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SCATTERING COMPUTATIONS AS A SIMULATION TOOL 
FOR AUTOMATIC TARGET RECOGNITION AND 

PROCESSING 

Yale University Computational Mathematics program 

R. Coifman and V. Rokhlin 

This research aims at improving most steps involved in the ATD/R pro- 
cess. This program is integrating the signal processing approach with ana- 
lytic numerical analysis (used as a tool for the modeling of physical phenom- 
ena) to obtain clear and efficient definitions of target and clutter features. 

The goal of the project is to enhance all aspects of processing, modeling 
and simulation of target recognition and detection. Our effort can be roughly 
subdivided into two parts: signal processing techniques, and methods for the 
numerical simulation of scattering phenomena. Following is a discussion of 
our work in these two directions of research. 

I. Signal Processing Techniques. 

We have developed over the last few years an integrated set of methods 
centered around the design of problem-specific waveforms. This Adapted 
Waveform Analysis toolkit is ameliorating the processing steps involved in 
ATR, either by accelerating the computation or by providing new means of 
analysis ?rj modeling, as well as for extracting features to improve classifi- 

cation. 

Adapted waveform analysis extends Fourier analysis to a broader col- 
lection of waveforms (with better time frequency localisations), where the 
choice of waveforms for analysis is made to accelerate computation or to pro- 
vide a good fit between the class of targets and the corresponding waveforms 
(enhancing ATR). 

These methods have already been successfully tested on Radar data, 
as well as other classes of sensors (acoustic, magnetic resonance, mechanical 
vibration, etc). The waveform used in adapted waveform analysis consist (in 
the high frequency case) of various libraries of orthonormal bases of localized 
trigonometric polynomials, or specific exponential sums (as arising in the 
Fast multipole method for Helmholtz equations). And in the low frequency 
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case of libraries and wavelets and wavelet-packets, again corresponding to 

multipoles for the Laplace equation. 

Accomplishments: 

We have continued the development of a toolkit for AUTOMATIC di* 
nostic feature extraction, in which the features selected for dassificatioare 
optimised for optimal separation and parameter estimation^ These^method, 
have been applied and validated on radar returns from Lockheed Martm, as 
weTas on a variety of other sensor data and are currently being prepared 

for insertion. 
Our algorithms for fast computation of electromagnetic scattering have 

been substantially enhanced and are incorporated into engineering code at 
HughL search Lab and Boeing Corp. In particular a pert«b»ttve *p- 
proach has been developed to permit modeling of the effect of rough sub- 
wavelength features; this approach has been extens.vely tested for pertui- 
bations off a flat plane and analysed for extension to general surfaces. It 
promises in combination with the FMM method to permit efficient realistic 

target simulation. 

Moreover the detailed analysis of the effect of higher-order approxi- 
mations can provide better image reconstruction algorithms suppressing 

speckle. 

We have developed a variety of new libraries of waveforms including 
brushlets extending Radon transforms. These can be optimised to various 

processing needs including: 

• Time and frequency domain scattering computations 

• Image and video compression 

• Image analysis, denoising segmentation and ATR 

• Diagnostics and classification of sensor data 

. New waveforms for spread spectrum communication with apparent 
random structures have been discovered and are being combined with 
phase randomization procedures introduced by Auslander/Barbano 

(to be tested by Hughes SpaceCom). 

All of these are currently being tested and converted to DOD applications 

through various projects. 
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II. Numerical Simulation of Scattering Phenomena 

During the last year, we undertook the following lines of research. 

1 Improved versions of the FMM. Over the last few years, it has be- 
come increasingly clear that the Fast Multipole Method (FMM) and related 
techniques can bring many of the problems faced in computational electro- 
magnetics within practical reach. As a result, we are spending a significant 
portion of our time on improving the performance of FMM implementations 
(rather than exploring new techniques with radically improved asymptote 
CPU time estimates for other applications); Mowing is a brief description 

of our FMM-related work. 
When the surfaces involved in an electromagnetic simulation are rough 

on the scale of the wavelength, existing high-frequency FMM implementa- 
tions begin to lose efficiency. We have therefore been developing a subwave- 
length or low-frequency FMM (LF-FMM) which remains efficient all the way 
to zero frequency (where the governing equation becomes the Laplace equa- 
tion) We began, two years ago, by constructing a new version of the FMM 
for the Laplace equation, which replaces the classical multipole expansion 
with a representation in terms of evanescent plane waves, in order to diag- 
onalize certain translation operators. That scheme bears some resemblance 
to the high-frequency FMM which achieves its numerical efficiency by repre- 
senting the scattered field in terms of propagating plane waves. In our new 
LF-FMM we use a combination of evanescent and propag-«mg modes which 
blend the zero frequency and high-frequency FMMs togrt'.er seamlessly. 

The starting poin for our analysis is the integral representation 

r    " ' 2ir /o Jo v7*2 - w2 

Note that, for 0 < A < u, the modes propagate without attenuation, 
while for u < A < oo, they decay. The first region is referred to as the 
«propagating" part of the spectrum and the second as the "evanescent" 
part. After discretization, one has a representation of the field in terms of 
plane waves, for which translation from a source box within the FMM to 
a. target box is particularly efficient. A report describing the mathematical 
theory underlying the new scheme is enclosed. 

During the past year, the non-adaptive version of the FMM for the Laplace 
algorithm has been pubbshed, and we have completed work on the adaptive 
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version as well. The adaptive scheme has a break-even point when compared 
with direct calculation at about 1,200 nodes in single precision, more or less 
independent of the manner in which the nodes are distributed. For three- 
digit precision, the break-even point is about 400 nodes; for 10 digits, it is 
about 4,000 nodes. A paper describing the full algorithm is near completion. 
Implementation work is currently underway for the LF-FMM, and we expect 
the break-even points to be comparable to those cited above for the Laplace 

FMM. 

2. Non-Reflecting Boundary Conditions For the Wave Equation. 
A longstanding practical issue in numerical wave propagation and scat- 

tering problems concerns the reduction of an unbounded domain to a bounded 
domain by the imposition of nonreflecting boundary conditions at an arti- 
ficial boundary. In "time-domain" calculations, it is well-known that the 
exact nonreflecting conditions are global in both space and time. While 
the problem has been widely studied (see Givoli [1] for an overview), the 
boundary conditions used in practice typically introduce serious numerical 
artifacts. The two most common approaches are based on the construction 
of local differential boundary conditions [2, 3] or absorbing regions [4, 5], 
but neither provides a clear sequence of approximations which converge to 
the exact, nonlocal conditions. Recently, Sofronov [6] and, independently, 
Grote and Keller [7] have developed and implemented an integrodifferential 
approach for three-dimensional calculations using a spherical boundary and 
have demonstrated that high accuracy can be achieved at reasonable cost. 
In their schemes, the work is of the same order as the explicit finite difference 
or finite element calculation in the interior of the domain. For N2 points 
on the spherical boundary, 0(N3) work is required. Hagstrom and Hari- 
haran [8] have shown that these conditions can be effectively implemented 
using only local operators, but at the cost of introducing a large number of 
auxiliary functions at the boundary. A somewhat more general, but closely 
related, integral formulation is introduced in [9, 10]. The fundamental an- 
alytical tool in the latter papers is what we refer to as the "nonreflecting 
boundary kernel" which is the inverse Laplace transform of the logarithmic 
derivative of a Hankel function. 

We have now shown that the logarithmic derivative of a Hankel function 
can be approximated as a ratio of polynomials of modest degree, so that its 
inverse Laplace transform can be expressed as a sum of exponentials. Using 
this approach, the cost of computing the nonreflecting boundary condition 
is comparable to that of a fast Fourier or spherical harmonic transform. 
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For two-dimensional problems, 0(iVlog tf log*) work «required at each 
time step where N is the number of points used in the discretization of a 
7ndS (circular) boundary. In three dimensions, the -t is proporuond 

to N> log2 N + N> log N log I, for a spherical boundary with N> points. The 
tot t rm comes from the calculation of the spherical harmonic transform 
using the fast algorithm of [11, 12]. This cost is negligible comparedIwrfh 
the work associated with the finite difference or finite element calculation 

being carried out over the enclosed volume. 
A report describing this work is enclosed. 

3.   Prolate Spheroidal Wave Functions, Quadratures, and In- 

tCr Whenever band-limited signals are measured or generated, the locations 
of receivers or transducers have to be selected; it is well-known that differ- 
ent distributions lead to very different resolutions given a fixed number of 
receivers or transducers. A closely related set of issues is encountered in the 
numerical solution of scattering problems: given a scatterer, one would like 
to find nodes on its surface leading to most efficient discretizations. 

During the last year or so, we discovered (somewhat serendipitously) that 
whenever band-limited signals are to be discretized, measured, or generated, 
the construction of optimal (in a very strong sense) configurations of nodes 
is a tractable problem. When the nodes are to be located on a line or on a 
disk in R\ the solution is a fairly straightforward consequence of classical 
results obtained by Slepian and his collaborators more than 30 years ago. We 
have constructed the necessary numerical tools, which are quite efficient; the 
resulting discretizations are a dramatic improvement over the ones currently 

employed. ,   n 
Construction of optimal configurations of nodes on more complicated re- 

gions requires additional mathematical apparatus; such apparatus has been 
largely (but by no means completely) designed. Unfortunately, the numeri- 
cal tools we have constructed are quite inefficient in this environment, which 
limits the size of regions on which we are currently able to design optimal 
configurations by approximately three wavelength. Needless to say that this 
state of affairs is not satisfactory; we are currently working on improved (in 
terms of CPU time requirements) algorithms for the construction of such 

configurations. 
At the present time, we are finalizing the first of a series of papers de- 

scribing this work (this paper describes the one-dimensional version of the 
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theory). 
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