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Abstract 

A algorithm to accurately simulate plasmas with constituent species at multiple 
temperatures using the MHD model was developed. The algorithm was based on a Roe- 
type approximate Riemann solver. The algorithm was implemented in a code to model 
the time-dependent, three-dimensional, arbitrary-geometry MHD model which includes 
viscous and resistive effects. A time-dependent ionization model was added which self- 
consistently calculates the ionization fraction of the fluid. Energy loss mechanisms 
were added for the constituent fluid components (neutrals, ions, and electrons). The 
algorithm was implemented on parallel supercomputers to allow the detailed modeling 
of realistic plasmas in complex three-dimensional geometries. 
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1 Executive Summary 

The primary objective of this project is to develop a novel algorithm to accurately simu- 
late realistic plasmas with constituent species at multiple temperatures using the MHD 
model. A viable time-dependent, three-dimensional MHD code will provide a valuable 
tool for the design and testing of plasma related technologies that are important to the 
Air Force and industry, such as portable pulsed power, high power microwave devices, 
hypersonic drag reduction, advanced plasma thrusters for space propulsion, nuclear 
weapons effects simulations, radiation production for counter proliferation, and fusion 
for power generation. Implementing the algorithm on parallel supercomputers will allow 
the detailed modeling of realistic plasmas in complex three-dimensional geometries. 

Current MHD codes are limited to simulations of short time scale phenomena be- 
cause of explicit time step stability limitations and equation decoupling. We devel- 
opeedd an implicit algorithm with the capability to simulate physics of any length time 
scale because the time step is chosen by the user to match the physics of interest. This 
algorithm has the additional advantage that the equations are solved in a fully coupled 
manner. The plasma is assumed to be composed of a neutral fluid, ion fluid, and elec- 
tron fluid. Each fluid has an associated temperature and can exchange energy to the 
other fluids by ionization and other collisional processes. The plasma is allowed to have 
a variable degree of ionization, from a fully ionized plasma to a completely neutral gas. 
The algorithm is implemented using arbitrary finite volumes so it can model realistic 
three-dimensional geometries. 

To speed development of this effort an existing MHD code was used. WARPS (Wash- 
ington Approximate Riemann Plasma code for 3-d domains) is a time-dependent, three- 
dimensional, arbitrary-geometry MHD algorithm with viscous and resistive effects. The 
code was extended to include thermal diffusion for the constituent temperatures (neu- 
trals, ions, and electrons). A time-dependent ionization model was added which self- 
consistently calculates the ionization fraction of the fluid. Energy loss mechanisms were 
added for the constituent fluid components. These features were benchmarked against 
analytical results. The new algorithm is solved using a domain decomposition technique 
for parallel computation. 

The implicit formulation has been developed for the resistive and viscous MHD 
model. The culmination of this research effort produced the Ph. D. dissertation of B. 
Udreafl] and the M. S. thesis for W. Vuillemot. The algorithm has been cast using 
finite volumes which significantly reduces transverse flux errors. An important result 
of this work is the development of a 2-level nested iteration technique which accurately 
solves the MHD equations with typical Courant numbers of 100. The residual of the 
error is driven to machine accuracy for all cases investigated. 

As a result of this project several professional collaborations now exist between the 
Department of Aeronautics and Astronautics at the University of Washington and the 
Air Force Research Laboratory, Lawrence Livermore National Laboratory, the Univer- 
sity of Michigan, the University of Colorado, Stanford University, and other depart- 
ments at the University of Washington. The work from this project has been presented 
at international conferences and published in a refereed journal. 

2 Project Description 

Plasmas are essential to many technologies that are important to the Air Force, some 
of which have dual-use potential. These applications include portable pulsed power sys- 



terns, high power microwave devices, drag reduction for hypersonic vehicles, advanced 
plasma thrusters for space propulsion, nuclear weapons effects simulations, radiation 
production for counter proliferation, and fusion for power generation. Several of these 
applications are specifically mentioned in the New World Vistas Report from the USAF 
Scientific Advisory Board. [2] In general, plasmas fall into a density regime where they 
exhibit both collective (fluid) behavior and individual (particle) behavior. Many plas- 
mas of interest can be modeled by treating the plasma like a conducting fluid and 
assigning macroscopic parameters that accurately describe its particle-like interactions. 
Magnetohydrodynamic models the plasma in this manner. 

2.1 Research Objectives 

The objectives of the project are to: 

• Develop an implicit, conservative multi-temperature algorithm for three-dimensional 
non-ideal MHD simulations for time-dependent and steady state variably ionized 
plasmas; 

• Validate the code with analytical and experimental data; and 

• Apply the code to analyze plasma related topics at the Air Force Research Lab- 
oratories [the magnetic flux compression generator (MCG) experiments and the 
liner implosion system (WFX)[3] at Kirtland AFB, the plasma thruster work at 
Edwards AFB, and the hypersonic drag reduction research at Wright-Patterson 
AFB] and at the University of Washington [Z-Pinch experiment (ZaP)[4] and He- 
licity Injected Tokamak (HIT) [5]]. 

2.2 Technical Description 

The three-dimensional, extended MHD plasma model is a set of mixed hyperbolic and 
parabolic equations. The Navier-Stokes equations are also of this type. This project 
applies some advances that have been made in implicit algorithms for the Navier-Stokes 
equations to the MHD equations. These implicit algorithms solve the equation set in a 
fully coupled manner, which generates better accuracy than the current methods used 
for MHD simulations. 

When expressed in conservative, non-dimensional form, the MHD model is described 
by the following equation set. 
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The variables are density (p), velocity (v), magnetic induction (B), ionization fraction 
(/i), pressure (p), and energy density (e). The energy density is 

e = 
7-1 

v  v     B  B 
(2) 



where 7 = Cp/c,, is the ratio of the specific heats. The pressure is the total material 
pressure, which is the sum of the partial pressures from the neutral, ion, and electron 
fluids. 

p = nnkTn + mkTi + nekTe (3) 

where k is the Boltzmann constant, n„ is the neutral number density, and Tn is the 
neutral temperature. The remaining variables are the ion and electron number densities 
and temperatures. 

p = (nn + 7ii)Mi (4) 

and 

ne = rii. (5) 

The number densities are determined from a time-dependent ionization model 

—i = 7le [< (TV >ion "n- < <"> >ncomb "i] , (6) 
at 

where < av >ion is the ionization rate parameter and < av >rec0mb is the recombina- 
tion rate parameter. [6] The multiple temperatures evolve independently based on the 
appropriate components of the energy equation and energy transfer between species. 

The right hand side of eqn(l) contains the non-ideal effects. These effects include 
viscosity, resistivity, Hall currents, diamagnetic currents, thermal conduction, and ra- 
diation cooling. The non-ideal terms are defined by 
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Mi is the ion mass, cjcere is the Hall parameter, Crad is the Bremsstrahlung radiation 
constant, and Zeg is the effective ionization level due to plasma impurities. 

The non-dimensional tensors are the stress tensor (f), the electrical resistivity (^), 
and the thermal conductivity (k), and I is the identity matrix. The non-dimensional 
numbers are defined as follows: 

Alfven Number : Al = VA/V 

Reynolds Number: Re = LV/u ,..... 
Magnetic Reynolds Number : Rm = (i0LV/r) 
Peclet Number : Pe = LV/K 

The characteristic variables are length (L), velocity (V), Alfven speed (VA = B/^/JJ^p), 
kinematic viscosity (u), electrical resistivity (77), and thermal diffusivity (K = k/pcp). 
fi0 is the permeability of free space (47r X 10-7). 

For convenience, the MHD equation set [eqn(l)] is rewritten in the following compact 
form 

|2 + v -f h = QNon-ideal (16) 

where Q is the vector of conservative variables, T/, is the tensor of hyperbolic fluxes, 
and QNon-ideai contains the non-ideal (mostly parabolic) terms. The forms of these 
vectors and tensors can be seen from the previous equations. The hyperbolic fluxes are 
associated with wave-like motion, and the parabolic fluxes are associated with diffusion- 
like motion. 

2.3    Multiple Temperature Evolution 

The temperatures of the multiple species (neutrals, ions, electrons) evolve indepen- 
dently based on the appropriate components of the energy equation and energy transfer 
between species. The temperatures are consistent with energy conservation. 

The temperature rise in each specie depends on the heating mechanism and the 
density fraction of the specie. We define the density fractions as 

fi = -^—, (17) n„ + rii 

/» = -~- = l-/i, (18) nn + rii 

and 

fe = fi. (19) 

For multiply charged species, the last definition would be modified to fe = Zfc. Viscous 
drag heats the neutral gas and the ion fluid, but does not affect the electrons. Therefore, 
the energy rise due to viscous effects is attributed to the neutral and ion temperatures. 

%£■       = (7 - l)/»iW (20) 
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Resistivity directly heats only the electrons. 

= (7 - 1) f™ 

Radiation is emitted by the electrons as they cool. 

= (7 - VPrad 
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dt 
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Each species has its own thermal conduction component as is evident from eqn(13). 

= (7 - l)P«mdB (24) 
dpn 

8t cond 

dpi 

dt = (7 - 1)^« 
cond 

condi (25) 
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cond 

The remaining total material pressure rise is due to adiabatic compression which affects 
all species in proportion to their densities. 

Energy may also transfer between species due to collisions. However, total energy 
is conserved and the total material pressure is not affected. The interspecies energy 
transfer is modeled to preserve the total material pressure. 

P = Pn+Pi + Pe = p'n+Pi+Pe (27) 

2.4    Conservative Algorithm 

Because of the natural differences between hyperbolic and parabolic equations, the 
methods for solving them are very different. Since the MHD equations are of mixed 
type the hyperbolic and parabolic terms must be handled differently. The hyperbolic 
fluxes are differenced by applying an implicit, approximate Riemann algorithm that 
properly accounts for their wave-like behavior. The parabolic terms are discretized by 
applying explicit central differencing. The remaining non-ideal terms which correspond 
to the Hall effect are solved using a semi-implicit method. [7] 

The design of the algorithm is driven by the conservative numerical techniques that 
must be used for the hyperbolic terms. Therefore, we begin by considering the ideal 
MHD equations, which are obtained from eqn(16) by setting all the non-ideal terms 
{QNon-ideal) to zero. Note that ideal MHD refers to an ideal plasma — one that is 
inviscid and non-resistive and neglects thermal conduction and finite Larmor radius 
(FLR) effects. 

The ideal MHD equations are 

f+v.ft-a+^.o. 0, (28) 



where A is the Jacobian of the hyperbolic flux tensor. 

A-Q (29) 

Here, Q is the vector of conserved variables. 

Q = (p,pvx,pVy,pvz,Bx,By,Bz,e)   . (30) 

This is a set of hyperbolic equations and thus Ax has a complete set of real eigenvalues 
given by 

A = (vx,0,vx ± Vfaat,vx ± Vsiow,vx ± VAx)   , (31) 

where Vfast and V3iow are the fast and slow raagnetosonic speeds, and VAX is the Alfven 
speed based on the x component of the magnetic field. These can be expressed as 

(32) 

(33) 

(34) 

(35) 

We make special note of the zero eigenvalue, A2 in this case. The zero eigenvalue 
only appears in multiple dimensions and is caused by the perpendicular nature of the 
j x B force. Powell et ai.,[8] recently solved this zero eigenvalue problem by introducing 
a source term that is proportional the divergence of the magnetic field. The eigenvalue 
becomes finite, A2 = vx in this case. We have implemented this modification and it is 
discussed in a later section. 

For hyperbolic equations information propagates along characteristics which travel 
at wave speeds given by the eigenvalues. Most modern numerical techniques for solving 
hyperbolic equations are based upon the idea of splitting the fluxes into components 
due to left- and right-running waves. Then each part of the flux can be differenced 
in an upwind manner, which greatly reduces numerical oscillations and stabilizes the 
solutions. 

It is well known that if a hyperbolic equation is solved with an explicit scheme, then 
the allowable time step to maintain numerical stability is given by the CFL (Courant- 
Friedrichs-Lewy) condition, which in the case of the ID MHD equations is 

\VX + Vfast] 

For the high magnetic fields and low densities common in many plasma experiments, the 
fast magnetosonic speed is quite high, and thus the time step is prohibitively small. We 

V*    -1 v fast        <y cl + Vl + j{c* + Vlf-lclVlx 

v\   =*- r stow        0 c2 + v2-)/(c3 + v2)a-4c»vjx 

R2 
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are often interested in only modeling the physics that occurs slower than Alfven time 
scales. For example, it can be shown that resistive tearing modes, which are important 
in studying fusion plasmas, evolve on a time scale that is given by [9] 

Ttearing OC T^T?5 = (Luf* TA. (37) 

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the Lundquist number, 
which is given by 

Lu = 2L = RmAL (38) 
TA 

If Lu is 106, which is typical for laboratory plasmas in fusion applications, the resistive 
tearing time is approximately 4000 times larger than the Alfven time. By treating the 
hyperbolic fluxes implicitly in time, the stability restriction on the time step is removed, 
and the solution can be advanced at the larger resistive tearing time step. This is our 
motivation for proposing an implicit scheme. 

2.5    Implicit Formulation 

For clarity, the algorithm for the two-dimensional ideal MHD equations is presented. 
The extension to three dimensions is straight forward. The two-dimensional equation 
is 

at      ox      ay 

Eqn(39) was discretized using first order Euler time differencing to get 

(<%+1-Q5)   = _Ri. (Q„+1} = _ßn+1 

At 
(40) 

where R is 

Rij = Fi+l/2,j - Fi-l/2,j + Gi<j + i/2 - Gj,j_l/2- (41) 

Note that in this equation and all that follow the grid metric terms (cell areas and 
volumes) were omitted for clarity. Linearizing R as follows: 

where dR/dQ has been defined as the differenced flux Jacobians 

_ 8F 

i+i/aj     d® 

dR dF 
dQ        dQ 

+ ... (43) 
t-l/2,j 

where dF/dQ is the flux Jacobians of the x flux. The flux Jacobians can be calculated 
analytically or numerically. Analytical calculations based on the assumption that the 
solution values do not change rapidly were used previously [10] and produced adequate 
results. The current project investigated numerical calculation of the flux Jacobians and 
an analytical method without the previous assumption.   Two methods for numerical 



calculation were investigated.  First, a limit formulation similar to the definition of a 
differential was used. 

d£ 
dQ 

F(Q + e)-F(Q) + 0(e) (44) 

for small e which gave first order accuracy in e. The flux Jacobians were also calculated 
using complex numbers. The flux Jacobians were expanded about Q in a Taylor series. 

dF 
F(Q + ih) = F(Q) + ih— 

h2d2F     .h3d3F 
2 dQ2     "6 dQ3 

The expression was rearranged to solve for the flux Jacobian. 

dQ 
F{Q + ih,y 

h 
+ 0(h2) 

(45) 

(46) 

which gave second order accuracy in h. Additionally, the complex formulation required 
only a single evaluation of the flux Jacobian (though using complex math) compared to 
two evaluations for the limit formulation. 

Substituting the expression for R^1 back into eqn(40) and rearranging, gave 

At + {dQjy 
AQ5 = -J$. 

Here AQ has been defined as 

AQB = Q5+l-Q&. 

(47) 

(48) 

The left hand side of the eqn(47) is an implicit operator operating on AQ. It is a 
large banded block matrix. In three dimensions, it is an (Imax x Jmax * Kmax) by 
(Imax x Jmax x Kmax) matrix, where Imax is the number of cells in the x direction, etc. 
It is quite costly to invert a matrix of this size directly. For this project a more efficient 
iterative method was chosen. When solved iteratively , eqn(47) can lose time accuracy. 
To recover time accuracy the time derivative of Q was added as a source term to the 
right hand side of the equation. The modified equation became 

(£) 
n+l 

= -«: ,n+l ?n+l 

where 

s5+l = 5x;(3«5+1-4«5 + «5-1)«^ 
dQ 
at 

(49) 

(50) 

The T in eqn(49) is an iteration variable,called pseudo time. At each physical time 
step, eqn(49) is solved iteratively until the left hand side vanishes. When the solution 
converges, our original equation 

8Q 
dt 

= -R (51) 

is solved. This technique is known as dual time-stepping.[11] Note that in eqn(50) a more 
accurate time derivative can be used at the expense of the additional memory needed 

8 



to store the Q vectors from previous time steps. A concern for higher order numerical 
methods is the property of total variation diminishing (TVD). The TVD property pre- 
vents some types of nonlinear numerical instabilities. The dual time-stepping method 
has not been shown to be TVD for the MHD model. 

One advantage of the strategy outlined above is that the implicit operator and the 
right hand side in eqn(47) are decoupled. The structure of the matrix no longer depends 
on the details of the discretization of the right hand side fluxes. The iteration equation 
[eqn(47)] 

31 
3Ar + 2At     \dQji:j 

has the standard form 

+ (§§)"] AQ2 = -^ (3Q5 " ^ + SS"1) - *%       (52) 

Ax = b. (53) 

Previously the LU-SGS method (lower-upper symmetric Gauss-Seidel)[12] was used 
to invert the implicit operator A. [13, 10] The LU-SGS method required a modification 
of the implicit operator through an approximate factorization procedure which reduced 
the accuracy of the operator and led to poor convergence. 

The current project used a symmetric Gauss-Seidel method which does not rely on 
approximate factorization. The SGS method was used to iteratively invert the implicit 
operator and the approximate Riemann solver that is used to form the right hand side 
fluxes. 

The implicit operator matrix was decomposed into lower, upper, and diagonal ma- 
trices and written as 

A = L + U + D (54) 

Each iteration of the symmetric Gauss-Seidel method performs two sweeps of the domain 
— a forward sweep followed by a backward sweep. 

(L+D)x«a-1> + Ux'a-2»=b (55) 

(U + D)x(2,)+Lx(2i-1)=b (56) 

where I = 1,2,3,... is the iteration index. 
For reasonably large values of Re and Rm (easily in the range of interest for most 

applications), the parabolic terms can be differenced explicitly without constraining the 
allowable time step. The right hand side of eqn(47) was modified by adding the central 
differenced parabolic terms. 

2.6    Approximate Riemann Solver 
The fluxes on the right hand side of eqn(47) were discretized using a Roe-type ap- 
proximate Riemann solver. [14] In this method the overall solution was built upon the 
solutions to the Riemann problem defined by the discontinuous jump in the solution 
between each pair of cells. The numerical flux for a first-order accurate (in space) 
Roe-type solver was written in symmetric form as 

Fi+l/2 = \ (Fi+x + fl) - 5 J> (Qw - Qi) 1**1rk (57) 
1 l   k 



where r/t is the kth right eigenvector, Afc is the absolute value of the kth eigenvalue, and 
Ik is the kth left eigenvector. The values at the cell interface (i + 1/2) were obtained 
by either a simple average or, more accurately, a Roe-average of the neighboring cells. 
Determining a Roe-average on an arbitrary computational grid involved transforming 
the vector quantities to a coordinate system that is orthogonal to the local cell interface. 
Then the flux calculated as above is normal to the cell interface which is the desired 
orientation for applying the divergence theorem in a finite volume method. 

These first order accurate upwind fluxes are used in the vicinity of sharp disconti- 
nuities in order to suppress oscillations in the solution. Globally second order accurate 
solutions were achieved by using a flux limiter that modifies the first order flux so that 
it uses second order central differencing in smooth portions of the flow. The minmod 
limiter was used. [15] 

Once the eigenvalues and eigenvectors were obtained and properly normalized to 
avoid singularities, it was relatively straight-forward to apply this scheme to the one- 
dimensional ideal MHD equations. [16, 17] Unlike for the Euler equations, the extension 
to more than one dimension was non-trivial. In more than one dimension, the Q vector 
must include Bx in addition to the other magnetic field components. (For the one- 
dimensional case Bx is constant by virtue of V • B = 0). Since the j x B force acts 
perpendicularly to the directions of j and B, the F flux vector has a zero term corre- 
sponding to Bx. Thus, the Jacobian matrix of F is singular and has a zero eigenvalue. 
A complete set of physically meaningful eigenvectors no longer exists. Physically, one 
would expect information to travel either at the fluid velocity or at the fluid velocity 
plus or minus the wave speeds. Simply dropping Bx from the equation set is not a 
viable option, because Bx needs to change in order to maintain V • B = 0. Powell et 
al.,[8] solved this problem by modifying the Jacobian in such a way as to change the 
zero eigenvalue to vx (keeping the others unchanged), and then adding in a source term 
that exactly canceled out the terms introduced by the modified Jacobian. 

The source term is 

&div — — 

P 
B 
v 

v  B 

V • B (58) 

It is proportional to the divergence of B and thus very small. The effect of this mod- 
ification is to sweep the field divergence out of the domain with the plasma flow (for 
example, Xk = vx). However, for closed boundaries or stagnation points the divergence 
increases. A divergence cleaner has been implemented based on the Hodge projection 
technique. 

2.7    Finite Volume Grid and Parallel Implementation 

Since the algorithm being developed will be used for real devices, it must be capable of 
modeling arbitrary, three-dimensional geometries. Therefore, multi-block, finite volume 
grids were used. A typical cell is shown in Figure 1. The computational domain is 
divided into blocks which are then spanned by body-fitting finite volume cells. See 
Figure 2 for a possible grid. 

As discussed in the previous section, the formulation of the approximate Riemann 
solver which we have developed generates hyperbolic fluxes oriented normal to the grid 
cell interfaces. Application of the divergence theorem is then a simple operation. The 
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Figure 1: Schematic of the arbitrary shaped three-dimensional finite volume cell used by 
the algorithm. 

Spheromak grid shown 
"carved" for clarity 

Top view of spheromak grid 

Figure 2: Schematic of the arbitrary shaped three-dimensional finite volume cell used by 
the algorithm. 
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parabolic fluxes are also calculated to be normal to the grid cell interfaces. To accom- 
plish this orientation, a set of nested control volumes were used and the appropriate 
vector operations within these volumes were applied. 

The block structure of the grid provided a natural domain decomposition for the 
parallel implementation. The integral form of a general conservation law was expressed 
as 

jtjdVQ + j>dSF{Q) = jdVS{Q), (59) 
n E n 

where Ü is the domain and E is the boundary of fi. Q is the vector of conserved 
variables, F{Q) is the flux of the conserved variables, and S{Q) is the vector of source 
terms. By splitting the domain fi into p subdomains such that 

p 

il=\Jüi, (60) 
i=l 

eqn(59) was replaced with a set of p conservation equations applied on the subdomains 

jfdVQ+idSF(Q) = JdVS(Q),    i = l,2,...,p (61) 
fii Si «i 

Each of these discretized equations is solved by a single processor using the boundary 
values copied from neighboring subdomains. 

To ensure a portable code a message passing system commonly available on parallel 
supercomputers and on workstation clusters was used. This system was the Message 
Passing Interface (MPI)[18], which was adopted as a standard in May 1994 by indus- 
try and academia. Hardware and software vendors' implementation of MPI provides 
parallel program developers with a consistent set of subroutines callable from FOR- 
TRAN90 and C. In this project the basic point-to-point communications subroutines 
and global communications subroutines were used. The point-to-point communication 
subroutines were used for the domain decomposition and boundary exchange while the 
global communication subroutines were used for convergence checking. All message 
passing systems (PVM, MPL) support point-to-point and global communications sub- 
routines so that by using only the basic set portability to systems not supporting MPI 
was simplified. 

3    Project Implementation and Results 

3.1    Finite Volume Improvements 

To improve the codes ability to handle highly distorted grids, finite volume grids were 
implemented. The finite volume implementation greatly reduced the anomalous mo- 
mentum leakage into orthogonal directions when the grid was distorted. 

Figure 3 shows a shock tube test problem. The simulation was performed in three- 
dimensions, but should remain one-dimensional. The figure shows the three gas dynamic 
waves in the density plot. The transverse velocity should be zero. A finite amount of 
momentum leakage was generated by the grid metrics in the finite difference generalized 
coordinate formulation. 
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Figure 3: A three-dimensional simulation of a one-dimensional shock tube showing the 
density and transverse velocity. The three gas dynamic waves can be seen in the density 
plot. The transverse velocity should be zero. 
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Figure 4: A three-dimensional simulation of a one-dimensional shock tube showing the 
density and transverse velocity. The three gas dynamic waves can be seen in the density 
plot. The transverse velocity should be zero. 

The reduction of the anomalous momentum leakage into orthogonal directions can be 
seen in Figure 4. The simulation was identical to that shown in Figure 3 except a finite 
volume implementation was used instead of the generalized coordinate formulation. 
Figure 4 shows the same three gas dynamic waves in the density plot. With the finite 
volume implementation, the transverse velocity is zero to within machine accuracy. 

3.2 Implicit Formulation and Numerical Flux Jacobian Calcu- 
lations 

The LU-SGS method (lower-upper symmetric Gauss-Seidel) [12] was used previously to 
invert the implicit operator of eqn(47).[13, 10] The LU-SGS method required a modifi- 
cation of the implicit operator through an approximate factorization procedure which 
reduced the accuracy of the operator and led to poor convergence. The convergence 
history is shown in Figure 5 The explanation for the poor convergence was inaccurate 
approximation of the implicit operator. The inaccuracy developed from the combina- 
tion of the approximate factorization and the approximate analytical calculation of the 
flux Jacobians. 

The standard formulation of eqn(52) allowed the use of standard iterative matrix 
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Figure 5: Convergence history using the LU-SGS method to invert the implicit operator. 
n is the number of physical time iterations, and 771 is the number of LU-SGS pseudo time 
subiterations. 
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Figure 6: Convergence history using the SGS method to invert the implicit operator, n is 
the number of physical time iterations, m is the number of pseudo time subiterations, and 
sgs is the number of iterations of the SGS method. 

inversion methods. In this project the symmetric Gauss-Seidel method was used. The 
convergence history is shown in Figure 6. n is the number of physical time iterations, 
m is the number of pseudo time subiterations, and sgs is the number of iterations of 
the SGS method. Unlike the LU-SGS method, there is no coupling between the SGS 
iterations and the pseudo time iterations. The values of the implicit operator A and the 
inhomogeneity vector b are updated between pseudo time iterations, but not between 
SGS iterations. 

The formulation of eqn(52) into a standard form required numerical calculation of 
the flux Jacobians. The limit calculation given by eqn(44) was simple to implement 
and gave accurate values of the flux Jacobian. However, it was sensitive on the value 
of 6 when e was increased beyond 1 x 10-12. Using the complex formulation given by 
eqn(46) provided accurate flux Jacobian calculations with much less sensitivity on h. 
Typical values of h were 1 x 10~5. 
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Figure 7: Mach 6 flow impinging on a hemispherical body. The upper plot (a) shows the 
density contours. The lower plot (b) shows the ionization fraction. Notice the increased 
ionization at the stagnation point. 

3.3 Time Dependent Ionization and Multiple Temperature Ef- 
fects 

A time-dependent ionization model was added to self-consistently calculate the ion- 
ization fraction of the fluid. The model is described by eqn(6). The ionization rate 
parameter < av >ion and the recombination rate < av >recom6 were calculated using 
empirical formulations given in Ref. [6]. 

The time-dependent ionization model allowed determination of the ionization frac- 
tion. For uniform flow properties the time dependence is exponential. The model was 
benchmarked against analytical formulations for its time-dependence. The steady-state 
solution was benchmarked against the Saha equation. 

A more interesting test was constructed to have a Mach 6 flow impinge on a hemi- 
spherical body. The flow was initially unionized, and ionized upon transition through 
the shock wave. The results are shown in Figure 7. 

Multi-temperature effects have been added to the code. The code was extended 
to include thermal diffusion for the constituent temperatures (neutrals, ions, and elec- 
trons) . Energy loss mechanisms were added for the constituent fluid components. The 
constituent temperatures can evolve independently by diffusion as described in eqn(13). 
The heat conduction equation was used as a benchmark to validate the incorporation 
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Figure 8: (a) Strip decomposition and (b) patch decomposition of a 2-D domain. 

of the multi-temperature thermal diffusion model. 
A dominate energy loss mechanism for high electron temperature plasmas is radia- 

tion. The radiation loss term due to Bremsstrahlung has been included. The radiation 
was validated against analytical results. 

3.4    Parallel Computer Performance 

The algorithm was parallelized using the domain decomposition technique (DDT). The 
integral form of a general conservation law was given by eqn(59). Domain decomposition 
implementation requires boundary (or ghost) cells to overlap with neighboring domains 
or blocks. The domain decomposition is illustrated for two dimensions in Figure 8. 

The ghost cells are used as boundary conditions to the real cells in the block. A 
consequence of domain decomposition is the more blocks that are used the more ghost 
cells that are necessary. The ghost cell data lag the current computation by a single 
iteration. Therefore, an increase on ghost cells generated a slower convergence rate. 
Figure 9 shows the slightly slower convergence rate. The convergence history for 4 and 
8 processors overlay. 

The parallel performance for the code is shown in Figures 10 and 11 for the code 
operating in explicit and implicit mode. The grid was the three-dimensional grid shown 
in Figure 2 and was parallelized using domain decomposition. The grid was scaled 
with the number of processors, so the grid size per processor was constant. As the 
number of processors was doubled, the number of grid cells was also doubled. The 
ideal speedup was unity. Note that the speedup presented is "engineering" speedup. 
The value includes not only the inefficiencies associated with communication between 
the processors but also those associated with more iterations required to converge the 
solution. The "engineering" speedup is, therefore, the total parallel efficiency to obtain 
the same quality of solution on a parallel computer. 

The high parallel efficiency was obtained by overlapping communication with com- 
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1000 

Figure 9: Convergence history using the SGS method to invert the implicit operator on a 
parallel computer. The results from a serial computer are plotted for comparison, n is the 
number of physical time iterations, m is the number of pseudo time subiterations, and sgs 
is the number of iterations of the SGS method. 
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Figure 10: Parallel speedup for a three-dimensional grid using domain decomposition on a 
cluster of DEC Alpha workstations. The grid is scaled with the number of processors, so 
the grid size per processor is constant. The ideal speedup is unity. 

putation. The boundary information was exchanged while the core cells were computed 
and before the boundary cells are computed. The super-linear speedup for the explicit 
operating mode was generated by slow operation on a single processor. This effect has 
been reported Michl et al. [19] Figure 10 contains the performance results from a parallel 
workstation cluster of 16 DEC Alpha workstations. Figure 11 contains the performance 
results from the IBM SP2 at the Maui High Performance Computing Center. The 
results on both computing platforms were similar. 

4    Professional Interactions 

4.1    Project Personnel 

The personnel who have been directly involved in this project are listed below. 
Name Position 

Uri Shumlak 
D. Scott Eberhardt 
Thomas R. Jarboe 
Chris Aberle 
John Loverich 
Ward Vuillemot 
Graham Schelle 

Assistant Professor 
Associate Professor 
Professor 
Graduate Student 
Graduate Student 
Graduate Student 
Undergraduate Student 
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Figure 11: Parallel speedup for a three-dimensional grid using domain decomposition on 
IBM SP2 parallel supercomputer. The grid is scaled with the number of processors, so the 
grid size per processor is constant. The ideal speedup is unity. 

4.2    Collaborations 

4.2.1 Air Force Research Laboratory 

Dr. Robert Peterkin, Jr. of the Electromagnetic Sources Division of the Air Force 
Research Laboratory at Kirtland AFB on three-dimensional multigrid algorithms for 
MACH3, development of a parallel PIC (particle in cell) code for microwave simula- 
tions, and stabilization of the Rayleigh-Taylor instability in solid liner implosions by 
introducing a sheared axial flow by designing conical liners. Knowledge developed in 
the area of relaxation schemes was implemented into the ICEPIC code to make a 3-D 
Poisson solver. The solver was needed to determine electric field concentration on a high 
power microwave source. The collaboration occured in person during August. Several 
phone and email discussions took place throughout the year. 

4.2.2 Sandia National Laboratories 

Dr. Norm Roderick of the Pulsed Power Sciences Center at Sandia National Laboratories 
on the uses of sheared axial flows to stabilize z-pinch implosions. This is an ongoing 
collaboration that resulted in the publication listed in the following section. 

4.2.3 University of Washington 

Prof. Scott Eberhardt of the Aeronautics and Astronautics Department and Prof. Randy 
LeVeque of the Applied Math Department on approximate Riemann solvers and their 
applications to multidimensional problems. We have regular discussions on a weekly 
basis. 
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Prof. Tom Jarboe of the Aeronautics and Astronautics Department on the higher 
mode stability of spheromaks and on the effect of realistic three-dimensional geometries 
on spheromak stability. This is an ongoing collaboration that resulted in the publica- 
tions listed in the following section. 

4.3    Publications 

A journal article describing our algorithm has been published in the Journal of Compu- 
tational Physics. The title is "An Implicit Scheme for Nonideal Magnetohydrodynam- 
ics" by O. S. Jones, U. Shumlak, and D. S. Eberhardt.[13] The citation is Journal of 
Computational Physics 130, 231 (1997). Another journal article which describes the 
use of sheared flows to stabilize the Rayleigh-Taylor instability has been published in 
Physics of Plasmas. This is work that was performed with collaboration at the Air 
Force Research Laboratory. The title is "Mitigation of the Rayleigh-Taylor Instability 
by Sheared Axial Flows" by U. Shumlak and N. F. Roderick. [20] The citation is Physics 
of Plasmas 5, 2384 (1998). 

Two papers describing the higher mode stability in spheromak plasmas and the 
effect of realistic three-dimensional geometries on spheromak stability have also been 
published.[21, 22] The citations are Physics of Plasmas 6, 4382 (1999) and Physics of 
Plasmas 7, 2959 (2000). 

Two papers describing this project will be presented at the upcoming AIAA Com- 
putational Fluid Dynamics conference. One paper titled "An Approximate Riemann 
Solver for MHD Computations on Parallel Architectures" will present an overview of 
the project, and the other paper will present recent work on the analytical flux Jacobian 
calculation. 

5    Conclusions 

The successful development of the three-dimensional advanced implicit algorithm and 
the implementation of time-dependent ionization and multiple temperature effects show 
that this project is reaching its objectives. The research related to this project has been 
published in refereed journals and presented at international conferences. Valuable col- 
laborations have been formed with the Air Force Research Laboratory, Sandia National 
Laboratory, and other universities. 

The continuing development of this project will include investigating the TVD prop- 
erties and the analytical flux Jacobian methods. An important result of this work is 
the determining of the difficulty in stabilizing the Hall effect. A two fluid plasma model 
may be essential to properly treat Hall effect plasma physics. [23] 
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