromosome that represents an individual solution in
decision space. The values of the variables are termed alleles and the location of a bit
within the string is its locus (Reeves, 1995:138).

Genotype is the genetic phrase for the encoded variables while phenotype is used

for decoded variable representation. This encoding scheme leads naturally to
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representation of integer decision variables. For example, equation (2.6) is an objective
function in two variables:

max: f(x,y)=x"+° (2.6)
Each variable can be represented by bit string of length m. If the phenotypic
representations for x and y are 3 and 6 respectively (i.e. x =3 and y = 6 and m = 4, then
(2.7) is the 8-bit string genotypic representation of x and y:

00110110 (2.7)

As this also represents an entire solution to equation (2.6), the bit string is itself a
chromosome.

Continuous variables are approximated through a scaling function. The accuracy
with which an optimum solution can be resolved depends on the length of the bit string.
For instance, a variable represented by a 22 bit chromosome can range between 0 and
2% —1. When rescaled into real numbers with a range of 3, this representation gives
quantization errors of 7.2 x 107. The scaling operation also serves to designate the upper
and lower bounds of the decision variable (Osyczka and Kundu, 1995: 95).

Other encoding methods that have been used are real number representation and
an integer representation variation. In real number representation, the each decision
variable is simply represented by floating point number, resulting in a “one gene / one
variable relationship” (Practical Guide, no date). Using an integer instead of a floating-
point number results in an integer representation. The disadvantage in using a binary
representation is a result of the extra steps needed to decode the binary string to a
floating-point number and back for each fitness evaluation (Practical Guide, no date).

However, contrary to real number representation, the theoretic aspects of binary
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representation have been thoroughly explored, placing performance evaluation of the GA
on much more solid ground (Practical Guide, no date).

Fitness Evaluation. Since the goal of optimization is to either maximize or
minimize the objective function value, a measure of solution fitness is a function of the
objective function value. If the objective function in equation (2.6) is used as a direct
measure of solution fitness, then the chromosome in equation (2.7) can be decomposed
into x and y values and substituted into the objective function:

f(3,6)=3>+6" =45
If maximizing, the solution (3, 6) would yield a better fitness than solutions with lesser
values.

Once a population has been produced, it can be evaluated using an objective
function that characterizes every individual’s performance in the problem domain. The
number of fitness evaluations increases with the number of objective functions and
population size. Fitness evaluation is the primary source of GA computational cost.

Genetic Operators. Traditional genetic operators are selection, recombination,
mutation, and evaluation. Selection for reproduction is dependent on the evaluated
fitness of each solution, the idea being that better solutions have better representation in
the population in order to improve the population with respect to preceding generations.
Selected solutions are recombined to form new solutions that are then evaluated for
inclusion in the next generation’s population. Prior to evaluation, a solution may be
changed by probabilistically applying a mutation operation to one or more of its genes.

Selection. Solution fitness is used to bias the selection process toward

highly fit individuals while still allowing less fit individuals to reproduce. This has the
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effect of keeping a measure of diversity in the population thereby making the search more
global. Highly fit individuals are given a higher probability of being selected for
reproduction than individuals with a lower fitness value. The average performance of
individuals can be expected to increase since those individuals with better fitnesses are
more likely to be selected for reproduction and the lower fitness individuals are
eventually culled from the population. Individuals may be selected more than once at
each iteration of the GA.

There are a variety of selection schemes employed in GAs (Osyczka and Kundu,
1995:95, Deb, 1999a:7). Common methods include proportionate selection, ranking
selection, and tournament selection. In proportionate selection, the probability that an
individual is chosen for selection is the individual’s fitness divided by the sum of the

current population’s fitnesses:

Do (i) = L2180 @8)

Z fitness(j)

J=I
where i is the individual in question and # is the population size. The new population of
potential parents is then selected by making » random draws from a uniform distribution
(Dorigo and Maniezzo, 1993:7).

In ranking selection, the population is sorted from best to worst in terms of
fitness. The number of copies that an individual should receive is given by an assignment
function, and is proportional to the rank of an individual rather than its absolute fitness
value.

In tournament selection, successive groups of £ of individuals are chosen from the

population and compared. The best individual from each group is selected as a parent for
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the next generation. This process is repeated until the mating pool is filled. When k=2,
each solution will compete twice. The best solutions will have two copies in the new
population, the worst are eliminated, and those in between have one. Deb reports that
“tournament selection has better convergence and computational time complexity
properties compared to any other reproduction operator that exist in the literature, when
used in isolation” (1999a:7).

Recombination. The recombination operation is typically referred to as a
crossover. After selection, each individual has a probability p., called the crossover rate,
of being chosen for crossover. This probability is usually set high, between 0.5 and 0.9.
Randomly chosen pairs of individuals are combined to produce two offspring. Crossover
can be applied in different ways. Two of the most often used crossover operators are
single point and multi-point crossover.

In single point crossover, a common point between two genes in both parents is
selected at random. The number of points is simply the length of the chromosome, /,
minus one. The offspring are created by concatenating the pre-selection point genes from
one parent with the post-selection genes from the other parent. For example, if the
randomly selected crossover point is between the third and fourth genes of the
chromosome, as in Figure 4, parents P1 and P2 produce the offspring O1 and O2

(Reeves, 1995: 154).

Pl 1010010 01 1011001
T

P2 0111001 02 0110010
T

Figure 4. Example of Single-point Crossover
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In multi-point crossover, up to n — 1 points may be selected a crossover points, n
being the population size. The parents can then swap every other segment. In uniform
crossover, each gene position is considered for crossover. However, this method has a
high probability of producing offspring that are considerably different from their parents
and so p, is usually set low, e.g. 0.01 (Practical Guide, no date).

In practice, “the simple crossover operator has proved extremely effective”
(Reeves, 1995:170). It does no backtracking or table lookups, making it a simple and
efficient method to implement.

Mutation. Crossover is responsible for the search aspect of the GA and is
considered the primary operator. Mutation is responsible for keeping a measure of
diversity in the search and is considered as a background operator. The offspring from
reproduction are further perturbed by mutation. Each bit in a chromosome is changed
with given probability p,,, called the mutation rate. In a binary representation scheme,
this means flipping the bit.

The mutation operator is both simple and powerful by guaranteeing “that every
point in the search space can be reached” (Dorigo and Maniezzo, 1993:7). It works by
biasing the creation of new solution in the neighborhood of the original solution (Deb,
1999a:10). Overuse of the mutation operator would destroy this relationship and so it is
used sparingly, with p,, usually set to between 0.1 and 0.001. Both the Messy GA (mGA)
and Multiobjective Messy GA (MOMGA) set p,, to 0 and have obtained highly
competitive results in comparison with other GA implementations (Van Veldhuizen,

1999).
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At this point, the next generation’s population must be filled. The process
described by Osyczka and Kundu in Figure 3 is only one example of how this may be
accomplished. Following along, the new individuals that result from crossover and
mutation are evaluated for fitness and compared with the parent population. The next
generation is made up of the individuals from both generations with the highest fitnesses.
Deb implements a variation on filling the next generation by using the n(p.) offspring and
n(1 - p.) parents (Deb, 1999a:9). This method is expected to produce better solutions
since the higher fitness parents that are the result of the selection process are used to fill
the vacancies left by the crossover operator in the new population. The n(1 — p.) parents
can be copied either deterministically or at random.

These processes of selection, recombination, mutation, and evaluation are then
repeated until some termination criteria is satisfied, e.g. upon reaching a maximum
number of generations, a specified fitness, a specified number of solutions in the
nondominated solution set, or after an elapsed period of time. Another stopping rule used
is based on the number of fitness function evaluations performed. The number of
function evaluations required to find the optimal solution set, within a given tolerance of
course, is an important measure of algorithm efficiency (Van Veldhuizen and Lamont,
2000(a):141). This is discussed in the section on multiobjective GAs.

Parameter Settings. The parameters most often cited as having a significant
affect on the performance of an EA are population size (r), crossover rate (p.), and
mutation rate (p,,) (Gray, 1997, Caryl, no date, Practical Guide, no date). Despite the
many papers on the theoretical and applied use of EAs, there are very few quantitative

methods for determining the proper values to use in a given optimization problem
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(Practical Guide, no date). The parameter values that produce the most efficient and
effective results depend upon the given problem and how the EA is applied, 1.e. search
space topology, representation scheme, selection and recombination methods. The
parameters may even vary with each generation or between decision variables
(Mathematical Optimization, no date).

Researchers have used parametric studies to determine the best settings for a
particular problem (Deb and Agrawal, 1999:3, Practical Guide, no date). Ad hoc
parameter settings are based on what is generally known about how their interaction
affects a GA’s performance, i.e., algorithmic efficiency and the exploration and
exploitation of the search space. For GAs, the most time-consuming task is fitness
evaluation (Van Veldhuizen and Lamont, 2000(a):142). GA complexity and efficiency
are generally stated in terms of the number of fitness evaluations performed. Search
space exploration refers to how well population diversity is maintained in the
nondominated front. Search space exploitation refers to how well the search is guided
towards the true Pareto front (Deb, 1998:4). The parameter settings used depend on what
aspect of GA performance the researcher is focused on (Deb and Agrawal, 1999:2-3).
Swinging a parameter’s settings through a predetermined minimum and maximum can
give some picture of Pareto front. In consideration of the interaction between parameter
settings, the number of runs needed to do this is itself a multiobjective problem and is
NP-complete (Zydallis, 2001).

It can be seen intuitively that the setting of the population size is a trade-off
between solution diversity and algorithmic efficiency. As n increases, the diversity of

among individuals is expected to increase, thereby decreasing the chance of premature
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convergence to suboptimal solutions or only a portion of the Pareto front. This does not
imply that increasing the population size automatically improves convergence to the
Pareto front (Zitzler et al.. 1999:18). Increasing the population size does have a
computation cost. For a k objective optimization problem, at least kn fitness evaluations
are required. Suggested values for n are between 25 and 100 (Practical Guide, no date).

Deb and Agrawal have shown that for simple functions, GAs using both crossover
and mutation perform better than either of them alone, and suggest the use of a large
crossover probability with a small mutation probability (1999:20). With more difficult
problems, the use of crossover exclusively (along with a suitable population size) was
shown to be effective (Deb and Agrawal, 1999:20). This is not surprising since crossover
is the key search operator and implicitly manipulates the best substrings or building
blocks to create Pareto optimal solutions (this is discussed further in the section on the
Schema Theorem). This does not imply that mutation is unimportant. Mutation is used
to uncover building blocks from which the crossover operator may direct the search away
(premature convergence). Too large a rate may destroy the information carried by
building blocks. Depending on how much pressure the researcher wants to apply to
Pareto front distribution, suggested rates for mutation range between 0.001 and 0.1
(Practical Guide, no date). De Jong’s work with GAs on problems with discontinuities,
high dimensionality, noise, and multimodality suggests that settings of n = 50, p. = 0.60,
and p,, = 0.001 would give adequate results in most cases (Mathematical Optimization,
no date). A commonly held opinion regarding parameter settings is that “although there
is no unique combination guaranteeing good performance, choosing wisely may well

result in more effective and efficient implementations” (Van Veldhuizen, 1999:2-18).
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Quantitative methods for determining the population size have been derived in the
literature but Deb and Agrawal have recognized that what is needed is a “good yet ready-
to-use population sizing estimate for generic problems” (1999:21). For crossover based
GAs, Goldberg, Deb, and Clark derive an estimate for the minimum population size, N,

needed to trigger correct building block processing (Deb and Agrawal, 1999:11-12):

2

N, =2cx ¥ 2.9)

dZ

where c is the tail of the Gaussian distribution relating to the permissible error rate ¢, «,
is the number of competing schemata, and O‘M2 /d? is the inverse of the signal-to-noise in
the underlying problem.

Both De Jong and Hessner and Manner suggest quantitative methods for

determining the mutation rate, suggesting that the rate is inversely proportional to the

population size. The Hessner and Manner formulation is

1
Pn —m (2.10)

where n is the population size and / is the length of the chromosome (Practical Guide, no
date).

The Schema Theorem. Chromosomal representation allows the manipulation of
information about the search space and the transfer of that information to other
chromosomes. This information is carried in the substrings of the chromosome. Thus,
each substring represents a subspace solution (Osyczka and Kundu, 1995:95). Substrings
are grouped based on similarity at certain string positions, called schema, and are

represented on a template of 0’s, 1’s, and *’s (in a binary representation) (Dorigo and
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Maniezzo, 1993:8). The “*” is a wildcard symbol that represents both 0 and 1. Thus a
schema S; = (1 0 * * ) represents stings with a 1 in the first position and a 0 in the second
position.

The length of a schema, &), is defined as the distance between the two most
distant symbols in the schema that are not wildcards. The order of a schema, o(S), 1s
defined as the number of wildcards subtracted from the number of symbols in the schema
(Dorigo and Maniezzo, 1993:8). So &S1)is2—1=1and o(S;)is 4—2=2. The fitness
of a schema is the average fitness of all strings that match the schema (Osyczka and
Kundu, 1995:95).

Since a schema is a grouping of similar strings, it represents a region in the search
space. For the objective function in equation (2.6), the schema S; represents strings with
x and y values varying from 8 to 11 with function values varying from 128 to 242. A
schema S; = (0 0 * * ) would result in function values varying from 0 to 18. Since the
objective is to maximize, strings similar to S; are preferred and increase in proportion
over those like S,. This is given by Holland’s Schema Theorem, which formalizes the

expected number m of schemata /# within a population at generation ¢:

m(h,t +1)> m(h,t)%[l— p. %— pmo(h)} (2.11)

where f(#) is the average fitness of all strings similar to /# within the population, fis the
average fitness of the population, and the rest as defined previously (Goldberg, et al.,
1989:5). It can be seen from equation (2.11) that short, low-order, above-average fitness
schemata, or building blocks, are desirable if a schema is to grow in subsequent

generations. Building blocks, according to Goldberg, “will increase in number with
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exponential speed” (Dorigo and Maniezzo, 1993:9-10). That a GA accomplishes this
implicitly through the selective pressure fostered by representation schemes and genetic
operators is postulated by Goldberg in what is known as the Building Block Hypothesis
(Deb, 1999a:14, Van Veldhuizen, 1999:4-3).

Constraint Handling. Most real world problems are going to be constrained in
some way (time, money, space, bandwidth, etc.). In constrained problems, complexities
arise in GAs due to how the genetic operators direct the search. It is very likely that a
small change to a feasible solution will lead to an infeasible one. (Ruiz-Andino, et al.,
2000:353).

One approach to dealing with constraints is to modify the solution representation
itself so as not to allow the creation of infeasible solutions. Repair algorithms or
decoders are special operators that avoid the construction of illegal solutions. They may
work reasonably well but are highly problem specific and may be computationally
intensive to run. Additionally, they may work against the inherent search properties of the
GA and may be difficult to implement (Ruiz-Andino, et al., 2000:353).

Penalty functions that reduce the fitness of infeasible solutions are more popular
(Kundu, 1995:96, Deb, 1999a:14) but also problem specific. Penalty functions may be
linear, quadratic, logarithmic, etc. functions of the deviation of the constraints and/or the
number of violated constraints. Although successfully used by many researchers, the
performance of GAs will depend upon the choice of constraint parameter values used.
To prevent the emphasis of a particular constraint and thereby restrict the search,

different penalty parameters should be used with different objective functions (Deb,
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1998:7, Gray, et al., 1997). Deb describes a parameterless penalty function that is used
with a size-2 tournament selection operator (Deb, 1999a:15):

Given a single objective function, f{x), and the maximization inequality

g;(x)20, J=12,....J (2.12)

the fitness, F(x), of any solution is defined as follows:

f(x), ifg,(x)20, Vjel,

F(x)= (2.13)

J
fmax + Z gj (x)a otherwise
J=1

where fqx is the maximum function value of all feasible solutions in the
population.

In a tournament between an infeasible solution and feasible solution, it can be
seen from equation (2.13) that the feasible solution always has a better fitness than the
infeasible ones. If both solutions are feasible, their assessment is based on their
respective objective function values. If both solutions are infeasible, then the assessment
is made based on the amount of the constraint violations. No penalty parameter need be
used since pairwise comparison of the infeasible solutions does not depend on their exact
fitness values (Deb, 1999a:15).

Multiobjective GAs. The basic operation of the single objective GA in Figure 3
must be enhanced to evaluate solutions with multiple fitnesses (objectives). Researchers
have responded with a number of ways to judge the overall fitness of the solutions. Van

Veldhuizen’s recent research served to classify known multiobjective EAs on the basis of
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the role of the decision maker in the process (1999:A-1). In a priori techniques, the
decision maker makes his or her preferences known at the beginning of the process,
resulting in a single compromise solution, e.g. lexicographic (ordering), linear and non-
linear combination, or goal programming.

In a posteriori, the Pareto optimal set is generated for the decision maker who
then makes his or her preferences known by selecting a solution from the set. This
technique is notable in that the resultant solution set is independent of the decision
maker’s preference and, assuming no change in the problem environment, new solution
sets would not need to be generated for different decision makers.

Progressive techniques allow the decision maker to interact and provide
preference information during the process. These techniques require a high degree of
participation from the decision maker and generally make use of both a priori and a
posteriori techniques.

A large number of methods for judging overall fitness use an objective-
aggregation approach and fall in the category of a priori techniques. The different fitness
values are weighted and summed according to the decision maker’s preference for them.
However, this is very subjective and is difficult to do accurately, especially when the
interplay between non-commensurate objectives is not well understood (Chipperfield, et
al., 2000, Shaw, 1998). The search space is inextricably linked to the weightings, thus a
single inaccurate weight may cause a GA converge to an undesirable front.

The predominant approach to solving MOEAs is to use the concept of Pareto
dominance, as defined in Appendix A, in the selection operator (Deb, 1999:4). Van

Veldhuizen notes that “the sheer number of Pareto sampling approaches indicates many
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researchers see merit in the basic methodology” (1999:3-10). Pareto dominance allows
all nondominated solutions to have the same preference, resulting in a set of
nondominated solutions for which the population-based EA is particularly well suited to
handle. Pareto dominance approaches produce as their end product nondominated sets of
solutions and so are well suited for use in the a posteriori mode. The following
algorithms are among the most often cited and copied contemporary MOEAs that use

Pareto dominance:

Multiobjective GA (MOGA) (Fonseca and Fleming, 1993)

Niched Pareto GA (NPGA) (Horn, et al., 1993)

Non-dominated Sorting GA (NSGA) (Srinivas and Deb, 1995)

Strength Pareto EA (Zitzler and Thiele, 1998)

NSGA-II (Deb, et al., 2000)
In order to improve the explorative and exploitative properties of their respective
algorithms, researchers have used more complex selection operators, such as ranking,
sharing, niching, elitist, and domination tournaments (Zydallis, et al., 1999:2).

MOGA and NSGA use variations on Goldberg’s nondominated sorting procedure.
The basic operation of this procedure is to rank solutions in nondominated order with the
best solutions being the least dominated. These fittest solutions are given higher
probabilities of producing more offspring (Bentley and Wakefield, 1999:7). The MOGA
checks the population and assigns a rank of 1 to all nondominated solutions. Each of the
other solutions is ranked based on the number of solutions that dominate it (Deb,

1999b:5). Fitness is assigned based on linear or exponential interpolation (Van

Veldhuizen, 1999:3-22).
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NSGA also checks the population and assigns a rank of 1 to all nondominated
solutions, forming what it calls the first level of non-domination. The first level is
removed from consideration and proceeds on the rest of the population in the same way,
resulting in 1 to » domination levels, n being the population size. All first level solutions
receive a fitness equal to the population size. The other levels receive a dummy fitness
that is smaller than the smallest shared fitness of the preceding level.

Fitness sharing was suggested by Goldberg allow for solutions with identical
fitness along different parts of the front, thereby helping the population to be distributed
along the front (Horn, et al.,1993:4). The number of neighboring solutions along the
front, referred to as a niche, are used to selectively reduce the fitness of high niche count
solutions, thus increasing pressure toward a uniform Pareto front distribution (Horn, et
al., 1993:8). A sharing parameter, Gspare, i a defined maximum distance within which
any solution constitutes as belonging to a neighborhood. Solutions within &, of each
other reduce each others fitness.

To perform domination ranking, NPGA uses domination tournaments of size two
(Horn, et al., 1993: 6). The tournament procedure selects two solutions at random and
each of them competes against a comparison set of solutions, z4,,, that are also selected at
random from the population. When one solution is dominated and the other is not, the
latter is selected. When competing solutions are either both dominated or both
nondominated, sharing determines the winner. NPGA implements sharing in a different
manner. Rather than reducing the fitness of high niche count solutions, the winner is

declared based on the solution with the smallest niche count (Horn, et al., 1993:9). While
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MOGA, NSGA, and NPGA all require explicit values for oy, NPGA also requires the
same for £,

Elitist selection ensures that the best solutions are retained in the next generation
(Van Veldhuizen, 1999:A-25). SPEA uses an elitist selection with nondomination (Deb,
1999b:6). The algorithm maintains a secondary population that is the current Pareto
optimal set. This population is combined with the current population and nondominated
comparisons are performed on the whole. Nondominated solutions are assigned a fitness
based on the number of solutions they dominate. Preference is given to

1. nondominated solutions that dominate more solutions in the combined
population, and
2. dominated solutions that are dominated by more solutions in the combined
population.

The preference rules are meant to check premature convergence by preventing large
numbers of good solutions from being carried over from one generation to the next (Deb,
1998:26). However, rather than having equal preference for all nondominated solutions,
SPEA is biased in favor of nondominated solutions that dominate more solutions than
others (Van Veldhuizen, 1999:3-20).

There is another approach that steps further away from the traditional GA: the
Messy GA (mGA). The mGA abandons fixed length bit strings and so-called reat
operator, crossover, in favor of variable-length based representations, and a gene
reordering operator called cut-n-splice. The pseudo code for Goldberg’s, et al. mGA is

presented in Figure 5.
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Start mGA
// loop for user defined number of eras
while not done do
// perform Phase 1: Partially Enumerative Initialization
// evaluate individual fitness for entire population
// start Phase 2: Primordial Phase
// loop for user defined number of generations
while not done do
/I increment the generation counter
g=g+t1;
/I perform Tournament Thresholding Selection
// test for appropriate number of elapsed
generations, g*
ifg==g*
reduce population size;
// reset g
g=0;
end if
end do
// end Primordial Phase
// start Phase 3: Juxtapositional Phase
/1 loop for specified number of generations
while not done do
// increment the generation counter
t=t+1;
// perform cut-n-splice

// evaluate individual fitness for entire population

// perform Tournament Thresholding Selection
end do
// end Juxtapositional Phase
// update competitive template
end do
end mGA

Figure 5. Pseudo Code for a Messy Genetic Algorithm (Van Veldhuizen, 1999:4-5)

A GA has difficulty when the genes are not ordered properly. According to the

Schema Theorem, these longer length schemata have a higher probability of being

destroyed by crossover and mutation. This linkage problem leads to what is known as

deception, where poorly ordered schemata lead the GA away from the global optimum.
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This is illustrated in the following example by Goldberg, et al., (1989:508). Given that
(00 ****)and (****00) are highly fit schemata of an optimal point
(1111111),and that the schema (0 0 * * * 0 0 ) is much less fit than the building
block (11 * **1 1), the GA will, with high probability, destroy the longer length
building block and converge to a less than optimal point.

Nature allows individuals to carry redundant information such as multiple copies
of genes and paired chromosomes. Messy genetic algorithms copy this by allowing
redundant or even contradictory genes (Goldberg, et al., 1989:501). To allow the
reordering of genes, each gene is a pair of integers that represents the name and value of
the gene, respectively. For example, in messy representation, two strings P and P, are

B =((3,1(1,0)(3,0)(2,1)(1,0)) (2.14)
and
P =((41)(2030)(2]1)) (2.15)
Both P, and P, are valid despite under-specification by P; in bits four and five, and over-
specification by P; in bit 3 and by P, in bit 2.

The traditional crossover operator is replaced by the cut-n-splice operator. The
name of this operator is indicative of what it does to bit strings. The position of cuts can
be chosen independently for both parents. After cutting, partial strings are spliced in a
random order. To illustrate, cut-n-splice is performed on P, and P; in Figure 6.

O (3,1)(1,0)0(2,1)
Py (3,1)(1,0) (3,0) (2,1) (1,0)
t 0, (3,1)(1,0) (4.1) (2,0) (3,0)
0; (4,1)(2,0)(3,0)(3,0) (2,1) (1,0)
P, (4,1)(2,0) (3,0)1\(2,1)

Figure 6. Example of Cut-n-Splice Operation (Hoffman, 1997)
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Evaluation of variable lengths strings is problematic since under- and over-
specified strings must have their lengths changed to fit with the objective function.
Goldberg, et al., settled on a simple first-come, first-served process to handle over-
specification (1989:501). Since this method does not rely on bitwise fitness for its
choice, it is not biased to toward deceptive schemata. Goldberg, et al., successfully
handle under-specification through their use of competitive templates that fill in the
unspecified bits in an under-specified string (1989:521). A competitive template is
initialized randomly and used in the first era. Thereafter, the best solution in the current
era is used as the competitive template for the next era, and so on. A competitive
template that is itself a locally optimal solution to a problem “accentuates salient building
blocks” by ensuring that their fitness is better than that of the template (Goldberg et al.,
1990:417).

An mGA proceeds in two phases. Prior to the first phase, the population is
initialized so that it completely enumerates building blocks of a given length. This
process is referred to by Goldberg, et al. as Partially Enumerative Initialization
(1990:505). The population sized is determined based on the highest order k deceptive

string expected in the problem:

n=2* U{J (2.16)

where [/ is the length of the chromosome (Goldberg, et al., 1989:505).
In the primordial phase, tournament selection is performed on successive
populations “to create an enriched population of building blocks whose combination will

create optimal or very near optimal strings” (Goldberg, et al., 1989:505). To avoid an
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apples and oranges comparison of substrings that do not refer to the same subfunction,
the mGA only compares substrings that are similar to each other to an extent that is
defined by a threshold number of genes in common. The threshold parameter is defined

by Goldberg, et al., to be

g="12 2.17)

where [ is the chromosome length and /; and /, are the respective substring lengths
(1989:426). The number of substrings to check against & is defined by a shuffle number,
ng, equal to the chromosome length (Goldberg, et al., 1989:427).

As the primordial phase proceeds, the population size is reduced roughly in half
by selection at specified intervals since only the better building blocks need to be
maintained. This phase represents a key difference between a mGA, which explicitly and
directly manipulates building blocks, and other EAs which settle for implicitly
manipulating building blocks.

At the conclusion of the primordial phase, the juxtapositional phase proceeds as a
traditional GA would on a fixed population size, albeit using cut-n-splice instead of
crossover to lengthen the substrings. Thresholding is also used in the selection operator.
In essence, an mGA tries to gather information on building block relationships first, then
searches for better solutions (Kargupta, no date).

In his PhD dissertation, David Van Veldhuizen extended the mGA to handle
MOPs and developed the Multi-Objective Messy Genetic Algorithm (MOMGA) (1999).
There is a competitive template for each objective that is at first randomly initialized and

then updated with the previous era’s best individual for that objective (Zydallis, et al.,
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2001:4). Like Horn, et al., Van Veldhuizen augmented the tournament selection operator
with a niching strategy to increase domination pressure (1999:4-14). As with NPGA, the
MOMGA requires explicit values for oyqre and #4,,, to control domination pressure. The
MOMGA uses Fonseca’s suggested method to determine Gypqre:

k k
H (Ax + O-share) - H Ai
N = i=1 i=1

k
O share

(2.18)

where N is the number of individuals in the population, A; is the difference between the
maximum and minimum objective values in dimension i, and & 1s the number of distinct
MOP objectives (Van Veldhuizen, 1999:6-11).

The MOMGA also maintains and updates a list of known Pareto optimal solutions
Pruown With Pareto optimal solutions from current generation Pyren (Van Veldhuizen,
1999:4-17). Since dominance determination is at worst an #” algorithm, n being the list
cardinality, it is done on Pjy,, at the termination of the program to prevent the MOMGA
by being bogged down.

As shown by equation (2.16), the initial population grows exponentially as the
building block size k is increased, creating a computational bottleneck, i.e. O().
Zydallis, et al. reduce this bottleneck using a probabilistic approach to initialize the
population (2001:5). Probabilistically Complete Initialization (PCI) creates a controlled
number of building blocks of size k. Building Block Filtering (BBF), which replaces the
Primordial phase, alternately reduces string lengths by randomly deleting bits from the
strings and performs selection on the strings. This continues according to a user specified

schedule of alternations until the strings are of length £. The Juxtapositional phase
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proceeds as before. This approach probabilistically ensures that all of the best building
blocks are in the initial population and results in initial population growth on order of the
initial string length—O(J) (Goldberg, et al., 1993:7).

Using these ideas, Zydallis, et al. modified original MOMGA, creating a
multiobjective fast messy GA (MOMGA-II). Their research shows the MOMGA-II to be
more efficient than the MOMGA while reutilizing much of the same code. The
MOMGA-II was also applied to the same test suite as the original MOMGA, achieving

similar results but with fewer juxtapositional generations (2001:10).

Summary

To answer the first research question, we began by defining what a multiple
objective programming problem is, what it means to be globally optimal, the concept of
Pareto dominance, and introduced classical approaches to solving MOPs. We then
presented modern methods for solving MOPs in terms of two approaches: local search in
objective space and population-based.

The next chapter answers the second and third research questions by presenting a

multiobjective model formulation and solution methodology for the research problem.
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III. Methodology

Introduction

The previous chapter was directed at the first research question, which asks for a
review of MOP methodologies. The intent of this chapter is to answer the second and
third research questions:

e What are the forms of the decision and objective spaces?

e How is the selected MOP methodology evaluated?
This chapter also defines the experimental methodology that is used to answer the fourth
question: evaluate the MOP approach used to solve the research problem.

This chapter begins with the research problem model formulation that is based on
the ALP Pilot Problem (Swartz, 1999). The next section presents the MOP formulation
and describes the construction of the research problem’s decision variables, objective
functions, and constraints. This is followed by a description of the target MOP used in
the model. Next, the motivation for selection of a specific MOP methodology and
objectives for its evaluation are discussed. The last two sections present evaluation

metrics and the solution methodology used for this research.

Model Formulation

This research problem is modeled on the ALP Pilot Problem presented by Stephen
Swartz (1999). The reader is referred to Appendix B for the background information

used to construct the model.
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The MOP Processing Model is depicted in Figure 7. The centerpiece of the
model is the MOP Tool. The MOP Tool is to be an application of a MOP solution
methodology selected from the literature. The inputs to the MOP tool allow for the MOP

formulation discussed in the next section.

[Specified Resource Le\:@
[ Task Preferences >
[ Podl of MRR Tvoes>

MRR Task Suitability Matri¥

Acceptable Force
‘Mixes at each .
-Resource Level

Campaign Specific Processing
&
Selection of Progressive
Force Mixes

Figure 7. MOP Processing Model

The output requirement of the model is to present to the war planner a Pareto
optimal set of force mixes from which to select the desired force mix. Using some
decision making methodology, the planner can choose the desired Mission Ready
Resource (MRR) set from each Pareto optimal set associated with an inflection point on
the task preference vector (as shown in Figure 12 of Appendix B). This piecewise
solution represents the decision maker’s preferred MRR sets for a given combat

capability.
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These assumptions imply that a solution set produced at a given resource level is
a subset of solution sets at greater resource levels. This must be reflected in the
piecewise solution and is accomplished by proceeding along the preference vector from
the origin to the last resource level or vice versa. This is illustrated by the three force mix
sets in Figure 8. For purposes of illustration, each set is considered nondominated. There
are nine possible force mix threads that progress from the lowest to highest specified
resource levels: {1, 2, 5}, {1, 2,6}, {1,2,7}, {1, 3,5}, {1, 3,6}, {1,3, 7}, {1, 4,5},
{1,4,6}, and {1, 4, 7}. However, it is seen by inspection that only three of these meet

the subset criteria: {1, 2, 7}, {1, 3, 6}, and {1, 3, 7}.

“Thread of Progression”

Resource Level = 60

Force Mix 5 Force Mix 6 Force Mix 7
FA FB FA FB FA FB
13 47 15 30 30 30

Resource Level =27

Force Mix 2 Force Mix 3 Force Mix 4
F, Fpg r, Fy F, Fy
16 11 14 13 5 21

Resource Level =12
Force Mix 1
F/l FB
6 6

Figure 8. Thread of Progression

It is tempting to handle this requirement using a series of constraints. To

illustrate, we select a progression direction that begins with Resource Level 12. We then
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choose the upper bound for each MRR type at that resource level to be the starting point,
or lower bound, for the next resource level. This leaves {1, 2} and {1, 3} as feasible
threads. Now the upper bound for each MRR type at this level is the starting point for the
next level. This leaves only {1, 2, 7} and {1, 3, 7}. Although {1, 3, 6} meets the subset
requirement, it is deemed infeasible. Using the lower bound as the starting point for the
next level allows the infeasible threads {1, 2, 5} and {1, 2, 6}. The same kind of problem
exists when starting from the highest resource level and progressing downward.

It is my opinion that the best way to handle the construction of force mix threads
is through a post-processing algorithm. The algorithm operates on level-wise
nondominated sets of force mixes and, starting at the lowest (or highest) resource level,
constructs threads iteratively, taking into consideration all possible feasible threads. Due

to time constraints, construction of this algorithm will not be undertaken in this research.

MOP Formulation

Given m tasks and » MRR types, the solution set is an m x #» matrix. A matrix
element is a decision variable, x;, that represents the number of MRRs of type j allocated
to tasks of type i. Assuming that each daily task is satisfied by exactly one MRR, and
that no interactions exist between differing MRR types, then the suitability, .S, for all

MRRs is defined by

S=> Y ax 3.1)

where ¢;; is the suitability of MRR j for Task 7 and x;; 1s the number of MRRs j allocated

to task type i.
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The requirement that all tasks i = 1, ..., » must be satisfied at a particular resource

level (RL) & is:

RLtask,; =) X, ; (3.2)
J=t

Since the desired capability for a task is set by the decision maker and defined to be
static, the left-hand side of equation (3.2) is an equality constraint.
The requirement that all MRR typesj = 1,...,n do not exceed their available

number at a particular resource level k is

RLmrrM > in,.i,k 3.3)

i=1
In this problem, the decision variables are allowed to take on any non-negative integer
value so long as they do not exceed the specified resource level. Therefore, the left-
hand side of equation (3.3) is an inequality constraint.
The maximum number of sorties per day for a particular asset, 4, is given by its
turn rate, t. For a quantity d of asset A, the total turn rate is
TTR, =(d ,)(turn rate,) 3.4)
Given that 4 has P configurations corresponding to P MRR types, the upper bound for
any combination of the P MRR types 1s
P m
TTR, 2> > x,, 3.5)
r=1 il

i=

For example, let the number of tasks be one, and let P = {1, 3, 4} be the set of MRR
types that correspond to asset A. If the number of 4 is one and the turn rate of 4 is two,

then following decision variable values are possible:
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Mathematically, this table is represented as

D3 x,, <TIR,

r=1 =]

X, +Hx,+x,< 2

It is difficult to determine what the actual logistical footprint is for a given asset
set. At the very least, it is clear that for each additional asset deployed, there is a
corresponding increase in lift cost for additional resources, e.g. fuel, munitions, etc.
Research conducted by Matt Goddard suggests that, for F-16s, the relationship of asset
quantity to lift resource consumption is linear (2001). Assuming that lift consumption is
linear and without interaction, the weight consumption, W, and volume consumption, V,

for all MRRs are
W = ‘ Z ﬂjxi,j (36)
and

V=2 DA%, (.7)
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where £ and 4; are the weight and volume consumed by a single MRR ;.

The form of the suitability maximizing / lift minimizing MOP with A asset types,

m tasks, n MRR types, at a resource level &, and decision variables { x; 1, x;j,

L] xm,n } ls
maximize:
§= & j%i.j
Jj=1 i=1
minimize:
W= Bix. ;
Jj=1 i=l
y=3 Shx,
j=1 i=1
subject to
in,j = RLtask, ; fori=1tom (3-8)
J=1
in’j <RLmrr, ; forj=1 ton (3.9)
i=1
B m
> > x,, STIR fora=1to 4, and (3.10)
r=1 j=1

P, =number MRR types for a

{x1,1, X, ... , Xmn } are non-negative integers

The number of constraints resulting from equation (3.8) is equal to the number of
tasks. These constraints ensure that the total number of sorties for Task 7 is exactly the
desired capability at that resource level. The maximum value for any decision variable is

found by using equation (3.8) and allocating all task capability to one MRR type. This
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information is important to the MOP programmer who must allocate computer memory
to hold the value for each decision variable.

The number of constraints resulting from equation (3.9) is equal to the number of
MRR types. These constraints ensure that no MRR type can be allocated a number of
sorties that exceeds the given resource level. These constraints are also used when there
are restrictions on the available number of any MRR type, e.g. attrition or changes in

asset turn rate. It is important to note that each constraint refers to a single MRR type.

Target MOP

The MOP Tool inputs in Tables 2 through 5 provide linkage between this thesis
and concurrent ALP research, and create a search space large enough to serve as a
reasonable test of the MOP Tool’s utility to the problem. The inputs are completely
notional but not entirely arbitrary.

The number of tasks in Table 1 and MRR types in Table 5, along with their task
suitabilities, are set to provide proper input to concurrent research (Filcek, 2001). The
suitabilities reflect notional but reasonable values that clearly differentiate the MRR
types. The same can be said for the lift consumption values in Table 5.

To keep the number of task capability decisions by the decision maker at a
reasonable level, five resource levels in Table 2 were specified, equating to 15 separate
task preference decisions. These preferences are reflected in Table 3. When the ratios
are applied to their respective resource level values, the result is the capability matrix in
Table 4. The values are rounded to a whole number so that the sum across tasks 1s equal

to the resource level.
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The values of the resource levels were chosen to create solution spaces of
increasing size. Given three tasks and five MRR types and a resource level of 300 sorties
per day, the worst case number of possible force mixes is approximately 9.72 x 10" (by
equation (B.2)).

For the target MOP, it is assumed that there is no restriction on the available
number of any MRR type; the combined lift will not exceed the maximum available lift;
no attrition; and that each asset has one associated MRR type, i.e. one sortie per day.
These simplifying assumptions are made to meet research time constraints, but also allow

this groundbreaking research an opportunity to explore the basic problem complexity.

Table 1. Tasks

INDEX | NOMENCLATURE
1 |  Airto-Air (AA)
2 | Airto-Ground (AG)
3 ] Precision Bombing (PB)

1
|
g
g

Table 2. Resource Levels (RLs)

| INDEX l RL (sorties per day)
I 16 |
1.2 | 2
13 5
14 ] 150 '
s 300

50



Table 3. Desired Task Capability Ratios

| | PERCENT TO TASK
|INDEX | 44 | AG | PB
1 ] 60 | 30 | 10
2 ] 3 | 6 | 10
[ 3 | 25 | 60 | 15
4 ] 20 | 50 | 30
[ 5 | 20 | 3 | 50

Table 4. Desired Capability Matrix

[ [TASK(sortles perday) l S
] INDEX ] 44 | AG | PB l Dggg?ﬁ&‘;‘%g? |
1 0 [ 5 | I 630,630
2 [ 10 |2 | 2 | 159,549,390
3 [ 19 [ 4 [ 11 | ~2.56 x 10" |
14 ] 30 | 75 | 45 | ~1.48x 10"
s ] 60 | 9 | 150 | ~4.37x 10"

Table 5. Task Suitability / Lift Consumption Matrix

TASK SUITABILITY 1 LIFT CONSUMPTION

/ | [

INDEX T { WEIGHT | VOLUME |
Ype 44 PB (short (cubic

I ! tons) _feey)

1 [ F, [0800 {0400 10001 | 202 || 16500

2 | Fs [0300 [0800 |0001 | 285 | 24750

|3 | Fc ]0600 [0600 [0.100 | 357 | 28875

|4 [ B, [0001 [0001 |080 | 199 | 1705.0

|5 | B, [0001 |0001 [0400 | 225 | 2200.0
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The complete MOP formulation is as follows:
Decision variables: Number of MRR j assigned to Task i = {x;; ... xi;}
Maximize:

§=0.8x, +0.3x,, +0.6x,, +0.001x,, +0.001x,; +0.4x,, +0.8x, , +0.6x, ,

3.11
+0.001x, , +0.001x, 5 +0.001x,, +0.001x, , +0.1x, ; + 0.8x; , +0.4x, ( )
Minimize:
W= 20.2(x,,1 + Xy, +x3,)+ 28.5()c,‘2 +Xx,,+ x3‘2) + 35.7(x,v3 + x2,3+x3,3) (3.12)

+19.9(x, 4+, 4 +X3,) +22.50x, s + X, 5 + X5 5)

V =1650(x; , + Xy, +x5,) +2475(x, , + X, , + X;,) + 2887.5(x 5 + X, 5 + X35) (3.13)
+1705(x, 4 + X, 4 + X, ) +22000x, 5 + X, 5 + X; 5) '

Subject to:
Xy psererXys 20 (3.14)
(X150 X351 €1 (3.15)
Xy, + X, + X 5+ X, + X 5 = RLtask, | (3.16)
Xy, + Xy, + X5+ X, 4+ X, 5 = RLtask,, , 3.17)
Xy, + Xy, X5 + X5+ X, 5 = RLtask,, (3.18)
X, + Xy, + X, < RLmrr,, | (3.19)
X5+ X, + X, SRLmrr, , (3.20)
X3+ X3+ X33, < RLmrr,, (3.21)
X4+ X4+ X, S RLMIT,, , (3.22)
X, s+ X, 5+ Xy s < RLmrr,, (3.23)

where m 1s the Resource Level index for the current problem.
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Motivation and Objectives

The aim of this research is to select and evaluate a MOP tool that outputs to a
post-processor an acceptable series of resource level constrained force mixes in a
reasonable amount of time, and is scalable to more realistic problem sizes. In their basic
forms, simulated annealing and genetic algorithms are easy to understand and implement.
Both methods can show convergence, albeit slowly, when good solutions now are better
than great solutions later.

While many candidate approaches exist in the literature, an evolutionary-based
approach is ideally suited to the search for nondominated sets of solutions, particularly
for multidimensional problem domains and large search spaces. The balance between
exploration pressure and exploitation pressure can be controlled nearly independently in
GA, allowing flexibility in design (Deb, 1999a:11). In addition, GA populations and
operators can be parallelized, allowing scaling to large problems by using multiple
processors to reduce overall computational time.

The choice to design an MOEA for the problem domain or to modify an existing
MOEA to incorporate problem domain knowledge is a practical one. All methods rely
heavily on computing skills for implementation, and the time allotted for this research is
limited. While a simple GA can be designed for the problem at hand, clever
enhancements are needed to increase the efficiency and effectiveness of the algorithm an
make it truly useful. The contemporary MOEAs cited in the literature review are well
designed, based on modern MOEA theory, and have found use in many applications (Van
Veldhuizen, 1999). Van Veldhuizen identified quantitative metrics to objectively

compare four such MOEAs in terms of their efficiency and effectiveness: MOGA,
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NSGA, NPGA, and MOMGA. The reader is referred to Chapter II for an overview of
these MOEAs. Using a carefully designed test suite of MOPs that emphasized certain
genotypical and phenotypical characteristics from throughout the MOP domain (concave,
convex, connected, non-connected, scalable, uniformity, and non-uniformity), he
concluded that the MOMGA compared favorably with the other MOEAs and surpassed
the effectiveness of several of them (1999: 5-5, 5-7, 7-23, Zydallis, et al., 2001:1,14).
These results validated the use of explicit building block MOEAs in the MOP domain. A
similar experiment by Zydallis, et al., pitted the MOMGA-II against the same MOEAs
and concluded that the MOMGA-II achieves results similar to that of the MOMGA, but
in a more efficient manner (2001:14).

The algorithm selected as the MOP tool is the MOMGA-II. Van Veldhuizen
comments that “although no guarantor of continued success, any search algorithm giving
effective and efficient results over the test suite might be easily modified to target
specific problems” (1999:5-7). MOMGA-II experimental results on pedagogical
problems are encouraging and its architecture is readily modifiable for the test problem’s
high dimensionality and heterogeneous objectives. The Pareto dominance routine is
simpler to implement when the objectives are either all minimization or all maximization.
Therefore, the target MOP’s first objective is to minimize the multiplicative inverse of
equation (3.11).

MOMGA-II use of memory is illustrated in Figure 9. Memory usage increases
linearly with string length, the slope of which is dependent upon the population size. The

maximum problem length for the target problem is 120 bits (from Table 4), requiring
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only 1.36 kB per population member. A suitably equipped PC can accommodate much

larger problems.
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Figure 9. MOMGA-II String Length vs. Memory Required

The first objective is to compare Py, and PFy.,. from the enumerative approach to

Pruown and PF 0., from the MOMGA-II. Since enormous computational resources are

required to enumerate Py, and PF,. beyond index 1 from Table 4, all absolute

comparisons can only be made at a single specified resource level. To explore the

performance of the algorithm on the target MOP, an analysis of selected MOMGA-II

operating parameters can determine the individual impact of those parameters on the

algorithm’s effectiveness.

The No Free Lunch theorem tells us that on average, all search algorithms

perform equally well or equally bad over all problems (Wolpert and Macready, 1996:2).

Therefore, applying a search algorithm without regard for problem domain knowledge
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can lead to performance no better than a random search. Two aspects from the research
problem domain to consider are interrelationships between decision variables, decision
variable string length, and application of side constraints.

Each decision variable is a member of two groups: Task Number and MRR Type.
The strongest relationship is the Task Number, as evidenced by equations (B.1) and
(B.2). The strict equality of the decision maker’s task preferences means that for one
decision variable to increase, one or more others from the same Task Number group must
decrease. This is also true for MRR types, but to a far lower extent. The best genotypic
representation for related decision variables would be one that fosters this relationship.
The Building Block Hypothesis suggests a representation that encodes them in close
proximity to one another. This idea can be used in the primordial phase of the MOMGA-
I by using building blocks of size equal to the bitstring representation of the decision
variables.

The traditional binary encoding of decision variables is used for the target MOP.
Since the decision space of target MOP is defined to be in 7, the MOMGA-II can be
designed to use either a standard bit string length for each decision variable or bit string
lengths that depend on the size of each decision variable. While the latter economizes on
the memory required for each vector solution, the destruction of information by
recombination may be biased toward the larger representations (assuming that the
random number generator output is normally distributed). Therefore, the representation
length for each decision variable is defined to be that for the largest decision variable.

The algorithm designer typically has two choices when using side constraints to

ensure a feasible region. If the constraints are applied within the algorithmic process in
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order to incorporate some problem domain knowledge, solutions that are found to be
infeasible are penalized or thrown out, diminishing their impact on the search. This
works against a GA, which uses the fitness landscape information carried by populations
to direct the search, and risks premature convergence. If the constraints are applied a
posteriori, information from the entire fitness landscape is potentially available to the
algorithm. The resultant unconstrained nondominated front is then culled of infeasible
members. The comparatively larger search space may require a greater number of fitness
evaluations to converge to the Pareto front. It may also be that the unconstrained PF..
does not contain any point of the constrained PF .

Since the best approach is unknown, and given limited time to complete this
research, the second objective is to demonstrate the ability of the applied algorithm to
produce level-wise nondominated force mix sets as defined by the model formulation.
Since the constraints in equations (3.8) and (3.9) are not handled explicitly by the
algorithm, the decision variable domains must be specified explicitly using the bitstring
representing each decision variable. This version of the MOMGA-II will use a standard
length binary representation for all decision variables.

Preliminary runs of the MOMGA-II on the target MOP using index 1 of Table 4
and the parameters listed in Table 7 generated no feasible solutions. Referring to Figure
10, the objective space of the target MOP at the lowest resource level defines a point
mass feasible field. This is a particularly difficult problem for any optimization method.
When an algorithm finds itself at any feasible point, it is surrounded by infeasible points
of varying density. There is no guarantee that the next move off of a feasible point will

result in another feasible point.
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Figure 10. Three Views of the Target MOP Tri-objective Space for Resource Level 1

For Resource Level 1, the probability of selecting a feasible point is given by the
quotient of the decision space cardinality and the binary value of the chromosome length
(assuming a one-to-one mapping of the decision space to the objective space):

630,630

260 ~

5.47x107" (3.24)

Since the building blocks found by the algorithm are the result of converging to
the infeasible front, the use of initially random templates was discarded in favor of user

selected templates that are corrected to be feasible. The templates are defined prior the
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start of the run, are different for each objective, and are not updated with the best
individual after each era. Preliminary results indicate that this approach effectively

stimulated the algorithm’s search in feasible space.

Performance Measures

If PF e is known, the Final Generational Distance metric can be used to
characterize how “far” PFinown 1S from PFe:

G2 (3.25)

n
where n is the number of vectors in PF,own, p = 2, and d; is the Euclidean distance
between each vector and the closest element of PF,,,. (Van Veldhuizen, 1999:6-15).

An MOEA adds elements to PFj,s, over a number of generations. The number
of nondominated vectors that are added can vary depending on how much of the
objective space that the algorithm is allowed to explore. The Overall Nondominated
Vector Generation (ONVG) metric can be used to measure how “good” an MOEA is at
generating desired solutions given a fixed fraction of search space to explore (Van
Veldhuizen, 1999:6-18):

(3.26)

ON VG é IP F;mown
Alone, this metric says nothing about the quality of PFjuous. Even if an MOEA’s ONVG
is equivalent to the number of vectors in PF},,,., it may be that PF,,, does not contain any

element of PFiown. The Error Ratio metric takes this into consideration in order to

characterize how well PF ., converges to PF.:
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E££ (3.27)

where n is the number of vectors in PFy,o,, and

e (3.28)

i

{O if vector i, i =(l,...,n) € PF,
e =

1 otherwise

(Van Veldhuizen, 1999:6-14).

Experimental Design

Computational Environment. The MOMGA-II is written in ANSI C and compiled
using the Sun WorkShop Compiler version C 4.2. It can be executed in any UNIX /
LINUX environment. For this research, the execution platform is a Sun Ultra 10
workstation equipped with a 450 MHz processor, 1 GB RAM, and Solaris 2.8.

The target MOP is a discrete mapping from the integers to R>. On a computer,
real number representation is dependent on machine specific resolution. Therefore,
determination of PF,,,. is machine dependent. However, for the three objectives—
suitability, weight, and volume—accuracy on the order of 107 and beyond is not an issue.

Exhaustive deterministic enumeration is needed to find Py, and PF},,., limited by
machine specific resolution, of course. A program that performs this task was written in
ANSI C and compiled using Microsoft Visual C++ 6.0. The source code for this program
is presented in Appendix C. The program code was not optimized and uses only a single
list to maintain Piuonn and PEFy,ows. The program was executed on a Dell Precision 610
equipped with a Pentium II 500MHz processor, 2GB RAM, and using Windows 2000

Professional. 1t was observed that this platform initially processes on average 40,000
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solutions per minute but that this rate decreases exponentially with each additional
solution. Using this program, complete enumeration of scenarios beyond index 1 in
Table 4 would exceed the time requirement for this thesis by centuries. Therefore,
absolute comparisons are only made between the enumerated Py, / PFy,e and the
MOMGA-II Piyown! PFinown for index 1 in Table 4. The enumerated PF,. and Py is in
Appendix D.

Experiments. The first objective is to compare, in terms of absolute performance,
the output of the MOMGA-II to the baseline exhaustive enumeration solution in order to
tune the algorithm to the MOP formulation. There is no definitive answer as to whether
this comparison should be made in decision or objective space. This decision is typically
left to personal preference. For this research, objective space comparisons are preferred
because of the high-dimensionality of the decision space. For statistical comparison
purposes, all results will be taken from 30 replications of the MOMGA-II using a
different random number generator seed each time. The random() function in the
random.c file generates a single random number between 0.0 and 1.0 using the
subtractive method described in (Knuth, 1981).

The second objective is to demonstrate the ability of the implicitly constraining
MOMGA-II to produce level-wise nondominated force mix sets as defined in the section
on model formulation. The third objective is to examine how execution time responds to
target MOP problem size. These three objectives are met through the following
experiments—absolute performance response to parameter changes, execution timing,

and the demonstration of level-wise nondominated force mix sets.
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Absolute Performance Response to Parameter Changes. The goal of this
experiment is to identify how MOMGA-II effectiveness changes with different key
parameter settings. There are no studies that show which parameters and what values are
key to good performance for MOEAs (Van Veldhuizen, 1999:6-7). While a complete
parameter analysis is warranted in this case, the allotted time for this research is limited
and only certain primary operators and values can be investigated.

Experimental Parameters. The relationship between decision variables
may affect algorithm performance. Different building block ranges will be used to take
advantage of this possible relationship. In the MOMGA-II, search is primarily
accomplished through building block filtering, splicing, and selection. The probability of
cutting a string will be changed to investigate its affect on algorithm effectiveness. One
of these settings will be a zero probability of cutting, placing the burden of search on
building block filtering, splicing, and tournament selection. The splice operator used in
the juxtapositional phase is the primary method of string composition in the MOMGA-II.
Its probability will be reduced to reveal its affect on performance. Finally, initial
population size affects the amount of fitness landscape information, and therefore
building blocks, available to building block filtering. PFj,,. will be compared to the
results of the MOMGA-II by individually applying each of the parameter settings listed
in Table 6. Fable-6—to the base settings listed in Table 7. A total of nine alternative
parameter settings are used, each with 30 replications. The metrics G, ONVG, and E are

used to quantitatively compare the alternatives.
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Table 6. Experimental Parameter Settings

PARAMETER | SETTINGS

3

| BBsize | {2.4,8}

g Peu 70,02, 2}

T Poiee | (10,0806}

\ init. pop size [ { 600, 915, 1200 }

Table 7. MOMGA-II Parameter Settings

PARAMETER SETTING

| i
[ Peut :} 0'2. ,
| Psplice |l w0
| _ldom R I
4 Oitare N _ Equation (2.18) |
| eras | 4 J
l Initial population size ; S 915
| h |

termination

- average string length ~ problem size

Execution Timing. This analysis does not take into account the additional
run time needed to obtain an acceptable level of convergence and looks only at how
execution timing is affected by increasing the problem size. For each index in Table 4,
and using the base parameter settings in Table 7, a time hack will be taken from program
start to the end of the juxtapositional phase in era 4. Thirty replications are used for each

index to provide a good statistical sample.

Demonstration of Level-wise Nondominated Force Mix Sets. The goal of
this experiment is to demonstrate the ability of the MOMGA-II to produce level-wise

nondominated force mix sets in the absence of explicit constraint handling methods.
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Since P, and PF,,. are unknown for scenarios beyond index 1, no statistical
comparisons are made. Of particular interest is non-dominated set cardinality after

applying the constraints.

MOMGA-II Parameter Settings. Unless otherwise stated, each replication of the
MOMGA-II is performed using the settings listed in Table 7. Except for the termination
rule, the listed parameter settings are the “default” settings used in previous research
(Van Veldhuizen, 1999, Zydallis, et al. 2001b). The termination rule was selected to

allow runs with larger building block sizes to be less dependent on template fitness.

Summary

This chapter addressed the second research question by presenting a model to
describe the inputs and outputs to a MOP tool and formulating the research problem
MOP in terms of its decision variables, objective functions, and constraints. The target
MOP was constructed using inputs that provide linkage between this thesis and
concurrent ALP research, and also create a search space of sufficient size with which to
evaluate the MOP tool.

After discussing the selection of the MOMGA-II as the MOP tool, the
experimental objectives, metrics, and key MOMGA-II parameter settings were presented
in order to address the third research question: how to evaluate the selected MOP
methodology. The chapter concluded with a discussion of the computational
environment and the three experiments designed to meet experimental objectives. The
next chapter addresses the fourth research question by analyzing MOMGA-II

effectiveness and efficiency when applied to the target MOP.
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IV. Results

Introduction

The previous chapter outlined the experimental methodology used to apply the
MOMGA-II in three comparative experiments. This chapter focuses on the last research
question, which addresses MOMGA-II solution quality and efficiency as it pertains to the
research problem of optimizing MRR suitability and lift cost. The sections that follow
present the analysis of the experimental data and report the results.

First, the results from parametric testing form the basis for an absolute
comparison of the MOMGA-II to PF,,,. for a single resource level. Next, execution
timing results are used comment on the time complexity of the MOMGA-II as it relates
to problem scale. Finally, the results from level-wise runs are used to demonstrate the
ability of the implicit constraint handling MOMGA-II to produce non-dominated sets of

force mixes corresponding to various sortie resource levels.

Statistical Analysis

Absolute Performance Comparison. The sample data for Final Generational
Distance, Figure 13 in Appendix F, suggests that the population distributions are not
normal, requiring non-parametric methods for statistical comparisons. The technique
employed, the Kruskal-Wallis H-test, assumes that the samples are random and

independent, at least five measurements in each sample, and that the probability
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distributions from which the samples are drawn are continuous (McClave, et al.,
1998:892). These assumptions are satisfied and so the following hypotheses are tested:

Hy: The probability distributions of the parameter groups for the G metric
are the same.

Ha: At least two of the groups are different.

The H-test in Figure 13 of Appendix F was accomplished using JMPIN 4.0.2. At
the 0.1 significance level, the observed significance level of 0.15 indicates that there is
insufficient evidence to reject Hy.

The ONVG sample data across the parameter groups are only borderline normally
distributed and so the Kruskal-Wallis H-test is also applied here (Figure 14 in Appendix
F). The ONVG sample data are cardinal and therefore Poisson distributed (Reynolds,
2001). For a large ONVG range (in this casé from 0 to 630,630) the assumption of a
continuous distribution is reasonable (Reynolds, 2001). The following hypotheses are
tested:

Hy: The probability distributions of the parameter groups for the ONVG
metric are the same.

Hpy: At least two of the groups are different.

At the 0.1 significance level, the observed significance level of 0.29 indicates that
there is insufficient evidence to reject Hy.

These results show that using implicit constraint handling, MOMGA-II
convergence properties and non-dominated set cardinality are not significantly affected
by the choice of selected parameter values within the range tested. When infeasible
solutions are not explicitly dealt with by the algorithm, it is relying primarily upon

building block filtering and the juxtapositional generations to select and combine good
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building blocks into feasible solutions. Target MOP pilot runs of the MOMGA-II
without any modifications to the algorithm resulted in no feasible solutions at all. By
simply specifying a feasible template for each objective and carrying them forward every
era, non-dominated set cardinality improved to a mean of 5 with a standard deviation of
0.4.

Referring to Figures 15 — 23 in Appendix G, the three-dimensional plots of PFi..
and PF o for each parametric alternative allow qualitative assessments of MOMGA-II
performance. Although the MOMGA-II never found any solutions in PFi.e, the PFioum,
nearly all of the non-dominated sets approximate the structure of PFy,,. and some of the
solutions are very close to the front. That this occurred without the incorporation of any
explicit constraint handling methods is indicative of the algorithm’s robustness.

Execution Timing Analysis. This analysis does not take into account the
additional run time needed to obtain acceptable level of convergence, looking only at
how execution timing is affected by increasing the problem size. In all cases, the
MOMGA-II completed 4 eras in under 25 seconds. It is seen from Figure 11 that within
the range of 60 to 120 bits, execution time increases nearly linearly.

Without extrapolating, it is difficult to see how execution time responds to scaling
up the test MOP to a real world size problem with seven basic aerospace missions and on
the order of 100 or more MRR types. This preliminary result suggests that on the tested
platform, MOMGA-II execution timing may scale linearly or possibly quadratically with

chromosome length.
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Problem Size vs. Execution Time
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Figure 11. Problem Size vs. Execution Time

Demonstration of Level-wise Nondominated Force Mix Sets. The feasible
solution set cardinalities for the two lowest resource levels are both six. The MOMGA-II
found no nondominated feasible solutions at any of the other resource levels. The
fractions of feasible points to total points corresponding to each resource level differ from

each other by approximately an order of magnitude:
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The fractions of feasible space are not grossly smaller at progressively larger
resource levels and may not completely account for the algorithm’s inability to find
feasible, nondominated solutions above resource level two. With random population
initialization, the algorithm may be misled right off the bat by starting with infeasible
members. Nor does the use of feasible templates guarantee that feasible building blocks
will be found during building block filtering. The same feasibility problems apply to the
operations in the juxtapositional phase. Since the templates are not updated with the best
found individual for each objective, this version of the MOMGA-II operates with a
handicap. The overall result is that the algorithm is drawn to an infeasible front.

A recently updated version of the MOMGA-II incorporates a solution repair
function that iteratively adjusts bits in a random manner until a solution becomes feasible,
restricting the search to feasible space. The target problem was applied to the algorithm,
but due to time constraints, proper tuning and complete analysis was not performed.
Preliminary results are promising. Using the same base case parameters, random seeds,
and 30 replications, the reported metrics in Table 8 are greatly improved.

Table 8. Explicit Constraint Metrics

} } MEAN 1 STANDARD i MEDIAN
DEVIATION ‘

I G __5.2 B 7.7 | 01

| ONVG | 227 | 1.5 | 23

| E | 498 | | 479

When results are combined over 4 replications, the MOMGA-II finds all 26 points in

PF,,... for Resource Level 1.
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When applied to Resource Levels 1 through 5, the MOMGA-II was able to
produce feasible, equally preferred force mixes with the cardinalities listed in Table 9.
Three-dimensional plots of PFy,.yn for each level (Appendix F) suggest that a solution

basic structure is maintained over all problem scales.

Table 9. Explicit Constraint MOMGA-II ONVG by Resource Level.

' RESOURCE

LEVEL ! ONVG
: 1 | 26
o2 70
T3 131
14 4 215
s 301

Summary

This chapter answers research question four by presenting experimental analyses
and results for three experiments that address the experimental objectives: absolute
performance response to parameter changes, execution timing, and the demonstration of
level-wise nondominated force mix sets. Overall, the results reveal the MOMGA-II’s
robustness and linear execution time (on the range tested), and show that implicit
constraint handling as applied to the MOMGA-II does not go far enough to prevent
convergence to an infeasible front. Preliminary results of an explicit constraint handling

version of the MOMGA-II show greatly improved performance.

70



V. Conclusion

Introduction

Chapter I began with the motivation of this research, stating that the Defense
Advanced research Projects Agency’s Advanced Logistics Project (ALP) seeks to bring
campaign planning into the 21st century with multiple, real-time deployment plans and
rapid replanning. We can capitalize further on what ALP brings to the table by providing
a methodology to evaluate multiple plans and provide the warfighter with the best
available package with which to do the job.

As a front-end to ALP, the Mission-Resource Value Assessment Tool (M-R
VAT) intends to assess competing force mixes in terms of their intrinsic task capability
and the campaign specific issues affecting their effective employment in the theater. The
primary goal of this research was to identify force mixes that, in terms of their intrinsic
value, represent the best match of assets to tasks with the smallest deployment footprint.

To accomplish this goal, four research questions answered:

1. Which methodologies can be used to trade-off intrinsic value and deployment

cost (lift) and result in a set of force mixes that are preferred over others?

2. What are the forms of the decision and objective spaces?

3. How is the selected approach evaluated?

4. Does the selected approach result in an acceptable solution to the research

problem in a reasonable amount of time?

A series of research phases was used to answer these questions.
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The first phase was a literature review intended to provide a broad overview of
the multiobjective optimization problem (MOP) class in order to help with the selection
of an appropriate methodology. The review highlighted concepts of MOP formulation,
competing objectives, global versus local optimization, constrained optimization, and
Pareto dominance of solutions. Also reviewed were classical and modern methodologies,
including those from the metaheuristic class. The results of the literature review served
to answer research question 1.

The next phase of this research incorporated the ALP Pilot Problem (Swartz,
1999) in the definition of the multiobjective model and formulation. The Mission Ready
Resource, defined as a building block of capability, suitability, and deployment cost; the
Task Preference Vector; and the definitions of acceptable force mixes defined the
decision space, objective space, and the problem’s constraints, thus answering research
question 2. This phase also defined the target multiobjective problem used to evaluate
the MOP model and formulation, and their application to the selected MOP methodology.

An important goal of this research was to incorporate as much problem domain
knowledge as possible into the algorithmic approach. The third phase used the problem
domain knowledge from the model and MOP formulation to select an appropriate MOP
methodology. The Multiobjective Messy Genetic Algorithm (MOMGA-II), shown to
robustly and flexibly handle a variety of difficult pedagogical problems, was selected to
produce the desired nondominated sets of solution, thus answering research question 3.
The algorithm was adapted to the level-wise output requirement of the MOP model. The
MOMGA-II also incorporates implicit constraint handling in order to investigate that

method’s affect on the effectiveness of the algorithm.
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Finally, the last phase evaluates the employed methodology based on three
experimental objectives. The first objective was to compare, in terms of absolute
performance, the output of the MOMGA-II to the baseline output of the exhaustive
enumeration solution in order to help fune the algorithm to the MOP formulation. The
second objective was to demonstrate the ability of the implicitly constraining MOMGA-
I1 to produce level-wise nondominated force mix sets as defined by the model
formulation. The third objective was to examine how execution time responds to target
MOP problem size. The answer to research question 4 is found in the experimental
results showing that implicit constraint handling as applied to the MOMGA-II is not a
viable approach to producing acceptable sets of nondominated force mixes. However,
the results also reveal the MOMGA-II’s robustness and linear execution time (on the
range tested). This, along with the greatly improved solution quality and cardinality
achieved by preliminary runs of the solution repairing MOMGA-II support the viability

of this approach to producing well balance force mixes.

Conclusions

This research shows that the multiobjective model and problem formulations,
along the with test problem, are constructive approaches to investigating the problem of
force mix selection. The importance of this research is in the illumination of problem
complexity for so abstract a problem. Although simplified by assumptions, the employed
methodology allows us to gauge problem complexity and uncover problem domain

knowledge that must be incorporated into any solution platform. An important aspect of
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problem complexity was revealed by mathematically defining the cardinality of the
constrained multiobjective research problem decision space.

A program allowing for deterministic enumeration and Pareto dominance
checking of a large solution space was developed to support the research methodology.
In addition, a post-processing program was developed to analyze MOMGA-II output for
solution dominance, feasibility, and uniqueness. Both programs were essential in
supporting this methodology and have applications beyond it as part of a generic MOP
tool kit.

While implicit constraint handling allows the MOMGA-II complete access to
fitness landscape information, this research demonstrated that such a method is
ineffective when the unconstrained Pareto front does not contain the constrained Pareto
front. Despite this handicap, this research showed the adaptability of the MOMGA-II to
the problem domain and viability of the platform for larger scale problems. Preliminary
results indicate that, without parametric tuning, the solution repair function significantly
contributes to algorithm convergence to feasible, optimal force mixes, warranting further
investigation as an efficient and effective method for identifying well balanced force

mixes.

Limitations

A number of simplifying assumptions were made for this research: single sortie,
capability, linear suitability, and no limit on available lift or assets. These assumptions
dull the real-world applicability of the devised model and must be dealt with before

employing the model outside of the research realm.
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The execution time experiment was conducted on a chromosome length range
that, until now, had not been attempted. The reality of the situation, however, is that the
number of USAF MRR types ranges in the hundreds and those of our allies compound
this situation. While the “approximately linear” result of the experiment is positive,
extrapolation of the algorithm’s time complexity to a real-world scaled problem is fraught
with peril.

For practical reasons, parametric tests of the algorithm were limited in terms of
range and number of parameters. This constitutes only a coarse tuning and is probably
not the best combination of parameter values to use. As revealed by the literature review
on genetic algorithms, parameter settings are typically problem dependent and little
conclusive research on proper parameter settings exists. Parameter value selection is
more art than science at this point.

A design consideration of the M-R VAT front-end is that it should run on a
Microsoft Windows enabled PC so that it may be widely distributed throughout the
planning community. At this time, the MOMGA-II code executes on Unix and Linux
platforms. Significant effort is needed to port the code to run on a Microsoft platform.

As part of the methodology, problem domain knowledge was sought out and
applied to the MOP tool when found. There may be elements of the problem that have
escaped the eye of the researcher, elements which, when properly employed can effect
the effectiveness and efficiency of the search algorithm.

The model used in this research is based strictly upon the intrinsic value of force
mixes. The intrinsically scored output of the model is then extrinsically scored to

produce a ranking of force mixes. However, force mixes that have composite intrinsic
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and extrinsic values may have a different Pareto front, much less a different fitness
landscape. Extrinsic knowledge constitutes problem domain knowledge and can be
incorporated as part of the MOP formulation. Another tie-breaking methodology would
need to be employed, but this too may also be incorporated as problem domain
knowledge. The choice of where to stop with this reasoning may best depend on how
much problem domain flexibility is lost or gained by the tool—a highly accurate
assessment means nothing if the rules for assessment change and the tool is unable or too

complex to adapt.

Recommendations

This research was limited in that only an implicit constraint handling method was
employed in the MOMGA-II. Any complete assessment of the algorithm’s utility to the
research problem must include an explicit constraint handling version. Preliminary
results from the MOMGA-II using a solution repair function showed greatly improved
solution quality and cardinality, clearly indicating the direction of future efforts to
identify well balanced force mixes.

When P, or PF,.,. is unknown, some of the quantitative metrics employed by
Van Veldhuizen can assess convergence to PFy,,. (1999:8-5). Relative quantitative
performance reveals differences between alternatives but offers little in terms of solution
quality. The best assessment is an absolute comparison of a MOP tool’s solution output
to Py Or PFy.. Complete enumeration of all possible solutions is limited, as it is an n’

algorithm, » being the number of solutions in the space. It is recommended to completely

enumerate at least three inflection points (sortie levels) on the Task Preference Vector in
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order to quantitatively evaluate a selected algorithm’s solution quality and move beyond
empirical results. The IBM SP computers at both the Aeronautical Systems Center’s
Major Shared Resource Center (ASC MSRC) and the U.S. Army Corps of Engineers
Waterways Experiment Station’s (CEWES) MSRC can be used to deterministically
enumerate all possible solutions for a given MOP at levels that are well beyond the

computational capabilities of mere desktop machines.

Future Research

For the MOP formulated in this research, it is possible that the structure of PF,,e
is not sensitive to problem scale. The advantage in this case is that the search can be
localized to the region of the objective space that PF,,, lies for any number of decision
variables and sortie level. As suggested in the recommendations section, it would be
beneficial to completely enumerate several points on the Task Preference Vector to
explore this possibility.

The research problem can also be applied to two or more different MOP solving
approaches, all of which can be compared to the current deterministic approach in terms
of flexibility, solution quality, ease of implementation, and scalability.

In terms of problem scale, chromosome length is a limiting factor to
computational efficiency. Efficiency can be gained by employing variable length strings
so that the length of the bit string representing a complete decision variable is
independent of the others. This will reduce computer memory overhead and the size of
the search space, but possibly at the expense of bias in favor of operating on longer

length decision variables.
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One way to handle the construction of force mix threads is through a post-
processing algorithm. The algorithm operates on level-wise nondominated sets of force
mixes and, starting at the lowest (or highest) resource level, constructs threads iteratively,
taking into consideration all possible feasible threads. However, the worst case

maximum number of threads to construct given K resource levels is

K
nkxnk+]x---an=an G.D
k=1

where 7 is the number of MRRs to expend at a given resource level. Such a potentially
large number of alternative force mixes would overwhelm a decision maker and must
therefore be pared to a reasonable number. A way to do this that considers the best
feasible threads is to use Filcek’s extrinsic scoring model to rank the individual force
mixes for each resource level (2001). Rather than randomly selecting a starting point and
any following points, construction of feasible force mix threads proceeds using the
highest ranked force mixes first. Not all of the possible feasible force mix threads need
be constructed, but those that are constructed are based on the best intrinsically and
extrinsically evaluated force mixes.

Finally, the simplifying assumptions used to initially explore the research problem
may almost certainly have a large impact upon the problem domain and the fitness
landscape. It is recommended that the need for these assumptions be evaluated and,
where needed, supplanted by more realistic modeling information in order to enhance its

operational applicability.
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Summary

The multiobjective optimization problem model and formulation developed for
the Mission-Resource Value Assessment Tool establish the fundamental form and
complexity of force mix selection defined by the ALP Pilot Problem. The research
methodology and its results are the first steps to providing rapid force mix selection based
on task suitability, sortie capability, and the amount of finite lift resources consumed.
Follow-up research is well-positioned to spring forward from this point and develop the
multiobjective force mix assessment tool capable of rapidly providing best value / small

footprint alternative force mixes corresponding to the desires of the warfighter.
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Appendix A: Pareto Concepts
MOPs present a set of solutions from a trade-off surface between objectives. To
be better understood, it is necessary to define key Pareto concepts: Pareto Dominance,
Pareto Optimality, the Pareto Optimal Set, and the Pareto Front. Van Veldhuizen’s
definitions are noted for their consistency with theory and are the ones used in this thesis
(1999:2-3):

Pareto Dominance: A vector 4 = (u,,...u,) is said to dominate v = (v,,...,V,)
(denoted by u < v ) if and only if # is partially less than v, i.e.,
forallie{l,...,k}, u, <v, and there exists an i € {l,...,k} such that &, <v;.

Pareto Optimality: A solution x € Q is said to be Pareto optimal with respect to
Q if and only if there is no x" € Q for which v = F(x') = (f{(X),..., £, (x)

dominates u = F(x) =(f(x),..., f,(x)). The phrase “Pareto optimal” is taken to
mean with respect to the entire decision variable space unless otherwise specified.

Pareto Optimal Set: For a given MOP F(x), the Pareto optimal set (P") is
defined as:

P" = {x € Q such that there is no x’ € Q where F(x') < F(x)} (A1)

Pareto Front: For a given MOP F(x) and Pareto optimal set P’, the Pareto front
(PF") is defined as:

PF" =i = F(x) = (f,(x),..., f,(x)) | xe P"} (A2)
P is the set of all solutions whose vectors are non-dominated with respect to all
other vectors in the objective space. When mapped to the objective space, the solutions

in P form the Pareto front, PF.
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Appendix B: Advanced Logistics Program (ALP) Pilot Problem

A Mission Ready Resource (MRR) is a combination of an asset type and its
resources, e.g. aircraft, pilot, fuel, munitions, support equipment and personnel, etc., that
is designed to have a certain suitability for a single task. MRR suitability to a given task
is measured per sortie on an absolute scale from 0 to 1, with 0 indicating no suitability
and 1 indicating perfect suitability (Johnson, 2001). A combination of MRR types is
defined to be a MRR set or force mix. To demonstrate, assume that a notional aircraft F,
has two configurations, F4 and Fz, which constitutes two MRR types. Further, if the
aircraft could be prepared and flown three times per day, then it would represent three
MRRs per day. These three MRR’s could either be all F4 configurations, or all Fp
configurations, or some combination of the two configurations. Finally, assume three
tasks: Suppression of Enemy Air Defenses (SEAD), Air-to-Air (AA), and Combat Air
Support (CAS). Assuming negligible interaction between assets, the preference

relationship between the assets and tasks is illustrated in Table 8.

Table 8. Asset-Mission Task Preference Matrix (A-M TPM) 1 (Swartz, 1999:1)

[MRR| SEAD | AA [ CAS
N

The critical physical dimensions of an asset are its pallet weight and pallet
volume. A single MRR requires a given pallet weight and volume to support its

deployment and use for a given sortie. The additional complexity of translating from
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MRR space to asset space is beyond the scope of this research, hence the simplifying
assumption that a MRR is equivalent to a single asset that is sampled without
replacement, i.e. flies a single sortie per day.

We can consider a MRR as a building block of 1) task suitability, 2) pallet weight,
and 3) pallet volume. Task suitability, pallet weight and pallet volume are hereafter
referred to simply as suitability, weight, and volume, respectively.

A realistic assumption is that the decision maker’s task preference may change
depending on the number of resources at his / her disposal and the phase of the campaign.
At the termination of a campaign, many if not all deployed resources are expected to
redeploy to their origins or some other location. The ALP Pilot Problem is concerned
strictly with the deployment planning and execution phase. So it also assumed that
resource levels do not decrease, thus modeling a build-up of resources over time; and that
the decision maker does not prefer fewer sorties over time. For instance, given a
relatively low sortie generation level at the beginning of a campaign, a combatant
commander whose goal is air dominance may prefer a ratio of 60 percent AA, 30 percent
SEAD, and only 10 percent CAS. Over time, the sortie generation level increases and the
next campaign phase may emphasize ground attack. This is reflected in the combatant
commander’s task preferences: 20 percent AA, 30 percent SEAD, and 50 percent CAS.
The decision maker’s task preference is explicitly indicated by the number of sorties, i.e.
capability, desired for each task at a given resource level (sorties available). This leads
naturally to a monotonic task preference vector with components that sum to the resource
level. The points at which the ratio of desired capability changes are the inflection

points. This is shown in Figure 12.
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Figure 12. Matching Resources to Tasks (Johnson and Swartz, 2000b:16)

At the termination of a conflict, most if not all deployed resources are expected to
redeploy to their origins or some other location. The ALP Pilot Problem is concerned
strictly with the deployment planning phase. Two assumptions are made in the
construction of the preference vector. First, it is assumed that resource levels do not
decrease, thereby modeling a build-up of resources over time. Second, the preference
vector is monotonic, i.e. the decision maker does not prefer fewer missions over time.
We define a campaign phase as the time period where the commander’s mission
preferences remain constant. If the commander would decide that fewer missions were
required—in a possibly different ratio of task types—then a new campaign phase would
begin and the planning process described here would be repeated.

A decision maker can make his / her task capability preferences known at every

feasible resource level, thereby minimizing interpolation error. A model with seven tasks
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and a maximum resource level of 30 would require 210 task-resource allocation
decisions, unreasonably overburdening the decision maker. Recognizing this, the
Mission-Resource Value Assessment Tool (M-R VAT) model uses a reasonable number
of inflection points to define the preference vector and interpolates preferences for
intermediate points. The resulting interpolation error is assumed to result in a negligible
difference between the preference vector and the decision maker’s true task preferences.

The decision maker has a finite number of force mix choices with which to meet
his / her task preferences. The number of force mixes for a single task is given by the
following equation:

Y
n, +m-=1,n; = (nk L 1) (Bl)

SRR m (m—-1)!
where n; is the desired sortie level for Task &, and m is the number of MRR types. For p

tasks, the number of force mixes is

P
H an +m-1,n, (BZ)

k=1

Using the example in Figure 12, a sortie mix of 25 AA, 20 CAS, and 45 SEAD results in
approximately 5.35x10" unique force mixes for the decision maker to consider. A look
at the number of aircraft choices and configurations available in today’s Air Force makes
it clear that the number of MRR types ranges in the thousands and that the number of
possible solutions grows unmanageably large.

Since an MRR is a building block of suitability, weight, and volume, the choice of
the best MRR set depends on how it optimizes the three criteria: maximize suitability,

minimize weight, and minimize volume. A MRR set is acceptable if, for a given
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resource level, the decision maker is indifferent to the tradeoff between the three criteria
of suitability, weight, and volume. Therefore, the formulation of acceptable force mixes

is a multiobjective problem with competing objectives.



Appendix C: Source Code for ENUMERATION.C

/* ENUMERATION.C v2.4

* Author: Dave Wakefield

* email: wakester@earthlink.net

* Date: 2/6/01

* Reference: Author, "IDENTIFICATION OF PREFERRED OPERATIONAL PLAN
FORCE MIXES USING A

MULTIOBJECTIVE METHODOLOGY TO OPTIMIZE RESOURCE
SUITABILITY AND LIFT COST,"
Masters Thesis. Air Force Institute of Technology,

Wright-Patterson AFB, OH.

* 2001.

* This program performs a complete enumeration of a decision space
defined by 15 decision

* variables. The output is a text file containing in column format the
nondominated

* front for three objectives defined in the evaluate function, and the
corresponding

* decision variables. Objective 1 is maximized, the others are
minimized. The program

* takes as input a report filename and whether screen output of
progress is desired. A

* progress file named 'progress.txt' is created and updated every 100th

solution.

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <conio.h>

double *pcurrent; // Archive for Pareto front

int sizePcurrent; // Number of solutions in Pcurrent, not the
index; includes solutions flagged for removal

double fitness([3] = { 0, 0, 0 }; // initialize fitness vector
void evaluate( double f[], int i1, int i2, int i3, int 14, int 15, int

i6, int i7, int is, int i9, int i10, int i11, int i12, int 113, int il4,
int 115 );

int pareto( int n );

double factorial( double a );

double mod( double a, int b );

void clear_kb( void );

main ()
{
int Taskl; // DM task 1 preference
int Task2; // DM task 2 preference
int Task3; // DM task 3 preference
int maxX1l; // Upper bound for X11 (task 1, MRR type 1)
int maxX12; // Upper bound for X12 (task 1, MRR type 2)
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int maxX13; // Upper bound for X13 (task 1, MRR type 3)

int maxX14; // Upper bound for X14 (task 1, MRR type 4)

int maxX15; // Upper bound for X15 (task 1, MRR type 5)

int maxX21; // Upper bound for X21 (task 2, MRR type 1)

int maxX22; // Upper bound for X22 (task 2, MRR type 2)

int maxX23; // Upper bound for X23 (task 2, MRR type 3)

int maxX24; // Upper bound for X24 (task 2, MRR type 4)

int maxX25; // Upper bound for X25 (task 2, MRR type 5)

int maxX31l; // Upper bound for X31 (task 3, MRR type 1)

int maxX32; // Upper bound for X32 (task 3, MRR type 2)

int maxX33; // Upper bound for X33 (task 3, MRR type 3)

int maxX34; // Upper bound for X34 (task 3, MRR type 4)

int maxX35; // Upper bound for X35 (task 3, MRR type 5)

int numTasks = 3; // Number of tasks

int numMRRs = 5; // Number of MRR types

int i; // used to print report

int i1, i2, i3, i4, i5, ie6, 17, 18, i9, ilo, i11, i1z,
i13, i14, i15; // used in for statements

int n; // Counts solutions for Pareto dominance testing

int Z; // expression for switch statement

int nondominated; // 1 if solution is nondominated, 0
otherwise

int t; // progress report solution increment

time t start, finish, time2t; // start, finish, elapsed time
// double aa, bb, cc;

double duration; // program execution time

double cardDS; // Calculated cardinality of the decision
space

double countDS = 0; // Counter for number of solutions
evaluated

double progress; // percentage of cardDS evaluated

FILE *fpl;

FILE *fp2;

char filename[20];

char *progressfile = "progress.txt";

char output, retry;

/* Print program description to screen */

printf ("ENUMERATION.C v2.4\nAuthor: Dave Wakefield\nemail:
wakester@earthlink.net\n") ;

printf ("Date: 2/6/01\nReference: Author, IDENTIFICATION OF
PREFERRED OPERATIONAL PLAN") ;

printf ("FORCE MIXES USINGA MULTIOBJECTIVE METHODOLOGY TO OPTIMIZE
RESOURCE SUITABILITY "};

printf ("AND LIFT COST, Masters Thesis. Air Force Institute of
Technology, ");

printf ("Wright-Patterson AFB, OH. 2001.\n\nThis program performs
a complete enumeration of ");

printf ("a decision space defined by 15\ndecision variables. The
output is a text file ");

printf ("containing in column format the\nnondominated front for
three objectives defined in ");

printf ("the evaluate function, and\nthe corresponding decision
variables. Objective 1 is maximized, the others are minimized. The "),
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printf ("program takes as input user-defined sortie levels for
Tasks 1\nthrough 3, a report filename, and whether screen output of
progress is ");

printf (" desired.A progress file named 'progress.txt' is created
and updated every 100th\nsolution.\n\n");

/* Get user defined task levels. Allows user reinput levels as
desired. */

while ( 1) {
puts ( "\nEnter number of sorties desired for Task 1" );
scanf ( "%d", &Taskl );
clear kb () ;
puts ( "\nEnter number of sorties desired for Task 2" );
scanf ( "%d", &Task2 );
clear_kb();
puts ( "\nEnter number of sorties desired for Task 3" );
scanf ( "%d", &Task3 );
clear kb();

/* Calculate decision space cardinality using equation 3.2
in thesis */
cardDS = factorial( (double) ( Taskl + numMRRs - 1 ) ) / (
factorial( (double) ( Taskl ) ) * factorial( (double) ( numMRRs - 1 ) })
* factorial( (double) ( Task2 + numMRRs - 1 ) ) /
( factorial( (double) ( Task2 ) ) * factorial( (double) ( numMRRs - 1 ) })
* factorial( (double) ( Task3 + numMRRs - 1 ) ) /
( factorial( (double) ( Task3 ) ) * factorial( (double) ( numMRRs - 1 )
));

printf( "\nCalculated decision space cardinality = %f\n\n",
cardDS ) ;

printf( "Press 'r' to retry, or press Enter to continue.\n"
)i

retry = getch();

if ( retry t!= 'r' ) {
break;
} // end if

} // end while
clear kb();

puts ("Enter filename.");

gets( filename ) ;

puts ("\nEnter progress report increment, e.g. 100 for every 100th
solution.\n");

scanf ( "%d", &t );

puts ("\nEnter 's' for screen output of progress, or press Enter to
continue.\n");

output = getch();

/* Open progress file */

if ( ( fp2 = fopen( progressfile, "w" ) ) == NULL )
fprintf( stderr, "Error opening progress file." );
exit (1) ;

} // end if
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/* Write header to progress file */
fprintf( fp2, "Solution number\tElapsed time (seconds) \n" ) ;
fclose( fp2 );

/* allocate memory for 1lst nondominated solution (3 fitness values

+ 15 DVs) */
Pcurrent = (double *) realloc(NULL, (18 * sizeof (double)));

/* memory allocation test */

if ( Pcurrent == NULL )
puts ("Memory allocation error.");
exit (1) ;

} // end if

/* initialize 1st solution with negatives if maximizing */
Pcurrent [0] = -1; // max
for (1 = 1; i <= 17; i++ ) {
Pcurrent [i] = 100000000; // min
} // end for
sizePcurrent = 1;

maxX1ll = Taskl;
maxX12 = Taskl;
maxX13 = Taskl;
maxX1l4 = Taskl;
maxX1l5 = Taskl;
maxX21l = Task2;
maxX22 = Task2;
maxX23 = Task2;
maxX24 = Task2;
maxX25 = Task2;
maxX31l = Task3;
maxX32 = Task3;
maxX33 = Task3;
maxxX34 = Task3;
maxX35 = Task3;

/* Record start time */
start = time (0);

/* increment 1st DV */
for (i1 = 0; il <= maxX1l; il++) {

/* increment 2nd DV */
for (i2 = 0; i2 <= maxX12; i2++) {

/* increment 3rd DV */
for (i3 = 0; i3 <= maxX13; i3++) {

/* increment 4th DV */
for (i4 = 0; i4 <= maxX14; i4++) {

/* increment S5th DV */
for (i5 = 0; i5 <= maxX15; i5++) {
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/* increment 6th DV */
for (i6 = 0; i6 <= maxX21l; i6++) {

/* increment 7th DV */
for (i7 = 0; i7 <= maxX22; i7++)

/* increment 8th DV */
for (i8 = 0; i8 <= maxX23; i8++) {

/* increment 9th DV */
for (i9 = 0; 19 <= maxX24; i9++) {

/* increment 10th DV */
for (110 = 0; 110 <= maxX25; 110++) {

/* increment 11th DV */
for (i11 = 0; 111 <= maxX31; ill++)

/* increment 12th DV */
for (i12 = 0; 112 <= maxX32; i12++) {

/* increment 13th DV */
for (i13 = 0; 113 <= maxX33; i13++) {

/* increment 14th DV */
for (i14 = 0; il4 <= maxX34; il4++) {

/* increment 15th DV */
for (i15 = 0; 115 <= maxX35; 115++) {

/* test that sum of like-task DVs is exactly the DV's
task preference */

if ( i1l + i2 + i3 4+ 14 + 15 == Taskl
&& 16 + i7 + i8 + 19 + 110 == Task2
&& 111 + 112 + i13 +il4 + i15 == Task3) {

/* evaluate objective functions */
evaluate( fitness, i1, i2, i3, i4, is5, ie6, i7,
ig8, i9, i10, 4i11, i1z, 113, 114, il1l5 );

/* initialize counter */
n = 0;

/* initialize nondomination flag; it's only
changed if new solution is dominated */
nondominated = 1;

/* while n < the number of solutions in Pcurrent
*/
while ( n < sizePcurrent ) {
z = pareto( n );
switch ( z ) {
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/* Solution n in Pcurrent is dominated by

new solution & flagged for removal by setting the 1st

fitness value to a negative number

*/
case 1: {
Pcurrent [18 * n] = -1;
break;

} // end case 1

/* new solution is dominated, stop Pareto

testing, set domination flag */

added to Pcurrent */

//

*/

solutions */

== NULL ) {

progress file." };

case 2: {

n = (sizePcurrent);
nondominated = 0;
break;

} // end case 2
/* new solution is indifferent and will be

default: {
break;
} // end default
} // end switch
n++;
} // end while

/* increment count of solutions evaluated */
countDS++;

/* Diagnostic line */
printf( "$f solutions evaluated\n", countDS );

/* print progress every t solutions evaluated */
if ( mod( countDS,t ) == 0 ) {

/* record time every t solutions */
time2t = time(0);

/* Calculate time to process 100 solutions
duration = difftime( time2t, start );

/* Calculate percent complete of all
progress = 100 * ( countDS / cardDS );

/* Reopen progress file for appending */
if ( ( fp2 = fopen( progressfile, "a" ) )

fprintf( stderr, "Error opening

exit (1) ;
} // end if

/* Write progress to progress file */
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fprintf ( £p2, "%f\t%f\n", countDS,
duration ) ;

fclose( fp2 );

/* Used when screen output of progress is

desired */
if ( output == 's' ) {
printf ("Time to solution %f = %f

seconds.\n", countDS, duration );
printf( "$f percent completed\n\n",
progress ) ;
} // end if

} // end if

/* if new solution is nondominated, add new
solution to the end of Pcurrent */
if ( nondominated == 1 ) {
/* here's some more memory; increases by 3

doubles worth of bytes */
Pcurrent = (double *) realloc(Pcurrent,

(18 * sizePcurrent * sizeof (double) + 18 * sizeof (double)));

/* memory allocation test */

allocated */

fitness[1];

Pcurrent [18 * sizePcurrent + 2] =
fitness[2];

Pcurrent [18 * sizePcurrent + 3] = il;
Pcurrent [18 * sizePcurrent + 4] = i2;
Pcurrent [18 * sizePcurrent + 5] = 13;
Pcurrent [18 * sizePcurrent + 6] = i4;
Pcurrent [18 * sizePcurrent + 7] = 1i5;
Pcurrent [18 * sizePcurrent + 8] = i6;
Pcurrent [18 * sizePcurrent + 9] = 17;
Pcurrent [18 * sizePcurrent + 10] = i8;
Pcurrent [18 * sizePcurrent + 11] = 19;
Pcurrent [18 * sizePcurrent + 12] = 1i10;
Pcurrent [18 * sizePcurrent + 13] = ill;
Pcurrent [18 * sizePcurrent + 14] = i12;
Pcurrent [18 * sizePcurrent + 15] = 1i13;
Pcurrent [18 * sizePcurrent + 16] = 1i14;
Pcurrent [18 * sizePcurrent + 17] = i15;

Pcurrent */

if ( Pcurrent == NULL ) {

puts ("Memory allocation error.");
exit (1) ;

} // end if

/* set values

Pcurrent [18
Pcurrent [18

*

*

for new memory that was

sizePcurrent

]

= fitness[0];

sizePcurrent + 1]

/* increment count of solutions in

sizePcurrent++;
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} // end if

} // end if
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
// end for
} // end for

/* record finish time */
finish = time(0);

/* calculate total execution time */
duration = difftime (finish, start);

/* Reopen progress file for appending */

if ( ( fp2 = fopen( progressfile, "a" ) ) == NULL ) {
fprintf ( stderr, "Error opening progress file." );
exit (1) ;

} // end if

/* Write to progress file */
fprintf ( fp2, "$E£\t%f\n", countDS, duration );
fclose( fp2 );

/* Used if screen output of progress is desired */
if ( output == 's' ) {
printf( "\nProgram execution time = %f seconds.\n", duration
)i

printf ( "Calculated decision space cardinality = $f.\n",

cardDS ) ;

printf ( "Decision space cardinality = %f.\n", countDS );

} // end if

/* Open report file */

if ( ( fpl = fopen( filename, "w" ) ) == NULL ) ({
fprintf (stderr, "Error opening file %s.", filename);
exit (1);

} // end if

/* Write to report file */
fprintf( fpl,"OBJECTIVE 1\tOBJECTIVE 2\tOBJECTIVE
3\tx1l\tx12\tXl3\tx14\tX15\tX2 1\tx22\tx23\tx24\tx25\tx31\tx32\tx33\tx34\
tx35\n") ;
for ( i = 0; 1 < sizePcurrent; i++ ) {
if ( Pcurrent[18 * i] >= 0 )

93



fprintf (

fpl,"%lf\t%lf\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%
f\t%f\n", Pcurrent[18 * i], Pcurrent([18 * i + 1], Pcurrent[18 * i + 2],
Pcurrent [18 * i + 3]}, Pcurrent[18 * i + 4], Pcurrent[18 * i + 5],
Pcurrent [18 + 6], Pcurrent[18 * i + 7], Pcurrent[18 * i + 8],
Pcurrent [18 + 91, Pcurrent[18 * i + 10], Pcurrent[18 * i + 11],
Pcurrent [18 + 12], Pcurrent([18 * i + 13], Pcurrent[18 * i + 14],
Pcurrent [18 + 151, Pcurrent([18 * i + 161, Pcurrent[18 * i + 17] );

} // end for

* 0% F X
[ S

/* close files and release allocated memory */
fclose( fpl );
free( Pcurrent );

} // end main

void evaluate (double f[], int i1, int i2, int i3, int i4, int i5, int
i6, int i7, int i8, int i9, int i10, int i11, int i12, int i13, int ii4,
int i15 )

{

f[{0] = .8%il1 + .3%1i2 + .6*i3 + .001*i4 + .001*1i5 + .4*i6 + .8*i7 +
.6*1i8 + .001%*i9 + .001*i10 + .001*ill + .001*il2 + .1%i13 + .8*il4 +
.4%115;

£[1] = 20.2* (i1 + 16 + 111l) + 28.5*(i2 + 17 + 112) + 35.7* (i3 + i8
+ 1i13) + 19.9*(i4 + 19 + i14) + 22.5*% (15 + 110 + 1i15);

£[2] = 1650* (i1 + 16 + 111) + 2475*(i2 + i7 + 112) + 2887.5% (i3 +
i8 + 113) + 1705*(i4 + 19 + il1l4) + 2200* (i5 + i10 + 115);

}

/* Pareto dominance truth table for maximizing objective 1, minimize
objectives 2 and 3 */
int pareto(int n)

{

int m;

if ( Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] >
fitness([1] && Pcurrent[18*n + 2] > fitness[2]

|| Pcurrent[18+*n] == fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18+*n + 2] == fitness[2]
| | Pcurrent[18*n] == fitness[0] && Pcurrent [18*n + 1] ==

fitness({1l) && Pcurrent[18*n + 2] > fitness|[2]
|| Pcurrent[18*n] < fitness[0] && Pcurrent[18*n + 1] ==
fitness{1l] && Pcurrent[18*n + 2] == fitness[2]
|| Pcurrent([18*n] < fitness[0] && Pcurrent[18*n + 1] >
fitness[1l] && Pcurrent[18*n + 2] > fitness|[2]
|| Pcurrent([18*n] < fitness[0] && Pcurrent[18*n + 1] >
fitness[1] && Pcurrent[18*n + 2] == fitness{2]
|| Pcurrent [18*n] < fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] > fitness{[2] ) {
/* solution n in Pcurrent is dominated by new solution */
m= 1;
return m;
} // end if



if ( Pcurrent[18+%n] > fitness[0] && Pcurrent[18*n + 1] ==
fitness[1l] && Pcurrent[18*n + 2] == fitness([2]
|| Pcurrent[18+*n] == fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] < fitness|[2]
|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] <
fitness[1l] && Pcurrent[18*n + 2] == fitness|[2]
|| Pcurrent[18*n] == fitness[0] && Pcurrent[18*n + 1] <
fitness[1l] && Pcurrent[18*n + 2] < fitness([2]
|| Pcurrent[18*n] > fitness[0] && Pcurrent[18*n + 1] ==
fitness[1] && Pcurrent[18*n + 2] < fitness(2]
|| Pcurrent([18*n] > fitness[0] && Pcurrent[18*n + 1] <
fitness[1l] && Pcurrent([18*n + 2] == fitness([2]
|| Pcurrent([18*n] > fitness[0] && Pcurrent[18*n + 1] <
fitness[1] && Pcurrent[18*n + 2] < fitness([2] ) {
/* new solution is dominated by solution n in Pcurrent
m= 2;
return m;
} // end if

m = 3;
return m;

double factorial( double a )

{
if (a==1)
return 1;

else {
a *= factorial( a - 1 );
return a;

}

double mod{( double a, int b )

{
double c;
/* using ceil function since I can't find a rounding funtion
c = ceil( fmod( a, (double)b ) * b );
return c;
}
void clear kb( void )
{

/* Clears stdin of any waiting characters. */
char Jjunk[80];
gets( junk );
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Appendix E: Source Code for Pareto_processing.c

Pareto_processing.c V2.2

2/18/01

Dave Wakefield & Jesse Zydallis. Thanks to Matt Johnson.

Side constraint, Pareto check, & clone check program.

This program will take the data points and remove those that are

1) infeasible, 2) dominated, and 3) clones. These three routines are
run successively on an input file, generating a report after each
routine. However, input and output file names are hard coded, along
with defined parameters. The data array size in the main function is
also hard coded.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NUM_DVS 15;

#define NUM_FUNCS 3;

#define MAX COLS 18;

#define MAX PTS 40000; /* set very high since number of solutions is
unknown */

#define PAGEWIDTH 63;

f#idefine REPS 30;

#define MAXIMIZATION FLAG 0; /* 1 means max */

int num_DVs, num_funcs;
num_DVs = NUM_DVS;
num_funcs = NUM_FUNCS;

int constraint ( double *ex );
void is_par( char *filename, int rows, int file_num );
void is_clone( char *filename, int rows, int file num );

main() {

register int i, j, m; /* for loop indices */

int pass; /* represents boolean result from constraint test */

int nind, column; /* counts input file rows and columns ¥*/

int total; /* used to detect end of input file row condition */

int z; /* counts number of feasible solutions */

int reps, max_pts;

double *ex; /* array holding DVs for single solution */

double number; /* temp var used to read in data from input file
*
/

FILE *fp, *fp2; /* fp reads, fp2 writes */

char filel[30], file2([30]; /* filel and file2 names */

double data([40000] [18]; /* array to hold input file data */

total = MAX COLS;
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reps = REPS;
max_pts = MAX_ PTS;

/* outer loop used to process input files from all replications
*
/
for (m = 1; m <= reps; m++ ) {
/* set filel to desired input file name and open it for
reading */
if (m< 10 )
sprintf( filel, "el r0%d.pts", m };
} else {
sprintf( filel, "el r%d.pts", m );
} /* end if */

if (( fp = fopen( filel, "r")) == NULL ) {
fprintf ( stderr, "Error opening file %s.", filel );
exit (1) ;

} /* end if */
column = nind = z = 0;

/* read in data from input file */
while ((fscanf (fp, "%1f", &number))!:EOF){
data [nind] [column] = number;
column++;
column%=total; /* detects end of row */
if (column==0) { /* if end of row, move to next row
*
/

nind++;

if (nind==max_pts)
printf ("Too many data points for
side_constraint.\n");
printf ("Increase 'MAX _PTS'\n");
exit (1) ;
} /* end if */
} /* end if */
} /* end while */
fclose (fp) ;

/* allocate memory to hold a row of DVs and OFs * /
if(1( ex = (double *)malloc( total*sizeof (double) ) )) {
fprintf ( stderr, "Insufficient memory for variable,
ex.\n");
} /* end if */

/* set file2 to desired out file name and open it for
writing */
if (m< 10 ) {
sprintf( file2, "el_ro0%d.feas", m );
} else {
sprintf( file2, "el r%d.feas", m };
} /* end if */

if (( fp2 = fopen( file2, "w")) == NULL ) {
fprintf ( stderr, "Error opening file %s.", file2 );
exit (1) ;
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} /* end if */

/* this loop checks each row of data array for feasibility
*/

for (i = 0; i < nind; i++ ) {

for ( j = 0; j < num DVs; j++ ) {
* (ex+j) = datali] [j];
} /* end for */

pass = constraint (ex) ;
if ( pass == 1) {
for ( j=0; j< total; j++ ) {
fprintf( fp2, "%$3.14f ", datalil [3] ):
} /* end for */
fprintf ( fp2, "\n" );
Z++;
} /* end if */
} /* end for */
fclose( fp2 );

/* pass feasible points file to Pareto check */
is_par( file2, z, m );

} /* end for */
} /* end main */

int constraint (double *ex)

{
/* printf("ex = %$f\n",*ex); */
/*insert function here*/

if ( ((*ex + *(ex+1l) + *(ex+2) + *(ex+3) + *(ex+4)) == 10.0) &&
((* (ex+5) + *(ex+6) + *(ex+7) + *(ex+8) + *(ex+9)) == 5.0)
&&
((* (ex+10) + *{ex+11l) + *(ex+12) + *(ex+13) + *(ex+14)) ==
1.0)
) A
return (1) ;
} else {
return (0);
}
/* if ( ( *ex* (*ex)+ *(ex+1)*(*(ex+1))<=225) && ( ( *ex-3* (* (ex+1))
)<=-10 ) )*/
}
/*:==========================:====================

function : is_par

purpose : finds pareto optimal points

developed : 2001 from newis_par.c by Matt Johnson
modified by Dave Wakefield & Jesse Zydallis

void is_par( char *filename, int rows, int file num )



pts*/

rows*/

register int i, j, k;

int flagl, flag2, count, rank, total, maximizationflag;
FILE *fp, *fp2;

double number, *answer data, *answer ptr;

double *data, *ptrl, *ptr2, *ptr3;

double frac_par;

char filel[30];

maximizationflag = MAXIMIZATION_ FLAG;
total = num DVs + num_funcs;

printf ("Inside Pareto Analysis Routine!!!\n");

data = (double *)malloc (rows*total*sizeof (double) ) ;
if (data==NULL) {

fprintf ( stderr, "Not enough memory for output data.\n");
} /* end if */

answer _data = (double *)malloc(rows*total*sizeof (double) ) ;
if (answer data==NULL) {

fprintf ( stderr, "Not enough memory for output data.\n");
} /* end if */

/* open feasible data file, *.feas */

if (( fp = fopen( filename, "r")) == NULL ) {
fprintf ( stderr, "Error opening file %s.", filename ) ;
exit (1) ;

} /* end if */
ptrl = data;

while ((fscanf (fp, "$1f", &number)) !=EOF)
*ptrl=number; /*input all the data*/
ptri++;

} /* end while */

fclose (fp);
count=0; /*will be the number of pareto optimal
if (maximizationflag==0) { /*a minimization problem*/
for (i=0; i<rows; i++) {

ptrl=data+i*total; /*beginning of each row*/

rank=rows;

ptr2=ptrl+num DVs; /*start at f1 for each row*/

for (j=0; j<rows; j++) {

ptr3=data+j*total+num DVs; /*go through all

flagl=£flag2=0;
for (k=0;k < num funcs; k++) { /*go

through all the functions of a row*/

if ((* (ptr2+k))<(* (ptr3+k))) {
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flagl++; /*row can't be
dominated so break*/

break;

} /* end if */

if ((* (ptr2+k))==(*(ptr3+k))) {

flag2++;
} /* end if */
} /* end for */

if (flagl>0 || flag2 == num_funcs) { /*non-
dominated || same row*/
: rank--;
} else {
break; /*a row is dominated,

move on*/
} /* end if */
} /* end for */
if (rank==0) ({
answer ptr=answer_data+count*total; /*move down
count rows*/
for(j=0; j<total; j++) {
* (answer ptr+j)=*(ptrl+j); /*take
points and function values*/
} /* end for */
count++;
} /* end if */
} /* end for */
} else { /*a maximization problem*/
for (i=0; i<rows; 1i++)
{
ptrl=data+i*total; /*beginning of each row*/
rank=rows;
ptr2 = ptrl + num_DVs; /* start at f£1 for each row
*
/
for (j=0; j<rows; j++)
{
ptr3=data+j*total + num DVs; /*go through all
rows*/
flagl=flag2=0;
for (k=0;k < num funcs; k++) /*go through all
the functions of a row*/
{
if ((*(ptr2+k)) > (*(ptr3+k)}))
{
flagl++; /*row can't be
dominated so break*/
break;

if ((* (ptr2+k))==(*(ptr3+k)))
flag2++;
}
}
if (flag1>0 || flag2 == num_funcs )/*non-

{

dominated || same row*/
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rank--;

else

break; /*a row is dominated,
move on*/
}
}
if (rank==0)

{

answer ptr=answer_data+count*total; /*move down

count rows*/
for (j=0; j<total; j++)

{

points and function values*/

}

count++;

* (answer ptr+j)=* (ptrl+j); /*take

}
}
free (data) ;

if ( file num < 10 ) {

sprintf( filel, "el ro0%d.prto", file_num );
} else {

sprintf( filel, "el r%d.prto", file_num );
} /* end if */

if (( fp2 = fopen( filel, "w")) == NULL ) ({
fprintf ( stderr, "Error opening file %s.", filel );
exit (1) ;

} /* end if */

for (i=0; i< (total*count); i++) { /* write the data to the

* prto file */

fprintf (fp2, "%3.14f ", *(answer_data+i));
if ( (i+1)%total==0 ) { /*would mean finished a whole row*/

fprintf (fp2, "\n") ;
} /* end if */
} /* end for */
fclose (£p2) ;

free (answer data); /*free memory*/

frac_par:(double)count/(double)rows;
printf ("$s fraction of pareto optimal points = %3.14f\n", filel,

frac_par);

/* pass Pareto points to is_clone to remove duplicate points */
- P p
is clone( filel, count, file_num );
} /* end is par */

function : is_clone

purpose : finds duplicate points
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developed : 2001 from newis par.c by Matt Johnson

modified by Dave Wakefield & Jesse Zydallis

void is_clone( char *filename, int rows, int file_num ) {

ROW

register int i, j, k;

int total; /* number of elements in a row */

int count; /* counts the number of unique pareto optimal pts */
FILE *fp, *fp2;

double number, *answer data, *answer ptr;

double *data, *ptrl, *ptr2;

char filel[30];

total = num DVs + num_ funcs;
printf( "Inside No Clone Routine!!!\n" };

data = (double *)malloc( rows * total * sizeof (double) ) ;
if ( data == NULL ) {

fprintf ( stderr, "Not enough memory for output data.\n" );
} /* end if */

answer data = (double *)malloc( rows * total * sizeof (double) ) ;
if ( answer_data == NULL )

fprintf ( stderr, "Not enough memory for output data.\n" );
} /* end if */

/* open Pareto points data file, *.prto */

if (( fp = fopen( filename, "r")) == NULL ) {
fprintf ( stderr, "Error opening file %s.", filename );
exit (1) ;

} /* end if */

ptrl = data;

while( ( fscanf(fp, "%1f", &number) ) != EOF ) {
*ptrl = number; /* input all the data */
ptrl++;

} /* end while */
fclose( fp );
count = 0;

/* next 3 for loops compare COLUMN k of ROW i against COLUMN k of

*/

for (1 = 0; i < rows; i++ ) {
ptrl = data + i * total; /* point to beginning of ROW i */
if ( *ptrl !'= -1 ) { /* -1 means the row is a clone and it

won't be tested */

< rows; j++ ) {

for ( 3 ;o J
ptr2 = data + j * total; /* point to beginning

of ROW j */
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if (i t= j && *ptr2 t= -1 ) { /* don't want to
compare a row against itself; don't want a duplicate row */
for ( k = 0; k < num DVs; k++ ) {

if ( ( *(ptrl + k) ) != ( *(ptr2 +
k) ) ) | /* point to COLUMN k */

/* ROW 1 is not a duplicate of ROW
j, so break to next j */

break;

} /* end if */

if ( k == ( num DVs - 1)) { /* if
last DV has been checked, ROW j is a clone of ROW i */
dataf[j * totall = -1; /* set

ROW j clone flag */
} /* end if */
} /* end for */
} /* end if */
} /* end for */

/* if you get this far, then ROW i, having flagged
any clones of itself, is unique, so copy it to answer_data */
answer ptr = answer_data + count * total; /* move
down <count> rows to append ROW i to answer data */
for ( j = 0; j < total; j++ ) {
* (answer_ptr+j) = *(ptrl+j); /* copy DVs
and function values */
} /* end for */
count++;
} /* end if */
} /* end for */

free( data );

if ( file num < 10 ) {

sprintf( filel, "el ro0%d.front", file num );
} else {

sprintf( filel, "el r%d.front", file num );
} /* end if */

if (( fp2 = fopen( filel, "w")) == NULL ) {
fprintf ( stderr, "Error opening file %s.", filel );
exit (1) ;

} /* end if */

for (i=0; i<(total*count); i++) { /* write data to the

* front file */
fprintf (fp2, "%3.14f ", *(answer_data+i));
if ( (i+1)%total==0 ) { /*would mean finished a whole row*/
fprintf (fp2, "\n");
} /* end if */
} /* end for */
fclose (fp2) ;

free (answer_data) ; /*free memory*/
printf( "%s non-dominated set cardinality = %d\n", filel, count

) ;
} /* end is_clone */
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Table 10. Descriptive Statistics for Final Generational Distance
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Table 11. Raw Data for Overall Nondominated Vector Generation
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Table 12. Descriptive Statistics for Overall Nondominated Vector Generation
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Appendix G: 3D Plots of PF,,, and PFy,,,, Using Alternative Parameter Values

The following figures plot in three dimensions the PFy,e with the PFyoun
generated by the implicitly constraining MOMGA-II using the alternative parameter
values specified in the experimental design section of Chapter III. The plots are intended
to show that without employing any explicit constraint handling methods, the MOMGA-

II output approximates the structure of PF ..

Figure 15. Plot of PF ., and PF e for BB size 4
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Figure 16. Plot of PF,,. and PFynown for BB size 8
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Figure 21. Plot of PF . and PFuown for Popice = 0.6
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Figure 22. Plot

Figure 23. Plot of PF ;e and PFyuou for initial population size = 1200

115



Appendix H: 3D Plots of PFy,,., for Resource Levels 1-5

The following figures plot in three dimensions for each Resource Level the

PF 0w generated by the explicitly constraining MOMGA-II using the basic parameter

values specified in the experimental design section of Chapter 1.
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Figure 24. PFjuown Plotted With PFy,,. for Resource Level 1
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Figure 26. PFjuown Plotted for Resource Level 3
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