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SUMMARY 

This is a four-part final report on the research supported by the Air Force Office of 
Scientific Research Center under Grant F49620-99-1-0037, entitled Real Time Predic- 
tive Flutter Analysis and Continuous Parameter Identification of Accelerating 
Aircraft. 

1. Motivations and research objectives 

Flutter clearance, which is part of any new aircraft or fighter weapon system de- 
velopment, is a lengthy and tedious process from both computational and flight testing 
viewpoints. An automated approach to flutter clerance that increases flight safety and 
i educes flight hours requires as a stepping stone the development of a real time flutter pre- 
diction capability. Such a fast analysis tool can be designed if the coupled fluid/structure 
aeroelastic system is represented by a simplified mathematical model that can be quickly 
adapted to changes in flight atmospheric conditions, aircraft mass distribution (weapon 
systems), fuel loading, and Mach number, and if the current parallel processing technology 
is exploited. 

Furthermore, flight testing is always required to establish the flutter envelope of an 
aircraft. The traditional method for determining such an envelop uses test data extracted 
from the vibration response of the aircraft at fixed flight conditions. The aircraft is first 
trimmed to a specific flight condition (Mach number and dynamic pressure), then its 
aeroelastic response is deliberately excited by applying an input to a flight control surface. 
The frequency and damping of the excited aeroelastic response are typically extracted from 
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the vibration data. By repeating this test at many flight conditions, the flutter envelope 
can be determined. Such a traditional approach requires that the aeroelastic response 
be measured at many different flight conditions. This often requires a large number of 
flight test hours, a process which not only costs money but also exposes test pilots to 
proportionately increased risk. However, this test procedure can be expedited if data 
collected from continuously varying flight conditions can be used to extract the needed 
flutter damping and frequency values from an accelerating flight profile. In that case, it 
may be possible to greatly reduce the number of flight hours required for establishing the 
flutter envelope. 

The Air Force Flight Test Center at the Edwards Air Force Base (AFB) has expressed 
great interest in the above two problems, and therefore we have proposed to conduct 
a three-year research effort in real time flutter analysis, and the continuous parameter 
identification of an accelerating aircraft. More specifically, we have proposed to develop a 
simplified flutter analysis method that can be run real time to provide predictive frequency 
and damping values for maneuvers as flown. The enabling technology of such a real time 
flutter analysis capability is a formulation of the aeroelastic problem that allows, among 
other things, partial pre-solutions and the usage of parallel processing. We have reported 
on this research activity during the first year of support. 

We have also proposed to develop a parameter identification technique that can be used 
to extract frequency and damping values of an aircraft that is continuously accelerating. 
This technique should reduce both the cost and risk involved in determining the flutter 
envelopes of fighters. Here, we report on this effort which has been conducted during the 
last two years in collaboration with the researchers and engineers of the Air Force Flight 
Test Center at the Edwards AFB. 

2. Major accomplishments during the last two years of support 

We have determined that two fundamental issues must be addressed before a method 
for the continuous parametric identification of an accelerating aircraft can be developed. 
The first issue deals with how the aeroelastic properties of an aircraft can be affected by 
a constant acceleratic a. in a level flight or during maneuvering. In particular, is it possible 
to relate in a simple vvay the aeroelastic parameters measured in an accelerated flight to 
those measured in stabilized flight conditions? The second issue is related to the fact that 
most if not all identification methods used in practice implicitly assume that the given 
aeroelastic system is linear and non-varying in time. Whether these methods can still 
be used to analyze accelerated flight data, or whether new methods are required for this 
purpose was an open question. 

During the last two years of funding, we have addressed important aspects of the 
above two issues by performing appropriate analytical studies and CFD based numerical 
simulations. More specifically, we have first considered a typical NACA 0012 wing sec- 
tion, and investigated the effects of horizontal and vertical accelerations on the aeroelastic 
response of this system. We have shown analytically that accelerating the wing section 
introduces additional inertia forces and modifies the torsional stiffness of the aeroelastic 



system by a negligible quantity. Next, we have developed a procedure for extracting the 
frequencies and damping coefficients of an aeroelastic system from time history data of an 
accelerated flight profile. This procedure is based on a modification of the ERA algorithm, 
and its interaction with a windowing concept where the Mach number is assumed to be 
constant in each window. In order to validate this new procedure, we have upgraded our 
computational aeroelasticity capability to handle accelerated flight, which was by itself 
an interesting and rewarding research. We have simulated both cases of stabilized flight 
conditions and accelerated flight. We have compared the generated results and formulated 
conclusions regarding the theoretical and practical feasibilities of extracting the flutter 
envelope of an aircraft from an accelerated flight data. These conclusions essentially high- 
lighted the significant potential of this new concept of flight testing.   Motivated by our 
success for the NACA0012 airfoil, we have repeated our simulations of the continuous pa- 
rameter identification of an accelerating aeroelastic system for a typical F-16 wing section. 
We have designed this wing section from geometrical and structural data obtained from 
the Edwards Air Force Base. We have simulated the continuous parameter identification 
for the F-16 Block 40 typical wing section in accelerated flights with up to 0.05 Mach 
per second and for flight regimes extending from subsonic to supersonic. We have shown 
that the aeroelastic parameters identified in accelerated level flight at a given altitude are 
almost identical to those obtained in stabilized flight conditions, which justifies the pro- 
posed new concept of flight testing. However, we could not match perfectly the results of 
the numerical simulations using the typical wing section with those of the actual test of 
the F-16 Block 40, particularly for damping. This was because the available test data is 
for a loaded wing, whereas our typical wing model was derived from a clean wing model, 
and because the typical wing section approach is valid only for uniform, straight and high 
aspect ratio wings. All these developments and finding are described in the attached paper 
"Expanding a Flutter Envelope Using Accelerated Flight Data:  Application to an F-16 
Fighter Configuration". 

Next, we have designed a three-dimensional F-16 Block 40 aeroelastic model using 
two incomplete finite element structural models acquired from Lockheed-Martin: (1) a 
static model which does not contain the mass distribution, and (2) a linear "fish-stick" 
dynamic model which contains the needed mass information but which is not adequate for 
stress analysis. Using this model, we have obtained numerical results for the F-16 Block 
40 that agreed amazingly well the flight test data. This latest development is described 
in details-in the attached paper "'Application of a Three-Field Nonlinear Fluid-Structure 
Formulation to the Prediction of the Aeroelastic Parameters of an F-16 Fighter". 

3. Impact on the state-of-the-art of flight testing 

Motivated by the results we have generated under this Grant, the Air Force Test 
Pilot School performed on May 15-16, 2000, two suites of accelerated flight tests designed 
by the Principal Investigator and his collaborators at Edwards. The first series of tests 
was for a clean (no stores) F-16 configuration, and the second for an F-16 configuration 
known to cause Limit Cycle Oscillations (LCO). In both cases, the flight test team was 



able to accomplish the set objectives using 2.5 times less sorties than when using the 
classical stabilized flight testing approach, which demonstrates the potential impact of our 
accomplishments on the flight testing technology. 

4. Publications that have resulted from the last two years of support 
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Fighter," Computers and Fluids, (submitted for publication) 

2. C. Degand and C. Farhat, "A Three-Dimensional Torsional Spring Analogy Method 
for Unstructured Dynamic Meshes," Computers and Structures, (submitted for publi- 
cation) 

3. C. Farhat, K. Pierson and C. Degand, "Multidisciplinary Simulation of the Maneu- 
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Using both simple analytical investigations and complex numerical simulations, we 
show that typical accelerations of an aircraft do not affect significantly its aeroelastic 
parameters. This suggests that flutter testing could be performed in accelerated flight, 
thereby reducing the cost and risk involved in determining the flutter envelopes of fighters. 
We illustrate this concept with numerical simulations for an F-16 fighter configuration 
and compare the obtained results with flight test data. 

1    Introduction 
Flight testing is always required for establishing 

the flutter boundary of an aircraft. The traditional 
method for determining a flutter envelope uses data 
extracted from the vibration response of the aircraft 
at stabilized flight conditions. Typically, the aircraft is 
first trimmed to a specific Mach number and dynamic 
pressure, then its aeroelastic response is excited by 
applying an input to one of its control surfaces. The 
frequency and damping of this response are then 
extracted from the vibration data. By repeating this 
test at several different stabilized flight conditions, 
the flutter envelope is determined. 

The traditional testing approach summarized above 
implies a relatively large number of flight test hours, a 
process which is not only expensive, but also exposes 
test pilots to increased risks. One way to expedite this 
test procedure is to develop a method for expanding 
the flutter envelope of an aircraft which can use data 
collected from continuously varying flight conditions. 
By extracting the critical damping and frequency 
values from an accelerating flight profile, it may 
be possible to substantially reduce the number of 
flight test hours required for establishing the flutter 
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envelope of an aircraft. However, two fundamental 
issues must be addressed before a method for the 
continuous parametric identification of an accelerating 
aircraft can be developed. 

The first issue deals with determining how the 
aeroelastic properties of an aircraft can be affected 
by a constant acceleration in a level flight or during 
a maneuver. In particular, it is important to figure, 
out whether it is possible to relate in a simple manner 
the aeroelastic parameters measured in an accelerated 
flight to those measured in stabilized flight conditions. 
To the best of our knowledge, this issue has not been 
addressed in depth in the literature [1]. 

The second issue is related to the fact that most 
if not all identification methods used in practice 
implicitly assume that the given aeroelastic system 
is linear and time-invariant. Whether these methods 
can still be used to analyze accelerated flight data, or 
whether new methods are required for this purpose 
remains an open question. 

In this paper, our main objective is to address some 
preliminary aspects of the two issues raised above by 
performing both simple analytical investigations, and 
complex numerical simulations. For this purpose, we 
first derive the equations of motion of a typical wing 
section set into an accelerated motion, and assess the 

1 OF 12 

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2000-1702 



effect of the acceleration on the stiffness of this system. 
This allows us to address the first issue raised above. 
Next, we overview a computational framework for the 
simulation of the transient aeroelastic response of an 
accelerating structure, and describe a "windowing "ap- 
proach for identifying the parameters of a time-varying 
system. In order to address the second issue raised in 
this paper, we perform several numerical simulations 
for an F-16 aeroelastic configuration. More specifi- 
cally, we determine a first damping vs. Mach number 
curve by performing a series of aeroelastic computa- 
tions corresponding to a sequence of stabilized flight 
conditions.' Then, we perform a single simulation of 
the aeroelastic response of the F-16 airframe to per- 
turbations generated during an accelerated flight. We 
process the continuous signal generated by this simu- 
lation by our window-based identification method, and 
extract a second damping vs. Mach number curve for 
this aircraft. We compare both simulated curves, con- 
trast them with flight test data, and offer preliminary 
conclusions regarding the feasibility of extracting the 
flutter envelope of an aircraft from accelerated flight 
test data. 

2    Aeroelastic response of a typical 
wing section immersed in an 

accelerating flow 
2.1    Discrete structural equations of motion 

In the absence of any acceleration, the equations of 
motion of the typical wing section shown in Fig. 1 can 
be written as [1] 

mh + SgO + Khh    =    Qh 

Sgh + Ig6 + Kg8   =   Qg 
(1) 

(2) 

whCi.e fi is the total mass per unit span of the wing, 
h iuid 8 are the bending and torsional degrees of 
freedom (d.o.f.) of the wing section, Sg = m(xG — xc) 
and Ig are its static and polar moments of inertia 
about the elastic axis, G and C designate its center of 
gravity and elastic center, Kh and Kg are the bending 

Fig. 1 A typical wing section: elastic center (C), 
center of gravity (G), fuselage (F), angle of attack 
(a), free-stream velocity (V«,), a typical point in 
the flow domain (N) 

and torsional stiffness coefficients, and Qh and Qg are 
the aerodynamic resultant force and moment acting 
on this section. 

Let F denote a fixed point on the fuselage of the 
aircraft whose typical wing section is shown in Fig. 1. 
If the aircraft accelerates and 9 remains small during 
the flight, the dynamic equations of equilibrium of the 
typical wing section become 

where 

mh + Sg8 + Khh   =   Q*h (3) 
Sgh + Ig9 + K*ee   =   Q*e (4) 

K;   =   Kg - mlFl{x°G - 4) 

- miFy(yG ~ Vc) (5) 

Qh    =   Qh- mjFy (6) 
Q*e   =   Qg + mlFl{yG-yc) 

-miFy(x
0G ~xc) (7) 

JF, and 7F are the horizontal and vertical compo- 
nents of the acceleration field, respectively, and the 
superscript 0 is used to designate the value at time 
t = 0. Note that a positive jpx corresponds to a 
deceleration of the wing (see Fig. 1). 

From Eq. (6) above, it follows that accelerating the 
wing section introduces not only additional inertia 
forces, but also modifies the torsional stiffness of the 
wing section. However, the reader can check that 
for level accelerated flight (i.e. jpy = 0) and for 
most if not all aircraft configurations, the quantity 
mlF, (%G ~ xc) *s *n general negligible compared to 
Kg. For this reason, we reasonably argue that for 
all practical purposes, Kg « Kg. Since all other 
coefficients of the left hand-side of Eqs. (3,4) are not 
affected by the aircraft acceleration, we conclude that, 
at least for an accelerated level flight, the aeroelastic 
parameters (i.e. frequency and damping values) of 
a typical wing section are the same as for stabilized 
flight conditions. 

In all numerical simulations that we discuss later in 
this paper, we time-integrate Eqs. (3,4) by the mid- 
point rule (or Newmark method with ß = 1/4 and 
7 = 1/2). 

2.2    Discrete fluid equations of motion 

The complete description of the typical wing sec- 
tion introduced above requires the evaluation of the 
aerodynamic resulting force and moment, Qh and Qg. 
Rather than adopting a linear flow theory whose limi- 
tations are well-known, we choose for this purpose to 
model the fluid by the Euler equations. More specif- 
ically, we rely on the Arbitrary Lagrangian Eulerian 
(ALE) form [2,3] of the Euler equations in order to 
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handle the vibrations of the airfoil and its acceleration. 

Let ft(t) C K2 be the flow domain surrounding 
the airfoil of the typical wing section, and T(t) be its 
moving boundary. We introduce a mapping function 
between fi(i) where time is denoted by t and a grid 
point's coordinates by x, and a reference configuration 
fi(0) where time is denoted by r and a grid point's co- 
ordinates by f, as follows 

x = X(C,T);    t = r (8) 

The ALE conservative form of the Navier-Stokes 
equations describing viscous flows on dynamic meshes 
can be written as [3-5] 

8JW 

dt 
|4 + JVx.:Fc(W,x)=0 (9) 

where A? = Ai{Xn), X2+1 and X^1 are the follow- 
ing averaged position and velocity of the fluid moving 
mesh 

XX?    =a„+1(^f^)-^fi(^±^) *a»j 

*£?    =an+1(^^)-^(^^)(13) 
a„-i, a„, and a„+i are time-dependent because a 
variable time-step At" is employed and are given by 

At" C2 

c " ÄF1' Qn_1~i + c 
1 + 2C 

an   =    -1-C,  an+x^y-^ (14) 

It remains to specify how Xn, the vector position of 
the fluid grid points, is updated at each time-station 
tn. 

Fc{W,x)=T{W)-±W 

where a dot superscript designates a time derivative, 
öx 

J = det(dx/d£),   x = ^-|j   is   the   velocity  of the 

dynamic fluid mesh, VV is the fluid state vector 
(conservative variables), and Tc denotes the ALE 
convective fluxes. 

We semi-discretize Eq. (9) on a triangulation from 
which we derive a dual mesh defined by time- 
dependent control volumes or cells Ci(t). We resolve 
the ALE convective fluxes by a suitable Riemann 
solver [6-9]. The resulting semi-discrete equation of 
equilibrium of the fluid is 

(10) For this purpose, we first note that for a typical wing 
section problem, the simplest strategy for updating the 
position of the fluid mesh is to move it rigidly with 
the airfoil. Then, we also note that the motion of the 
airfoil is completely determined by the motion of the 
fuselage point F, and the vibrations of the bending 
and torsional d.o.f. h and 9. It follows that at each 
time-station tn, the position of any fluid grid point N 
(see Fig. 1) is given by 

dt 
(AiWi) + Fi(W,X,X)=0 (11) 

where A dxQ, Wi de^joes the average value 

of W over the cell Ci(t), Fi denotes the semi-discrete 
ALE convective flux, W is the vector formed by 
the collection of Wi, and X is the vector of time- 
dependent grid point positions. Various expressions 
of the flux approximation Fi(W,X,X) can be found 
in [6-9]. 

We time-integrate the semi-discrete equations 
of flow motion (11) on dynamic meshes using the 
generalized second-order implicit backward difference 
scheme developed in [10,11]. This scheme satisfies 
the second-order discrete geometric conservation law, 
and retains second-order time-accuracy on moving 
grids [10,11]. It can be written in compact form as 
follows 

an+1A?+lW?+1 + anA?W? + a^A^W?-1 

+  tenFi{wn+\X2+\x:tg
l) = 0 (12) 

xn
N   =   x^. + {x0

N-x0
F)cos9n 

-(y0
N-y°F)smen 

VN   =   y$ + hn + (y%-yF)cos6n 

+ {x°N-xF)sinen (15) 

where hn and 9n are determined by solving the coupled 
fluid/structure equations of motion (3,4,11), and the 
instantaneous position (xF,yF) of the fuselage point 
F is deduced from the specified acceleration of the 
aircraft. For example, for a constant acceleration, the 
instantaneous position of the point F is given by 

xn      =     Z^+4 

-,n      _       lrv *n     I   ,,0 (16) 

Hence, the acceleration of the typical wing section is 
transmitted to the fluid by Eqs. (16), and accounted 
for by the additional convection term iW that 
characterizes the ALE form (9) of the flow equations. 

Remark. At the first glance, the reader may think 
that Eqs. (16) are missing the terms V^J71 and V^i", 
where V«, is the free-stream velocity. However, these 
terms are not missing. They are automatically taken 
into account by the initial conditions of the CFD simu- 
lation through the specified free-stream Mach number 
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2.3    Solution of the coupled fluid/structure 
equations of motion 

Throughout this paper, we solve the coupled 
fluid/structure discrete equations of motion by the 
second-order time-accurate staggered and subiteration 
free algorithm described in [12]. As stated earlier, we 
equip this staggered algorithm with the midpoint rule 
as a structural time-integrator, and the generalized 
second-order implicit backward difference scheme (12) 
developed in [10,11] as a flow time-integrator. 

3    System identification using the ERA 
3.1    Identification on a window-by-window basis 

Depending on several factors among which the flow 
regime, an aeroelastic system can behave linearly 
or non-linearly. This raises a first albeit minor 
concern as to the applicability of several popular 
signal processing techniques to the identification of 
the aereolastic parameters of an aicraft, or a typical 
wing section, particularly in the transonic regime. 
Furthermore, an accelerated aeroelastic system is also 
a time-varying system. This is essentially because the 
mass, damping, and stiffness properties of the "wet" 
structure are influenced by the free-stream velocity 
VQO of this structure, and V«, varies with time during 
an accelerated flight. This raises a second concern as 
to the applicability of these signal processing methods 
to the continuous parametric identification of an 
accelerating aircraft. Both concerns can be addressed 
by the windowing approach described below, which 
is in principle applicable to several identification 
methods. 

First, we note that 

• some methods are capable of identifying the fre- 
quency and damping coefficient of the lowest 
mode of a structure using as few as 2 cycles of 
the response of this structure to an input pertur- 
bation. 

• for a mode at 10 Hz, 2 cycles correspond to a time 
interval of 0.2 second. 

• at an altitude of 3,000 meters, a level flight ac- 
celeration of 0.05 Mach/second correponds to a 
horizontal acceleration of 1.6 gs. Such an acceler- 
ation is beyond the reach of most if not all aircraft. 

• during a time-interval of 0.2 second, the speed 
of an aircraft accelerating at 0.05 Mach/second 
varies by 0.01 Mach. 

• a 1% variation of a Mach number Moo has a 
negligible effect on the frequency and damping co- 
efficient of a wet structure cruising at Moo. 

From the above observations, we conclude that 
within a time-window of the order of 0.2 second, an 

aeroelastic system with a first wet mode at 10 Hz 
can be considered for all practical purposes as a time- 
invariant system. Furthermore, within a window of 
that size, the aereolastic response of such a system can 
be assumed to be linear, as long as the structure itself 
behaves linearly, which is usually the case for an air- 
craft excited by an input to a control surface. Hence, 
we also conclude that at least in principle, it should be 
possible to expand the flutter envelope of an aircraft 
using its continuous vibration response to input per- 
turbations during and accelerated flight by applying 
the following simple procedure 

1. locate the time instances at which the Mach num- 
bers of interest are reached by the aircraft. 

2. for each Mach number of interest, define a time- 
window of width equal approximately to 0.2 sec- 
ond or two cycles of the expected lowest frequency. 

3. within each time-window, apply a suitable signal 
processing method to identify the frequency and 
damping coefficient of the wet structure and asso- 
ciate these with the Mach number for which this 
window is defined. 

The window-based identification approach sum- 
marized above can be performed either real-time, 
or off-line as a signal post-processing. In this work, 
we choose to base it on the Eigenvalue Realization 
Algorithm (ERA) [13]. 

The ERA is an identification method for linear and 
time-invariant systems. It implicitly assumes that the 
dynamic response of the given system is sampled at a 
constant rate. It can handle multi-d.o.f. systems, and 
is less sensitive to noise than the logarithmic decay 
method. In order to keep this paper self-contained, 
we overview next the ERA and its fast implementa- 
tion FastERA [14,15] which is suitable for real-time 
processing. 

3.2    Overview of the ERA 
In a linear context, damped structural vibrations 

are governed by the following equations of dynamic 
equilibrium 

Mq + Dq + Kq = f(i) (17) 

where M,D,K are respectively the mass, damping 
and stiffness matrices, and where f denotes the vec- 
tor of external loads. The above equations can be 
re-written in state-space form as follows 

x   =    ICx + BUt) 

q    =    Cx 
(18) 
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where 

x   = 

K   = 

B   = 

q 

q __ 

0 I 

-M_1K    -M_1D 
(19) 

0 

M_1 
C = I   0 

Assuming that initially the structural system is at rest, 
and that it is excited at t = 0 by an impulse load 
f(i) = uo<5(i) where 5 denotes the Dirac delta function, 
the solution of Eq. (18) is 

q(t) = Ce™Buo (20) 

Note that Eq. (20) is also the solution of the prob- 
lem (18) for f(i) = 0 and an initial velocity equal to 
M_1uo. 

For an arbitrary excitation, f(i) can be represented 
by a series of impulses at discrete time-stations U — 

oo 

that is, f(i) = £ UiS(t-ti), in which case the solution 

of Eq. (18) at time t* is given by 

q* = q(**.)  =  Y,c^tk~u)Kßni 

»=0 

(21) 
i=0 

where a constant sampling rate 1/At is assumed so 
that tk-ti = (k- i)At. 

Let 

_„AtJC A = e (22) 

Using the above definition of the matrix A, Eq. (21) 
can be re-written as follows 

q,   =   £cA*-jBm 
i=0 

fc-1 

=   J]CAfc-'-1(Aß)ui+Cßufc 

i=0 

=    J](CAfc-i-1Bui) + Gufc 

t=0 

where 

G = CB 

(23) 

(24) 

Hence, q* is the classical solution of the state-space 
realization problem for the following linear sampled 
data system 

where 

xjk+i    =   Axfc + Bu* 

qjfc    =    Cxfc + Gujt 

B = AB       C=C 

(25) 

(26) 

If ridof denotes the total number of d.o.f. of the com- 
putational model described by Eq. (17), but only 
ndof < n*°f d-°-f- are measured, then the matrix 
C can be written as 

C = L   0 (27) 

where L is an n™f x ndof Boolean matrix. Hence, in 
general, the number of state-space variables x* that 
are considered is nx = 2nd0f, and the matrix A defined 
in Eq. (22) is an nx x nx matrix. 

In general, the discrete convolution sum (23) is ex- 
pressed as 

qjfc = ^2Mk-iUi (28) 

where the matrices 

Mm = < 

t=0 

G 

CAm-1B 

, m = 0 

, m > 0 
(29) 

are known as the Markov parameters. Hence, qt can 
be directly related to the load components u* via the 
the Markov parameters Mi:. 

Let za and Xs = as± iu3 denote the complex eigen- 
modes and eigenfrequencies of the structure defined 
by 

X2Mz3 + AsCzs.+ Kzs = 0 (30) 

From Eqs. (19), it follows that the As are also the 
eigenvalues of K, and the eigenvectors of this matrix 
are 

ys = 
zs 

AoZo 

(31) 

The ERA exploits the results summarized above as 
follows. First, it constructs the Markov parameters 
Mk using the input and output data, namely, the 
impulse loads and measured displacements. Then, it 
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extracts the matrix A from the Markov parameters 
Mk using, for example, the FastERA algorithm de- 
scribed in Section 3.3. Finally, the ERA computes the 
eigenvalues as and eigenvectors as of A which satisfy 

A2L$ — &8&-S (32) 

From Eq. (22), it follows that the sought-after complex 
modes zs, damping ratios £s, and frequencies u>, of the 
given structural system are given by 

Cas 

1 
ui.At 

Re{ln(as)} 

—lm{ln(as)} 

(33) 

(34) 

(35) 

3.3    The FastERA algorithm [14] 

In this work, we use the FastERA implementation 
of the ERA to perform all indentifications. For 
this reason, we review FastERA in this section and 
introduce some key variables that appear in the 
remainder of this paper. 

The FastERA method is based on the analysis of 
the following Hankel matrix that is denned for a data 
set (qfc,Ufc) sampled at N points in time 

Hgd = 

Mi 

M2 

M2 

M3 

M g+i M q+2 

Md+i 

Mq+d-i 

(36) 

and where q and d are such that N = q + d. From the 
definition (29) of the Markov parameters, it follows 
that Hgd can be decomposed as follows 

Hqd = VqWd (37) 

where 

For a given set of inputs u* and outputs q*, the choice 
of state-space variables x is not unique. Indeed, the 
input/output relation is not affected by the change 
of variable x = Tx which transforms the realization 
system (25) into 

x*+1    =   T^ATxfe+T^Bujfc 

cu    =    CTxjt + Gu* 

The controllability factors associated with x are 

(40) 

•=.T 7-Trr-T WdWd =T"1WdW^T (-) 

rTV/2 
In particular, choosing T =  (WdWj)      leads to 

- T 
WdWrf = I. Hence, without any loss of generality, 
the FastERA algorithm assumes that the state-space 
variables are chosen so that Eq. (39) simplifies to 

J? = V,V^ (42) 

From Eq. (38), it follows that the first {q - l)n£,e/ 
rows of Vg are given by 

y i 

C 

CA 

CA"-2 

(43) 

and the last (q - l)n^e/ rows of that matrix are given 
by 

V<a> - 
9 

CA 

CA q-l 

= Vq
1]A (4/.) 

V,= 

c 
CA 

CA«- 

Wd = B    AB id-i B 

(38) 

The qn^gf x qn^f matrix V, determines the observ- 
ability of the system whereas Wj is related to its 
controllability. 

In general, the number of d.o.f. n<j0/ associated with 
a system to be identified is unknown a priori. Indeed, 
ridof is infinite for any continuous system. In prac- 
tice, the target values for nJJ," and the corresponding 
number of state-space variables nx = 2nd0f are dic- 
tated by the complexity of the model to be realized. 
Once these values are set by the user, the FastERA 
algorithm computes the nx largest eigenvalues KJ of 
3q and their corresponding eigenvectors p^ in order to 
build the square root factorization 

The FastERA method starts with the construction 
of the qn^gf x qnf0J "square data matrix" 

J, = H,dH[d = V,WdWjV^ (39) 

j,   =   Pdiag(/c,)PT 

=    (Pdiag(«}/2)) (diag(K5/2) 
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where P = [px ... pj ...] and V, = Pdiag(/cV2). From 

Eqs. (43,44) applied to V, it follows that 

A=(vi")+- r(2) (47) 

where (Vg   J    is the pseudo-inverse of V, 1  • 

Hence, the extraction of the nx largest eigenpairs 
of the qn™gf x qn™0

e
f

a data matrix J, is the most 
computationally significant step of the FastERA 
algorithm. Keeping q relatively small, say q » d/5, 
allows FastERA to operate in real time. For further 
details on this identification method, we refer the 
reader to [14]. 

Next, we validate the window-by-window applica- 
tion of the ERA for the indentification of the parame- 
ters of an accelerating aircraft by a series of numerical 
simulations designed for an F-16 fighter configuration 
for which flight test data is available. 

4    Simulation of the continous 
parametric identification of an F-16 

configuration 
Here, we focus on a Block 40 version of the F-16 

fighter. Because of CPU time limitations, we consider 
only two-dimensional numerical simulations. There- 
fore, we report first on the design of a typical wing 
section model for this aircraft. 

4.1    A typical wing section model for the F-16 

We start from a detailed finite element structural 
model of a "clean" right wing of the F-16 Block 40 
equipped with a missile launching system at its tip 
(Fig 2). Our objective is to construct a two-d.o.f. 
wing section model that is equivalent to the three- 
dimensional wing in the following sense 

1. it reproduces the first bending and torsion fre- 
quencies which are predicted by the three- 
dimensional finite element model of the wing to 
be 4.76 Hz and 7.43 Hz, respectively. 

2. it reproduces the same bending and torsion modal 
masses. 

3. it reproduces the same vertical displacement at 
the leading edge of the cross section located at 
68% of the distance from the root to the tip of 
the three-dimensional wing, for both bending and 
torsion mode shapes, when these are normalized 
to a unit rotation of the cross section. 

When the wing has a large aspect ratio and a small 
sweep angle, it is commonly suggested to choose the 
mechanical properties of the typical wing section as 
to match those of the cross section located at 70% to 

75% of the distance from the root to the tip of the 
three-dimensional wing (for example, see [1] and ref- 
erences 6-1 and 6-2 therein). Nevertheless, we choose 
in criterion 3 stated above the cross-section located at 
68% of the distance from the root to the tip (see Fig. 
2) because the F-16 wing is strongly tapered and is 
rather soft towards its tip. 

Besides the shape of the airfoil, six parameters de- 
fine the sought-after typical wing section, These are 
denoted collectively by Ptws, where the subscript tws 
stands for typical wing section, and listed below 

Ptws = {m,Ie,XG,{xG ~xc),Kh,Ke} 

The three criteria stated above for establishing the 
equivalence between the typical wing section and the 
three-dimensional wing can be formulated as follows 

Qtws,l(Ptws) 

£ltws,2(Ptws) 

Ptws,l(Ptws) 

PtwsM-Ptws) 

<ltu)s,l(°tu;s) 

",tws,2\"tws) 

2TT x 4.76 rad/s 

27T x 7.43 rad/s 

1.375 106 Kg.m2 

2.523 Kg.m2 

25.61 m 

1.017 m 

(48) 

where Cl denotes a frequency, the subscripts 1 and 2 
refer to the bending and torsion modes, respectively, 
fi denotes a modal mass, the superscript le designates 
the leading edge, hle = h + {xle - xc){ß = 1) is 
the vertical displacement at the leading edge of the 
typical wing section, and all components of the right 
hand-side of Eq. (48) are obtained from the detailed 

1: cross-section chosen for the structural properties 
2: cross-section chosen for the aerodynamic properties 

Fig. 2     Three-dimensional detailed finite element 
model of an F-16 wing 
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finite element model of the three-dimensional wing. 
Note that the fact that /i^g>1 » /i&,,,2 suggests that 
despite the bending/torsion coupling, the first mode 
of the wing is dominated by bending, while the second 
one is dominated by torsion. 

The constraints (48) lead to a nonlinear system of 
equations with six unknowns, which we solve by the 
Nelder-Mead simplex method (function fminf in Mat- 
lab) to obtain 

m = 2.05 103 Kg 

u = 2.53 10°Kg.m2 

XG = 1.12C m 
(upstream of section at 68%) 

{XG- -xc) = 0.0642 m (G behind C) 

Kh = 2.046 106 N/m 

Ke = 5.468 106 N.m 

Using the above numbers, we find that the modified 
torsional stiffness (see Eq. 6) for an acceleration as 
high as 0.05 Mach/second is K*e = 5.471 106 N.m. 
Hence, as expected, Kg « Kg, which supports the 
conclusion made in Section 2.1 as to the little effect of 
level flight acceleration on the aeroelastic parameters 
of a system. 

Finally, we assume modal damping ratios of 1.0% 
and 1.5% for the first and second vibration modes of 
the typical wing section, respectively. 

4.2    The airfoil and the flow computational 
domain 

We choose the airfoil of '.he typical wing section as 
that of the cross section lor* lad at 45% of the distance 
between the root and tip of the three-dimensional wing 
(see Fig. 2), because 

• the chord of the airfoil of the typical wing section 
must be close to the ratio of the wetted area and 
the wing span. 

• because of tapering, most of the lift is generated 
by the section of the wing that is close to the root, 
which means that the aerodynamic center of the 
wing is within that area. 

We discretize the flow domain by 18,000 vertices, 
and ensure a sufficient resolution for shock capturing 
in the region close to the sharp leading edge (Fig. 3). 
Because the purpose of the typical section is to rep- 
resent the entire wing, we multiply each areodynamic 
force obtained from a flow computation on this two- 
dimensional mesh by the span of the wing. 

»iSÜM 
saia 

Fig. 3      Discretization of the flow computational 
domain (F-16 airfoil) 

4.3    Aeroelastic numerical simulations 

We fix the altitude to 3,000 m, set the angle of 
attack to 0 degree, and perform first a series of aeroe- 
latic simulations for a sequence of stabilized flight 
conditions at the following Mach numbers: 0.8, 0.85, 
0.875, 0.9, 0.925, 0.95, 1.0, 1.1, 1.2, 1.3 and 1.4. For 
each Mach number, we start the numerical simulation 
from a steady-state flow and the following initial 
conditions for the typical wing section: h° = 0.01 
m/s, and 9° = 0.2 rad/s. We report in Fig. 4 and Fig. 
5 the predicted transient responses of the structure 
at MQO = 0.8 and Moo = 1-0, respectively. We also 
include at the top of both figures the iso-Mach contour 
plots at t = 0. These figures show that at MQO = 0.8, 
the aeroelastic vibrations are rapidly damped out. 
They also show that at MQO = 0.8, both modes of 
the typical wing section contribute initially to the 
bending d.o.f. h, but only one mode of the typical 
wing section contributes to the history of the torsional 
d.o.f. 6. We conclude that it is the bending mode of 
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the typical wing section that is rapidly damped out at 
Mo, = 0.8. The history of 9(t) graphically depicted 
in Fig. 5 reveals that flutter or limit cycle oscillations 
are initiated at Moo = 1-0. 

Next, we simulate the aeroelastic response of the 
typical wing section during a flight accelerated at the 
rate of 0.05 Mach/second. We remind the reader that 
such an acceleration is even higher than what an F-16 
can achieve in a level flight. We initiate this simula- 
tion at Moo = 0.75 and excite the structure with the 
same initial conditions as previously: h° = 0.01 m/s, 
and 6° = 0.2 rad/s. We report in Fig. 6 the predicted 
response of the structure. The reader can observe tha* 
both modes of the typical wing section contribute to 
the early response of the h d.o.f. The significant de- 
crease of the mean value of h that is noted between 
Mach 0.8 and Mach 0.95 suggests an important drop in 
the lift in this Mach region, which, given that the F16 
airfoil is unsymmetric, is indicative of the appearance 
of a shock and reaching the Mach divergence speed. 
Most importantly, Fig. 6 shows that between Mach 
0.85 and Mach 0.95, the vibrations of h and 8 become 
too small to allow a parametric identification. Hence, 
we conclude that a continuous parametric identifica- 
tion of an aicraft that accelerates across the subsonic, 
transonic, and supersonic regimes requires systematic 
re-excitations. 

In order to illustrate the effect of re-excitation, we 
simulate a second accelerated flight where the initial 

0.4 0.6 0.8 

time (s) 

Fig. 5   Transient aeroelastic response for stabilized 
flight conditions at Mach = 1.00 

0.75       0.8       0.85       0.9       0.95 

1.5 

time (s) 

Fig. 4   Transient aeroelastic response for stabilized 
flight conditions at Mach = 0.80 

Mach 

Fig. 6 Transient response during an accelerated 
flight: initial speed corresponds to Mach 0.75 and 
is increased by 0.05 Mach/second 
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speed corresponds to Mach number 0.84, and the ini- 
tial excitation is effected by the same initial conditions 
as previously. We report in Fig. 7 the computed 
aeroelastic response. This response is characterized 
by larger amplitudes of vibration between Mach 0.85 
and Mach 0.95, and confirms that flutter or limit cycle 
oscillations initiate around Mach 1.0. 

Finally, we report in Fig. 8 the simulated aeroelastic 
response of the accelerated typical wing section after 
re-excitation at Mach 1.04. 

4.4    Parameter identification using the ERA: 
stabilized vs. accelerated flight scenarios 

As stated in Section 3, the ERA assumes a constant 
sampling rate. Since our numerical simulations are 
not performed with a constant time-step Ai, we 
post-process our simulation results by a quadratic 
interpolation scheme in order to generate signals with 

h (m) 
0.02 

Fig. 7 Transient response during an accelerated 
flight: initial speed corresponds to Mach 0.84 and 
is increased by 0.05 Mach/second 

1.3 

Mach 

Fig. 8 Transient response during an accelerated: 
initial speed corresponds to Mach 1.04 and is in- 
creased by 0.05 Mach/second 

a constant sampling rate. 

The typical wing section described in this paper has 
2 d.o.f. However, the aeroelastic typical wing section 
has more than 2 d.o.f., because of the surrounding 
fluid. For this reason, in all cases discussed in this 
section, we set the number of states for the synthesized 
system to nx — 10, as if the system contained 5 d.o.f. 

Our experience is that the ERA requires two cy- 
cles of the lowest mode contributing to the signal, and 
about 500 sampling points per cycle in order to iden- 
tify accurately our sy^em. Hence, in this work we set 
the parameters of the ERA as follows 

1000 < N <6000 

500 < q <1000 

500 < d <5000 

<%* 
Ats <A 

nx      =      10 

where Ais is the sampling time, and 2\ is the period of 
the lowest mode. We have verified a posteriori that the 
ERA configured with the above parameters produced 
excellent results for all applications discussed in this 
paper. Nevertheless, we note that higher values of the 
number of samples N and higher values of q improve 
the accuracy of the identification, but increase its cost. 

As explained in Section 3, in order to extract the 
aeroelastic parameters of the typical wing section from 
the signals generated by the accelerated flight simula- 
tions, we propose to employ the ERA with windowing. 
The size of each time-window is NAts- Given that the 
frequency of the first wet mode of the system can be 
expected to be close t~> that of the first dry mode of 
the system — that is. ^T 4.7 Hz — it follows that the 
size of each time-window varies between 0.4 second 
and 0.6 second. Hence, for an acceleration of 0.05 
Mach/second, the maximum variation of the Mach 
number within a time-window is about 0.03 Mach. 
The significance of this variation depends on how fast 
the damping coefficient of the structure varies with the 
Mach number, which depends on the flow regime. Ex- 
tensive experiments have revealed that when using the 
ERA with windowing, the identification results are to 
some extent insensitive to small variations in the size 
of the time-window and/or the values of nx, q, and d. 

The frequencies and damping ratios identified by 
the FastERA using stabilized and accelerated flight 
simulation data are reported in Fig. 9. The following 
observations are noteworthy 

• our typical wing section exhibits flutter for the 
second (torsional) mode in the transonic regime, 
for 0.89 < Moo < 1.1- 
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Mode 1 (bending) 
frequency (Hz) 

0.8 0.9 1.1 1.2 1.3      - ,      ,1.4 
Mach 

Mode 2 (torsional) 
frequency (Hz) 

Mach 
—I— from stabilized flight conditions 

o     from accelerated flight (0.05 Mach/second) 

Fig. 9    Identified frequencies and damping ratios 

• a sharp decrease of the damping ratio £2 of the 
torsional mode occurs around Mach 0.9, and a 
slow increase of that damping ratio occurs above 
Mach 0.92. The same trend is also observed for 
the damping ratio ei of the first mode; however, 
d remains positive. 

• the frequency of the first mode appears to be al- 
most independent of the Mach number. On the 
other hand, the frequency for the torsional mode, 
which is responsible here for flutter, slightly in- 
creases with the Mach number. 

• occasionally, the frequencies and damping ratios 
identified for the first mode in simulated acceler- 
ated flight are reported to be different from those 
identified using stabilized flight simulated data. 
This is due to the fact that in our accelerated 
flight simulation, because the system is excited 
only at the beginning of the flight segment, after 
a certain amount of time, the contribution of the 
first mode to the signal can no longer be identi- 

fied because it becomes significantly damped out. 
Re-exciting the system every second or so cures 
this problem. 

• for the second mode, the frequencies and damping 
ratios identified for the stabilized and accelerated 
flight scenarios are in good agreement. 

5    Validation 
Here, we compare our simulated flight results to 

flight test data provided by the Edwards Air Force 
Base. The simulation results and test data are for the 
same stabilized flight conditions, but not the same F- 
16 configuration. The typical wing section designed in 
this paper is for a clean-wing configuration of tue F-16. 
The flight test data provided by the Edwards Air Force 
Base is for a configuration of the F-16 that includes py- 
lons and missiles. Nevertheless, Fig. 10 shows that our 
predicted wet frequencies are in good agreement with 
those measured in flight test. However, our predicted 
damping ratios do not agree well with the experimen- 
tal data, even though the trend of their variation with 
the Mach number is similar to that of the flight test 
data. We can reasonably argue that a major cause 
of this discrepancy is the typical wing section model, 
which is supposed to be realistic only for fairly homo- 
geneous wings with high aspect ratios and small angles 
of sweep. Other possible causes are the pylons, mis- 
siles, and viscous effects that are not accounted for in 
our flow computations. Perturbing the parameters of 
the typical wing section can improve the simulation 
results. For example, if the position of the elastic cen- 
ter of the typical wing section is shifted to 35% of the 
chord, our numerical simulations produce results that 
are in better agreement with the flight test data as 
demonstrated in Fig. 11. 

Mode 2 (torsional) 

frequency (Hz)  

1.3 1.4 

Mach 
numerical simulation 

V    flight test data 

Fig. 10    Validation 
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Mode 2 (torsional) 

frequency (Hz)  

i__S 

Mach 
—I— numerical simulation, xc = 6% of chord 
—e— numerical simulation, xc = 35% of chord 

V     flight test data 

Fig. 11     Sensitivity of the aeroelastic parameters 
to the position of the elastic center 

6    Conclusions 
The wet frequencies and damping ratios of an air- 

craft are functions of the free-stream Mach number. 
Therefore, during an accelerated flight, these parame- 
ters become time-dependent. For this reason, theory 
suggests that standard signal processing techniques, 
which are limited to time-invariant systems, cannot 
be applied to the identification of an accelerated aeroe- 
lastic system. However, within a time-window of 0.2 
second, and for a typical level flight acceleration of lg 
or 0.03 Mach/second, the Mach number varies by 0.6% 
only. Hence, within a time-window of 0.2 second, the 
aeroelastic parameters of an aircraft can be assumed to 
r .main constant. Such a time-window corresponds to 2 
ry ;les of a mode at 10 Hz, a frequency that is relevant 
to the first bending and torsion modes of most aircraft. 
Therefore, any signal processing technique that can 
identify correctly a mode from 2 cycles of its response 
is a candidate technique for identifying the parameters 
of an accelerated aeroelastic system in a window-by- 
window approach. Furthermore, the analytical study 
of the typical wing section shows that realistic level 
flight accelerations do not affect the frequencies and 
damping ratios of an aeroelastic system. In other 
words, the aeroelastic parameters of an aircraft identi- 
fied during an accelerated flight are the same as those 
identified in stabilized flight conditions. Hence, we 
conclude that there is a hope that flutter testing could 
be performed in accelerated flight, thereby reducing 
the cost and risk involved in determining the flutter 
envelopes of fighters. In practice, technical details 
such as re-excitation procedures, real-time identifica- 
tion, and flutter early alert systems must be addressed 
to enable such a technology. 
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Abstract 

We overview a three-field formulation of coupled fluid-structure inter- 
action problems where the flow is modeled by the arbitrary Lagrangian- 
Eulerian form of either the Euler or Navier-Stokes equations, the struc- 
ture is represented by a detailed finite element model, and the fluid grid 
is unstructured, dynamic, and constructed by a robust structure analogy 
method. We discuss the latest advances in the computational algorithms 
associated with this approach for modeling aeroelastic problems. We ap- 
ply the three-field nonlinear computational framework to the prediction 
of the aeroelastic frequencies and damping coefficients of an F-16 con- 
figuration in various subsonic, transonic, and supersonic regimes. We 
consider for this purpose both the popular two-dimensional typical wing 
sc^Uon model and a detailed three-dimensional finite element model of 
the structure, and compare in both cases the obtained numerical results 
with flight test data. We comment on the advantages and shortfalls of 
both approaches, and on the feasibility as well as the merit of the three- 
field formulation of nonlinear aeroelasticity for the extraction of flutter 
envelopes. 

Key words.   Aeroelasticity, F-16 fighter, fluid-structure interaction, flutter, CFD on 
moving grids. 
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1    Introduction 

If an elastic aircraft immersed in an unsteady flow undergoes a damped harmonic 
motion characterized by small displacement amplitudes, a wet (or aeroelastic) 
circular frequency Q, and a wet positive or negative damping coefficient ä, and if 
the airflow surrounding it can be accurately predicted by an inviscid linearized 
theory, then aeroelastic stability problems such as flutter can be cast into an 
eigenvalue problem of the form [1] 

(1) 

(2) 

Zm Wj/m 
■>& 

.25. 
-•5j)v™ 

where Zm € ramxm is given by 

Zm(k) — "m '\lm- .less. A i(*)) 

"00) and i is the complex imaginary number satisfying i2 = — 1. Here, Moo, Vc 

and poo denote the free-stream Mach number, velocity, and density of the flow. 
k = (D/Voo is the reduced aeroelastic circular frequency associated with Hi. flm 

is a diagonal matrix storing the squares of the first m fundamental circular 
frequencies <d< of the dry aircraft, and Jm is the identity matrix of dimension 
m. Typically, the aircraft structure is represented by its first 20 to 40 dry (or 
ground) modes, and therefore 20 < m < 40. Am denotes the projection of a 
linear aerodynamic operator A onto the m-dimensional modal basis associated 
with H^j, and ym denotes the projection of the amplitude of the aircraft's 
motion onto that basis. 

A critical value of k, kcr, is that for which Zm has a real eigenvalue equal 
to l/wf2 (1 < i < m). Prom Eq. (1), it follows that for k = kcr, the damping 
coefficient äf of the i-th aeroelastic mode vanishes. Hence, given a free-stream 
Mach number and a free-stream density, the critical value of the reduced fre- 
quency, if it exists, can be found by sweeping on k and solving the eigenvalue 
problem (1) until a real eigenvalue is found. In that event, the flutter mode of 
the aircraft is the mode i for which äf = 0, the flutter speed of the aircraft 
is V£ = ü>ir/kcr, and the flutter dvnamic pressure is Acr = PooVg /2. Such 
a procedure for extracting the flutter speed of an aircraft is known as the "k" 
method [2]. It is accurate when Jae assumptions stated above hold, and when 
the structure is less than 10% damped. When the structure has a higher per- 
centage of damping, an improved version of this procedure known as the "p-k" 
method [3] is preferable for finding the flutter dynamic pressure. Assuming that 
the positive or negative äi coefficients are small, the variations of the aeroelas- 
tic frequencies and damping coefficients with the Mach number, Wj(Moo) and 
öi(Moo), 1 < i < m, can also be predicted by sweeping on M,» and solving the 
eigenvalue problem (1). 

The "k", "p-k" and other similar procedures for flutter analysis are based 
on the linear theory of aeroelasticity whose assumptions have been stated at 
the beginning of this introduction. They are fast and memory lean. For this 



reason, they are also popular in the aerospace industry. In the subsonic regime, 
most if not all of these procedures rely today on the doublet-lattice method [4] 
for computing the linear aerodynamic operator A. It is interesting to note that 
this method, which was developed over thirty years ago, is still today the most 
used method for predicting subsonic unsteady flows in production environments, 
particularly for load and flutter analyses. In the supersonic regime, various 
methods related to the piston theory [5] are used for constructing A. 

High performance military aircraft are usually flutter critical in the transonic 
speed range at high dynamic pressure. Unfortunately, in that regime, the mixed 
subsonic-supersonic flow patterns and shock waves are such th^i, the linear flow 
theory in general — and therefore the doublet-lattice method in particular — 
are not reliable for predicting the unsteady aerodynamic forces acting on an 
aircraft. As a result, flutter testing of a scaled model in a transonic wind 
tunnel is always used to generate corrections to flutter speeds computed by linear 
methods. However, the design, construction and testing of a wind tunnel flutter 
model, and the analysis of the resulting data, require over a year's time. For 
this reason, leading authorities in this field have recently suggested [6] that "The 
results of a finite number of [nonlinear] CFD [computational fluid dynamics] 
solutions could be used as a replacement for wind tunnel testing, assuming a 
validated code was available." Coincidentally, this paper addresses this very 
same issue in the context of an F-16 Block 40 fighter. 

More specifically, our objectives here are to overview a three-field formulation 
of fluid-structure interaction problems for nonlinear computational aeroelastic- 
ity, assess the latest advances in the corresponding CFD and CSM (compu- 
tational structural mechanics) algorithms, briefly describe a high-performance 
simulation software developed at the University of Colorado based on these 
ideas, report on its validation with flight test data for an F-16 Block 40 con- 
figuration, and discuss the feasibility as well as the merit of this computational 
strategy for extracting accurately the flutter envelopes of high performance civil- 
ian and military aircraft. To this effect, we organize the remainder of this paper 
as follows. 

In Section 2, we overview a three-field formulation of coupled fluid-structure 
interaction problems that is flexible enough to accommodate all types of non- 
linearities. In Section 3, we identify the main computational jsues associated 
with this formulation. For some of these issues, we take a net" look at the lat- 
est developments and achievements, and highlight their impact on the overall 
performance of the solution of nonlinear aeroelastic problems. In Section 4, 
we briefly describe the CFD/CSM based simulation software developed at the 
University of Colorado for solving general aeroelastic problems. This software 
is based on the three-field formulation and incorporates all the advances in the 
computational methods described in this paper. In Section 5, we apply this 
simulation software to the prediction of the aeroelastic frequencies and damp- 
ing coefficients of an F-16 Block 40 configuration in various subsonic, transonic, 
and supersonic regimes. For this purpose, we represent first this fighter by its 
typical wing section. Then, we consider a three-dimensional detailed finite ele- 
ment (FE) model of its structure. In both cases, we comment on the obtained 



numerical results and compare them to the measured flight test data. Finally in 
Section 6, we conclude this paper by a discussion of the feasibility and merit of 
our CFD/CSM based methodology for the flutter analysis of high performance 
aircraft in the transonic and other regimes. 

2    Three-field formulation of nonlinear aeroelas- 
tic problems 

First, we overview a three-field formulation of coupled fluid-structure interac- 
tion problems that was first introduced in [7]. This formulation is quite general. 
It can address many aeroelastic problems besides flutter, including the predic- 
tion of steady and unsteady loads as well as control surface effects in level flight 
as well as during maneuvering, aeroelastic tailoring, and performance analysis. 
In this formulation, the structure is no longer restricted to a harmonic motion 
with small displacement amplitudes, and is not necessarily represented by a 
truncated basis of its normal modes. In principle, there is also no reason to 
confine its constitutive modeling to that of an elastic material. However, while 
aircraft structures can undergo large displacements and rotations, they seldom 
experience large strains. Therefore in many applications, the nonlinear modeling 
of the structural behavior can be limited to the proper accounting of nonlinear 
geometric and free play effects. More importantly, the aerodynamic forces act- 
ing on the structure are no longer predicted in this formulation by the use of a 
linear aerodynamic operator, because of the limitations associated with such an 
approach, particularly in the transonic regime. Rather, these unsteady forces 
are determined from the solution of the compressible Euler equations when vis- 
cous effects can be neglected, and the solution of the compressible Navier-Stokes 
equations augmented by a large eddy simulation or turbulence model otherwise. 
Furthermore, no restriction is imposed on the nature of the fluid-structure cou- 
pling, which is numerically modeled by suitable fluid-structure interface bound- 
ary (or transmission) conditions. One difficulty in handling numerically the 
fluid-structure coupling stems from the fact that the structural equations are 
usually formulated with material (Lagrangian) coordinates, while the fluid equa- 
tions are typically written using spatial (Eulerian) coordinates. Therefore, a 
straightforward approach to the solution of the coupled fluid-structure dynamic 
equations requires moving at each time-step at least the portions of the fluid grid 
that are close to the moving and flexing aircraft. This can be appropriate for 
small displacements of the structure but may lead to severe grid distortions when 
it undergoes large motion. Different approaches have emerged as an alternative 
to partial regridding in transient aeroelastic computations, among which stand 
out the arbitrary Lagrangian-Eulerian (ALE) formulation [8] and the closely 
related method of dynamic meshes [9]. These approaches treat a computational 
aeroelasticity problem as a two-field coupled problem. However, a moving mesh 
(Fig. 1) can also be viewed as a pseudo-structural (or fictitious structural) sys- 
tem with its own behavior [7], and therefore, the coupled transient aeroelastic 



problem can be formulated as a three- rather than two-field problem: the fluid, 
the structure, and the dynamic fluid mesh. This three-field formulation has shed 
new light on the mathematical understanding of the numerical behavior of var- 
ious algorithms applied to the solution of the coupled fluid-structure problem, 
and has enabled the development of faster solution algorithms [10-14]. 

Clearly, the simultaneous solution of the governing nonlinear fluid, fluid 
mesh, and structure equations of motion is computationally intensive, and raises 
some concerns about the feasibility and practical usefulness of this approach in 
production environments. An important objective of this paper is to show that 
because of significant advances in computational methods and the advent of 
parallel processing, the three-field and CFD/CSM based solution of aeroelas- 
tic problems is now sufficiently mature and fast to be considered at least as 
a reliable simulation environment, if not to be adopted as a design tool, for 
addressing the critical flight conditions of a high performance aircraft. 

2.1    Governing multidisciplinary equations 
A fluid-structure interaction problem can be described by the following coupled 
partial differential equations 

^-k + JVz.(F(w) - ^w) = JVx.R(w) (3a) 

Ps~dW ~ div((Ts(es(us), -gjrius))) = b (3b) 

p|^-div(ä(e(*))) = 0 (3c) 

Equation (3a) is the ALE conservative form of the Navier-Stokes equations. 
Here, t denotes the time, x(t) denotes the time-dependent position or displace- 
ment of a fluid grid point (depending on the context of the sentence and the 
equation), £ its position in a reference configuration, J = det(dx/d£), w is the 
fluid state vector using the conservative variables, and F and R denote respec- 
tively the convective and diffusive ALE fluxes. Equation (3b) is the elastody- 
namic equation where us denotes the displacement field of the structure and ps 
its density, as and es denote respectively the stress and strain tensors, and b 
represents the body forces acting on the given structure. Equation (3c) governs 
the dynamics of the moving fluid grid. It is similar to the elastodynamic equa- 
tion because the dynamic mesh is viewed here as a pseudo-structural system. A 
tilde notation is used to designate the fictitious mechanical quantities [1]. For 
the sake of notational simplicity, the various Dirichlet and Neumann boundary 
conditions intrinsic to each of the fluid and structure problems are omitted. 

Equation (3a) and equation (3c) are directly coupled. If UF denotes the ALE 
displacement field of the fluid and p its pressure field, as and OF the structure 
stress tensor and the fluid viscous stress tensor, T the fluid-structure interface 
boundary (wet boundary of the structure), and n the normal at a point to T, 
the fluid and structure equations are coupled by the interface boundary — or 



transmission — conditions 

as-ri = —pn + (TF-n       on V (4a) 

^1 = ^L onT (4b) 
dt        dt 

The first of these two transmission conditions states that the tractions on the 
wet surface of the structure are in equilibrium with those on the fluid side of T. 
The second of Eqs. (4) expresses the compatibility between the velocity fields 
of the structure and the fluid at the fluid-structure interface. For inviscid flows, 
this second equation is replaced by the slip wall boundary condition 

Sup BUS T, /rs 

-WMSS-5TM     onr (5) 

The equations governing the structure and dynamic mesh motions are coupled 
by the continuity conditions 

x = us on T (6a) 

%■ = %£       onT (6b) 
dt       dt 

2.2    Semi-discretization of the governing equations 
The spatial approximation of the ALE conservative form of the Navier-Stokes 
equations by FE or finite volume (FV) schemes leads to semi-discrete equations 
that can be written as 

(V(x)w) + F{w,x,x) = R{w,x) (7) 

where a bold font designates the discrete counterpart of a field variable, and a 
dot a time derivative. In the case of a FV semi-discretization, V is the matrix 
of the cell volumes and F and R are respectively the numerical convective and 
diffusive fluxes approximating the integral of the physical flux function over the 
cell interfaces. 

The semi-discretization by FE of the structural equations of dynamic equi- 
librium leads to1 

Müs + fT(us,üs) = ff (us, w) + f%xt (8) 

where M is the FE lumped mass matrix, us the generalized displacement vec- 
tor, /51' the vector of internal forces, ff the vector of aerodynamic forces 
applied on the wet surface of the structure, and /"' the vector of other exter- 
nal forces acting on the structure. If for the problem of interest the structure 
remains linear, Eq. (8) simplifies to 

Müs + Cüs + Kus = fs («5, w) + ff* (9) 
xThis specific expression assumes that the rotational inertia forces are negligible. 



where C and K denote the FE damping and stiffness matrices. 
Let the subscript i designate the grid points located in the interior of a 

computational domain, and the subscript b designate those grid points located 
at the fluid-structure interface T. If the dynamic mesh is assimilated with a 
quasi-static pseudo-structural system, the semi-discrete equation governing the 
evolution of the dynamic mesh can be written as 

KuXi = -Kibxb       xb = UuSb (10) 

where K is the fictitious time-depeudent stiffness matrix resulting from the FE 
semi-discretization of Eq. (3c) [1], zrA U is a transfer matrix. If the fluid and 
structure meshes have compatible interfaces, U = I. Otherwise, U is given by 
the FE discretization of the second of the interface conditions (4). 

3    Computational issues and advances 

In the linear theory of aeroelasticity, the air surrounding a flying aircraft can be 
interpreted as an "algebraic" damper whose sign depends on the flight condi- 
tions. When positive, it attenuates any aircraft vibration excited by some initial 
disturbance. When zero, it only entertains it, and when negative, it amplifies 
that vibration. In other words, depending on the flight- conditions and par- 
ticularly the Mach number, the air surrounding a vibrating aircraft can either 
extract energy from it, or act as a neutral agent towards it, or feed it energy and 
cause it to flutter. This energy interpretation of the flutter mechanism under- 
scores the importance of conserving as much as possible the energy transferred 
between the fluid and structure subsystems when discretizing the transmission 
conditions (4) and solving the coupled system of equations (7, 8, 10). Indeed, 
the extraction (transmission) from (to) the structure across the fluid-structure 
interface T of any significant amount of spurious numerical energy can artifi- 
cially stabilize (destabilize) an otherwise unstable (stable) aeroelastic system. 
Since the three-field aeroelastic problem (7, 8, 10) is formulated in the time do- 
main, extracting the wet frequencies and damping coefficients of the underlying 
structure for flutter analysis require post-processing the numerical output — 
for example, the displacement field v ;(t) — by a parameter identification algo- 
rithm. Computational efficiency suggests using for that purpose an identifica- 
tion algorithm that requires as few cycles as possible of the predicted structural 
response. This in turn underscores the importance of producing a sufficiently 
accurate short window of the time-response, and therefore time-integrating the 
coupled fluid-structure and not individual fluid and structure equations of mo- 
tion (7, 8) with a second-order time-accurate scheme. Usually, the aeroelastic 
response of the structure is dominated by its low modes. For this reason, com- 
putational speed — which is essential for production environments — favors 
implicit schemes and large computational steps, which underscores the impor- 
tance of paying special attention to the numerical stability properties of the 
scheme designed for time-integrating the coupled fluid-structure equations of 



motion. Next, we review some recent achievements in these areas. Because 
of space limitation, we focus on discussing results, and refer the reader to the 
appropriate literature for details. 

3.1    CFD on moving unstructured grids 

The governing fluid equation (7) differs from the standard FE or FV semi- 
discretization of the Navier-Stokes equations in that it is formulated on a mov- 
ing rather than a fixed grid.  Therefore, the time-discretization of this equa- 

tion, which incurs the approximation of the integrals Jt„     JP'(wi x>x) dt and 
,n + l 

Jt„ R(w, x) dt, raises the question of where to evaluate the convective and 
diffusive fluxes when the grid moves from its position xn at time tn to a posi- 
tion xn+1 at time tn+1. A straightforward answer to this question is to evaluate 
these fluxes on the mesh configuration xn when the chosen time-integrator is 
explicit, and xn+1 when the time-integrator is implicit. For small time-steps 
At™ = tn+1 — tn, it may not matter where the fluxes are evaluated because 
in that case the difference between the mesh configurations xn and xn+1 may 
be insignificant.  However, for the large time-steps dictated by computational 

efficiency, the method of evaluation of the integrals Jt„     F(w,x,x)dt and 
jn + l 

Jt„ R(w,x)dt can have a dramatic effect on the performance of the time- 
integration of the governing fluid equation (7). To address this issue, it was 
proposed in [10-13] to first select a time-integrator that performs well on fixed 
grids, and then extend it to moving grids by evaluating a moving flux as the 
time-average of a certain number of fluxes computed on a suite of carefully 
chosen mesh configurations. For example, the classical three-point backward 
difference scheme fits well the selection criteria stated in the introduction of 
this section: it is implicit, second-order time-accurate on fixed grids, and un- 
conditionally stable for the usual test problem on fixed grids. Its extension to 
moving grids as proposed in [10-13] can therefore be written as follows 

an+1y
n+1tün+1 + anV

nwn + an.1V
n-1wn-1 

+ Atn ]T c<F(wn+1 ,x',xc
s)-AtnJ2 cd

sR(W+1 ,xd
s) = 0    (11) 

where 

1 + 2T , r2 Ain 

<wi = TT7> <*n = -i-r, «„_: = —,   T = Ä^ 

and V" = V(xn). nc
3 and nd are two small integers, while cc

s and cd are real 

* * 
coefficients (averaging weights) that satisfy Y, c« = 1 an<i Yl cs — *• xsi xt 

8=1 S=l 

and xc
3 are linear combinations of the mesh configurations {xn~l,.., xn,.., xn+m} 

and velocities {±n_-',.., x",.., xn+9} for some given integers I, m, j, and q. Note 



that Eq. (11) anticipates two different time-averaging procedures for the moving 
convective and viscous fluxes. 

The computational complexity of the scheme (11) can be reduced by aver- 
aging the mesh configurations themselves instead of the fluxes associated with 
them, which leads to 

an+1V
n+lwn+1 + anV

nwn + an-1V
n-1wn~1 

+AtnF(wn+\Y^c>cs'£<$*:)-A*Bfi(«B+1.Ec'^) = ° w 
s=l s=l s=l 

This alternative approach was proposed and discussed in [13] in the context 
of the FV semi-discretization of the governing flow equations. It requires the 
computation of a single convective flux and a single diffusive flux per time-step, 
whereas the approach summarized in Eq. (11) requires the computation at each 
time-step of nc

s convective and nd diffusive fluxes. In the remainder of this 
paper, we adopt the form (12) of the extension to moving grids of the three- 
point backward difference scheme. However, most of the results we present for 
that form also hold for the version (11) of that extension. 

Whether scheme (11) or scheme (12) is chosen for extending the three-point 
backward difference scheme to moving grids, it remains to determine nc

s and nf, 
the averaging coefficients cc

a and cd
s, the mesh configurations xc

s, and xd, and 
the mesh velocities xc

3. To this effect, two approaches can be adopted. The first 
one consists in choosing these parameters so that the resulting time-integrator 
satisfies its corresponding discrete geometric conservation law (DGCL) [15,16]. 
The second approach consists in selecting these parameters so that the resulting 
time-integrator remains second-order time-accurate on moving grids. 

The so-called DGCL is a law which states that the computation of the geo- 
metric parameters associated with a moving grid should be performed in such a 
way that, independently of the mesh motion, the numerical scheme constructed 
for time-integrating the flow equations on a moving grid preserves the state of 
a uniform flow. The idea of computing the discrete mesh velocities and other 
geometric parameters as to preserve a certain physical quantity goes back to the 
early days of CFD. The terminology "geometric conservation law" was coined in 
1979 by Thomas and Lombard [17] who derived this concept from the law of mass 
conservation in a spatial region bounded by a moving surface, and applied it to 
construct an improved finite difference method for flow computations on mov- 
ing grids. This concept was subsequently extended to characterize geometrically 
conservative schemes as algorithms that preserve the entire state of a uniform 
flow. First-order time-accurate and geometrically conservative ALE FV schemes 
were presented and discussed in [11,12,18]. First-order time-accurate and geo- 
metrically conservative ALE FE schemes were presented in [11,12]. DGCLs for 
second-order time-accurate ALE FV schemes have also been developed and dis- 
cussed in [13]. For example, parameterizing the sought-after mesh configuration 



xa and its corresponding velocity field as suggested in [13] 

xc
a = T£

+1
X"

+1
 + r£x" + (1 - T£

+1
 - tf)*»"1 

xc
a = 6?+1xn+1 + en

ax
n - (0s

n+1 + Ö^x"-1 

(13a) 

(13b) 

and requiring that the scheme (12) satisfies its DGCL leads to a nonlinear 
system of equations in the unknowns nc

s, cc
s, {T7"

+P
}£=0' 

anc' {^"+p}p=o- ^ tne 

case of three dimensions and a FV semi-discretization method, one of the many 
possible solutions of that nonlinear system of equations leads to (see [13]) 

nc
s = 4; ci=c$ = i±i. C3 — c4 — IT 

^ = 1(1 "^" + 1(1 + ^ 
n-l (14) 

x% = id+ *)«" +id-J*) 
c — -*c — •£ 

v^ 
2/1  — Xn — 

n + l -X" 
i/5' 

,.n-l 

At" 
■ c _ X"-Xn~ 

*c4 —      At"-1 

This completes the description of one instance of the scheme (12) that is based on 
a four-point discretization of the moving convective fluxes. Enforcing a DGCL 
cannot determine the coefficients cf and mesh configurations xd, because the 
moving viscous fluxes vanish for a uniform flow. To determine these parameters, 
one can adopt the second approach mentioned above and described next. 

Alternatively, the parameterization (13) and a similar parameterization of 
the sought-after mesh configuration xd can be substituted into the scheme (12). 
Next, the local truncation error of the resulting time-integration algorithm can 
be computed as usual by applying Taylor's expansion around the variables at 
tn. Finally, the unknowns cc

s, cd, and the parameters governing the mesh con- 
figurations xc

s, x
c

a and xd can be determined by requiring that the zero-, first-, 
and second-order terms of the local truncation error vanish. It turns out that 
this second approach for determining ca, cd, xc

s, x
c

a, and xd works equally well 
when na is set ä priori to na = 4, nd and cd are set ä priori to nd

s = 1 and cd = 1, 
and xd is parameterized differently than xc

a using the simpler linear map 

-d _ /*n+l _n+l = £+1xn+1 + (1 - C n+l- 
X' (15) 

which was first proposed in [22]. In that case, requiring that the scheme (12) 
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«=1 

be second-order time-accurate on moving grids leads to 

4 

4 an+l 

8=1 

nn+l 

r       '     Atn 

i-tf+1-v?,_ 
) = 1 

s=l 

£c^«+i_&t*L-J 
s=l 

T2 '        Atn 

C+1 = i 

(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

Again, the system of equations (16) admits multiple solutions, among which 
we note two solutions corresponding to the following averaging coefficients and 
mesh configurations 

n;=4;    cf = l;c§ = c!=c5=0 
x\ = xn+1 

■c _ an+iXn+1+a„Xn+a„ ,xn 

nd
s = l;    4 = 1 

x? = xn+1 

At" 
(17) 

and 

„C  _  „C  _   <*n+l , 
Co — CA — nj = 4;    cj = <5 =    ^   .      „      , 

*§ = id + 7i)*n+1 + id - #*" 
^3 = id-£)*" + id + %)*■ 
*s = id+ £)*" +id-A)*' 

2T 

n-1 

n-1 (18) 
«c _ ^e _ a;-1"1-a" 

,c _ ±.c _ X"-X" x3 — x4 — 

n? = l;    c? = l 
as? = xn+1 

3 — U-4 —       Atn-i 

<* - 1 ■      *4 - 

It follows that at least two different instances of the parameterized time-integrator 
(12) achieve second-order accuracy on moving grids. The first one is based on 
the one-point rule described by Eqs. (17). This algorithm does not however 
satisfy its DGCL (for a proof, the reader can simply verify that Eqs. (17) do 
not satisfy the DGCL requirements of the time-integrator (12) which are listed 
in [13]). The second instance of the parameterized time-integrator (12) is based 
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on the four-point rule described by Eqs. (18), which is identical to that de- 
scribed by Eqs. (14); hence, this second instance of scheme (12) satisfies its 
DGCL. Therefore, using what we have referred to as the second approach for 
extending the three-point backward difference scheme to moving grids, one can 
construct different time-integrators for the governing semi-discrete fluid equa- 
tions (7) that are all second-order time-accurate, but which do not necessarily 
satisfy their DGCL. This is consistent with the following theoretical result es- 
tablished by Guillard and Farhat [15,16]: "for a given scheme that is p-order 
time-accurate on a fixed mesh, satisfying the corresponding p-discrete geometric 
conservation law is [only] a sufficient condition for this scheme to be at least 
first-order time-accurate on a moving mesh". Therefore, the question becomes 
whether there is any particular reason to discriminate between those second- 
order extensions to moving grids of the three-point backward difference scheme 
that satisfy their DGCLs, and those that do not satisfy it? 

In [10,12], it was shown numerically that for typical aeroelastic computa- 
tions, violating the DGCL can introduce a parasitic weak instability in the lift 
response, and can lead to the prediction of an erroneous flutter speed. Motivated 
by these observations, Formaggia and Nobile have investigated the solution of 
linear advection-diffusion problems on moving grids by ALE FE methods [20]. 
They have shown that for these linear problems, satisfying the corresponding 
first-order discrete geometric conservation law is a sufficient condition for the 
backward Euler implicit scheme to be unconditionally stable. This new result 
sheds some light on the relationship between the DGCL and numerical stability. 
However, it does not take into account the nonlinearities that characterize Eu- 
ler flows, and stops short from predicting the behavior of an ALE scheme that 
does not satisfy its corresponding DGCL. For this reason, Farhat, Geuzaine 
and Grandmont have investigated further the theoretical status of the DGCL, 
and exposed its relation to nonlinear stability. More specifically, using a three- 
dimensional nonlinear scalar hyperbolic conservation law as a model problem, 
they have proved for sample arbitrary Lagrangian Eulerian schemes that the 
DGCL requirement corresponds to a necessary and sufficient condition for a 
numerical scheme to achieve nonlinear stability. Consequently, they have also 
shown that an ALE scheme which violates its DGCL is bound to exhibit spuri- 
ous oscillations and overshoots fc. practical computational time-steps, and can 
occasionally exhibit an unbounded behavior. For all these reasons, and because 
the computational overhead associated with enforcing a DGCL is minimal — for 
example, whether equipped with Eqs. (17) or Eqs. (18), scheme (12) computes 
only one convective and one diffusive flux per time-step — we prefer numerical 
methods that satisfy their DGCLs. In particular, we prefer the four-point rule 
version (18) of the time-integrator (12) over its one-point rule version (17). Fur- 
thermore, we point out that in [16] and references cited therein, it was shown 
that for a specified accuracy, the four-point rule (18) allows a computational 
time-step that is more than an order of magnitude larger than that afforded by 
straightforward and geometrically non conservative extensions to moving grids 
of the three-point backward difference scheme. Hence, it is now well established 
that satisfying the governing DGCL improves significantly both robustness and 

12 



performance. 

3.2    Energy conservative exchange of aerodynamic and elas- 
todynamic data 

Next, we turn our attention to the discretization of the transmission conditions 
(4,6). In order to address the practical case where the fluid and structure 
computational domains have non-matching discrete interfaces, we denote by IV 
and Ts the discrete representations of the fluid-structure interface T on the fluid 
and structure sides, respectively. 

The energy transferred from the fluid to the structure through T during the 
time-interval [*n, tn+1] is 

5£F
n+l = - I      U (-pn + aF-n)x ds) dt (19) 

and that received by the structure during the same time-interval is 

S£s
n+1 = f       U as.nüs da) dt (20) 

From the above expressions and Eqs. (4,6), it follows that the discretization of 
the transmission conditions (4,6) has a direct impact on the conservation of the 
energy transferred between the fluid and the structure through T. 

Whichever approximation method (interpolation, projection, etc.) is chosen 
for enforcing on T the compatibility of the displacement fields of the fluid mesh 
and the structure (6), its outcome can be written as follows 

is 

*i = £ cJi ui     i e rF, i e rs (21) 
i=l 

where Xj is the discrete value of x at the fluid point j, and ust is the discrete 
value of us at the structure node i. The integer is and real coefficients Cji 
depend on the chosen method of approximation. The superscript P is used to 
designate a "prediction" of the motion of the structure. If the huid and structure 
subsystems are solved simultaneously, u§ =us- On the o+v~i nand, if they are 
advanced in time by a staggered procedure (see Section 3.3), uf will in general 
differ form us{ because of a time-lag between the fluid and structure partitions. 

Consider now a virtual displacement field x that is zero on each degree 
of freedom of the moving fluid grid except on those lying on the boundary 
Tp ■ Whichever method is chosen for approximating Eq. (3c) and therefore 
constructing the pseudo-structural stiffness matrix K (see Eq. (10)), x can be 
expressed as follows 

2F 

x = ^DjXj       jeTF (22) 
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where Dj is some function with a local or global support on IV- From Eq. 
(19) and Eq. (22), it follows that the virtual work during [*", tn+1] of the fluid 
tractions acting on I> is 

(23) 
tn+1   ]F 

dt 

SWn+x=f      1^2 f  {-pn + aF.n)Djijds) 

rt
n + 1   IF 

J**        i=l 

where $ j has the physical meaning of a numerical pressure flux and is given by 

$j = /   (-pn + aF-n)Dj ds (24) 

Substituting Eq. (21) into Eq. (23) gives 

rt"
+l   JF is      rt" 

wp1 = [   E *,-*,- *=E /   fFi < < dt (25) 

where 

JF 

/« = E^'Hcii]     i e i>, i e r5 (26) 
J=I 

If the nodal aerodynamic forces (and moments) acting on a structure node i 
lying on Ts are denoted by f%', the virtual work during [tn, tn+l] of these 
forces is 

5W£+1 = /"     E ft &s, dt = Yif
t     ft its, dt (27) 

Conserving the transfer of energy through T requires enforcing 5Wp+l = 5Wg+1 

for any pair of virtual displacement vectors x and us satisfying (21). From Eqs. 
(25,27), this implies enforcing 

/       fa
s
eM dt = [      fFiü

P
Si dt (28) 

The evaluation of the time-integrals in Eq. (28) depends on the time-integration 
schemes chosen for the structure and fluid analyses, and is discussed in great 
details in [14]. Here, we focus on the case where Eq. (8) is time-integrated 
with the popular midpoint rule — which is second-order time-accurate and in 
the linear case identical to the Newmark algorithm with ß = 1/4 and 7 = 1/2 
[21] — and the flow equations (7) are time-integrated with the second-order 
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time-accurate extension to moving grids of the three-point backward difference 
scheme described by Eqs. (12,18). In that case, Eq. (28) becomes 

»ae"+1   ,   faen fn+l   ,   fn 
fSi 2

+/Si «> - «sj=t*-±i* (Ur
p - «sf)   (29) 

p 
If the fluid and structure subsystems are solved simultaneously, us   =7x5, 

and Eq. (29) simplifies to 

/§? = fF< = YfiAfai]       3 eTF,i€ TS (30) 
J'=l 

In that case, Eq. (30) describes a conservative algorithm for transmitting the 
fluid forces to the structure. This algorithm is independent of the method chosen 
for discretizing the structure. The term in the first bracket in Eq. (30) depends 
exclusively on the method chosen for discretizing the flow problem, and the term 
in the second bracket depends only on the method selected for transmitting the 
displacement of the structure to the fluid mesh. 

If a time-lag is introduced in the solution of the fluid and structure sub- 
p 

systems, us   ^ us.  In that case, conserving the energy transfer through T 
p p 

requires subiterating on tig   until us   — us. However, even if no subiterations 
are performed, we still recommend exchanging the aerodynamic data between 
the fluid and the structure according to Eq. (30), and discuss in Section 3.3 ef- 
fective means for compensating the strict loss of conservation of energy transfer 
through T. 

3.3    Higher-order loosely coupled fluid-structure time-integrators 
For any reasonably detailed FE representation of the aircraft structure, the 
simultaneous solution of Eqs. (3) by a monolithic scheme is neither practical 
nor software-wise manageable. For this and other reasons related to compu- 
tational efficiency, a partitioned procedure is typically employed for solving 
coupled field nonlinear aeroelastic problems. In such a procedure, the fluid 
and structure are time-integrated by different schemes tailored to their differ- 
ent mathematical models, and the resulting discrete equations are solved by 
a staggered algorithm [10,23,24]. Such a strategy simplifies explicit/implicit 
treatment, subcycling, load balancing, software modularity, and replacements 
as better mathematical models and methods emerge in the fluid and structure 
disciplines. The most popular partitioned procedure, which is referred to in 
this paper as the Conventional Serial Staggered (CSS) procedure, is graphically 
depicted in Fig. 2. Its generic cycle between tn and tn+1 can be described as 
follows: (1) predict Ug+1 = us, transfer the corresponding motion of the wet 
boundary of the structure to the fluid subsystem, and update the position of the 
moving fluid mesh accordingly, (2) advance the fluid subsystem to in+1 using a 
given flow time-integrator and compute a new set of aerodynamic forces /£+1 
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acting on TF, (3) transfer fa
s
en+1 = fp+1 to the structure subsystem, (4) apply 

fs n+1 to the structure and advance it to' tn+1 using a given time-integrator. 
Such a staggered procedure, which can be described as a loosely coupled solu- 
tion algorithm, can also be equipped with a subcycling strategy where the fluid 
and structure subsystems are advanced using different time-steps Atp and Ais- 

Unfortunately, the time-accuracy of the CSS procedure is in general at least 
one order lower than that of its underlying flow and structure time-integrators, 
and its numerical stability is more restrictive than that of the flow and structure 
solvers. Consequently, its maximum allowable time-step is much smaller than 
required for accuracy purposes, which makes it a slow algorithm. To improve the 
performance of this simple partitioned procedure, several ad-hoc strategies have 
been proposed in the literature. Essentially, these strategies insert some type of 
predictor/corrector iterations within each cycle of the computations in order to 
compensate for the time-lag between the fluid and structure solvers [23,25,26]. 
These iterations help closing the gap between «5

+1 and ti£+1, and therefore 
as explained in Section 3.2 (see Eq. (29)) they also help conserving the transfer 
of energy between the fluid and structure through T. As a result, they increase 
the maximum allowable time-step of the CSS procedure. However, since the 
numerical complexity of each predictor/corrector iteration is almost the same 
as that of one cycle of staggering, little CPU is saved by such enhancement 
strategies. 

Recently, Piperno and Farhat [14] have presented an alternative approach 
for improving the maximum allowable time-step of the CSS procedure that does 
not increase its computational cost per cycle. Their approach, which assumes 
that /£+1 is computed as in Eq. (26), is based on introducing two compu- 
tationally economical factors for compensating the time-lag between the fluid 
and the structure subsystems: (1) a non-trivial prediction us

+1 ^ ug, and 
(2) a non necessarily trivial transfer of the aerodynamic forces to the struc- 
ture f%e ^ /jr+1- More specifically, they have shown that given two time- 
integration schemes for the fluid and structure equations of motion, u^"1"1 and 
/|e      can be designed to achieve 

NT/At 

]T   5W£ + SWg = 0 {At") (31) 
r»=0 

where N is an arbitrary integer, T is the period of an assumed harmonic vibra- 
tion of the structure, and At = Atp = Ats is a fixed time-step for the fluid and 
structure time-integrators. In other words, u§+1 anc^ fs' can ^e designed 
to construct a p-order "energy-transfer-accurate" CSS procedure. The higher p 
is, the closer is the CSS procedure to conserving the transfer of energy through 
the fluid-structure interface. For example, consider the case where the CSS 
procedure is equipped with the midpoint rule for time-integrating the structure 
subsystem, and the extension to moving grids of the three-point backward dif- 
ference scheme described by Eqs. (12,18) for integrating the fluid subsystem. 
When us

+lP = ug and ft?"*1 = /£+1, this CSS procedure is only first-order 
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energy-transfer-accurate. On the other hand, if u^"1"1 is predicted by the fol- 
lowing first-order scheme 

uT1" = «3 + ^«5 (32) 

and the following "improved" vector of aerodynamic forces is applied on the wet 
surface of the structure 

/r"+1=2/rl-/r" (33) 
the CSS procedure becomes third order energy-transfer-accurate and its max- 
imum allowable time-step is increased by a factor equal to 5. This significant 
improvement in performance is achieved without any predictor/corrector itera- 
tion and almost at zero cost. 

In [14], it is also shown that the Improved Serial Staggered (ISS) procedure 
proposed by Lesoinne and Farhat in [27] is also third-order energy-transfer- 
accurate, and allows a maximum time-step that is at least as large as that of the 
CSS procedure equipped with the first-order prediction (32) and the improved 
aerodynamic forces (33). This is not surprising because as shown in Fig. 3, 
the ISS procedure incorporates the effects of the improved prediction (32) and 
aerodynamic forces (33). 

Finally, we note that the combination of the advanced fluid time-integrators 
highlighted in Section 3.1 and improved staggered procedures overviewed herein 
has improved the computational efficiency and performance of the state-of-the- 
art technology for the solution of nonlinear transient aeroelastic problems by a 
factor ranging between 10 and 22 [27]. 

4    The AERO-F/AERO-S simulation platform 

The AERO-F, AERO-S, and MATCHER codes developed at the University of 
Colorado are a suite of software modules based on the three-field formulation 
described in this paper for the solution on nonlinear transient aeroelastic prob- 
lems. They are portable, and run on a large variety of computing platforms 
ranging from Unix workstations to shared as well as distributed memory mas- 
sively parallel computers. 

The two- and three-dimensional AERO-F modules model a flow either by the 
Euler equations, or the averaged Navier-Stokes equations equipped with the k-e 
turbulence model and a wall function. They operate on static and dynamic un- 
structured meshes. More specifically, they combine a Galerkin centered approxi- 
mation for the viscous terms, and a Roe upwind scheme for the convective fluxes. 
Higher-order spatial accuracy is achieved through the use of a multidimensional 
piecewise linear reconstruction that follows the principle of the Monotonie Up- 
wind Scheme for Conservative Laws [28]. Time-integration on fixed grids can 
be performed either by a 3-step variant of the explicit Runge-Kutta algorithm, 
or by the implicit three-point backward difference scheme. Time-integration on 
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moving grids is carried out as described in this paper. All linearized systems of 
equations are solved by the RAS (Restricted Additive Schwarz) preconditioned 
GMRES iterative algorithm [31]. 

The AERO-F modules support two robust structure analogy methods for 
constructing dynamic meshes. The first one is based on time-dependent tor- 
sional springs [29,30]. The second method is based on the total Lagrangian 
approach for solving a fictitious nonlinear elasticity problem [32]. Both meth- 
ods share in common the idea of constructing the fictitious stiffness of each fluid 
mesh element so that it increases to infinity when its area or volume decreases to 
zero. This prevents all collapsing mechanisms (node-to-noHe, node-to-edge, and 
node-to-face) from occurring during the mesh motion. For applications where 
the structure undergoes large rotations — for example, aircraft maneuvering — 
the AERO-F modules invoke a corotational scheme to accelerate the update of 
the mesh motion [33]. 

The AERO-S suite of structural and thermal modules are capable of linear 
and geometrically nonlinear static, sensitivity, vibration (eigen), and transient 
FE analyses of restrained as well as unrestrained homogeneous and composite 
structures. 

The AERO-F and AERO-S suite of codes communicate via run-time soft- 
ware channels. They exchange aerodynamic and aeroelastic data across non- 
matching fluid and structure mesh interfaces as described in this paper. For that 
purpose, they are guided by information generated in a preprocessing phase by 
the MATCHER software [34]. 

5    Application to the prediction of the aeroelas- 
tic parameters of an F-16 configuration 

The validation of the AERO-F, AERO-S, and MATCHER codes for the flutter 
analysis of the AGARD Wing 445.6 is described in [27]. For this relatively simple 
wing problem, these codes and the underlying algorithms described in this paper 
have proved to be capable of capturing correctly the transonic dip. They have 
also demonstrated a superior computational efficiency by operating accurately 
with a fluid time-step Atp that is 10 to 22 times larger, and :, coupling time-step 
At — max(AtS) Atp) that is 20 to 46 times larger, than repc-L3d in the literature 
for other nonlinear aeroelastic codes [27,35]. Here, we validate our nonlinear 
transient aeroelastic simulation technology for an industrial problem in view of 
assessing its potential for replacing flutter testing of scaled models in transonic 
wind tunnels. For this purpose, we simulate the flutter clearance of an F-16 
Block-40 in clean wing configuration but with tip missiles, for 0.8 < M^ < 1.4 
and at the altitude of 3,000 m. For this purpose, we first represent the structural 
behavior of this fighter by that of its typical wing section, then by that of a 
detailed three-dimensional FE model. We perform all computations in double 
precision arithmetic on a Silicon Graphics Origin 2000 parallel computer. We 
contrast the results obtained using both approaches and compare them to flight 
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test data provided by the Flight Test Center at the Edwards Air Force Base. 

5.1    Typical wing section model 

From a structural viewpoint, a typical wing section (TWS) is characterized by 
two degrees of freedom (dof) h and 6 which represent the behavior of the wing 
in bending and torsion, respectively (see Fig. 4). It is identified by the following 
parameters 

PTWS = {m,Ig,XG, (XG - xc),Kh,,Kg} 

where m is the total mass per unit span of the wing, XG and xc designate the 
center of gravity and elastic center of the TWS, Sg = m(xG — xc) and Ig denote 
its static and polar moments of inertia about the elastic axis, and Kh and Kg are 
its bending and torsional stiffness coefficients. From an aerodynamic viewpoint, 
a TWS has the shape of the airfoil of the wing. 

In order to design a TWS for the F-16 Block 40, we start from a detailed 
FE structural model of a clean right wing of this fighter with a missile and 
its launching system at the wing tip (see Fig. 5). We determine the set of 
parameters PTWS by requiring that the sought-after TWS be equivalent to the 
wing of the F-16 Block 40 in the following sense 

1. It reproduces the first bending and torsion frequencies of the dry wing 
which are 4.76 Hz and 7.43 Hz, respectively. 

2. It reproduces the same bending and torsion modal masses. 

3. It reproduces the same vertical displacement at the leading edge of the 
cross section located at 68% of the distance from the root to the tip of the 
wing, for both bending and torsion mode shapes, when these are normal- 
ized to a unit rotation of the cross section. 

For criterion 3, we choose the wing cross-section located at 68% of the distance 
from the root to the tip (see Fig. 5) because the F-16 wing is strongly tapered 
and is rather soft towards its tip. The criteria stated above lead to 

m = 2.05 103 Kg 

It = 2.53 103 Kg.m2 

XG = 1.126 m (upstream of section at 68%) 

(xG - xc) = 0.0642 m (G behind C) 

Kh = 2.046 106 N/m 

Kg = 5.468 106 N.m 

We choose the shape of the typical wing section as that of the airfoil located 
at 45% of the distance between the root and tip of the F-16 wing (see Fig. 5). 
This choice is justified by two factors: (a) the chord of the airfoil of the TWS 
must be close to the ratio of the wetted area and the wing span, and (b) because 
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of tapering, most of the lift is generated by the section of the wing that is close 
to the root, which implies that the aerodynamic center of the wing is within 
this area. We discretize the two-dimensional flow domain by 18,000 vertices, 
and ensure a sufficient resolution for shock capturing in the region close to the 
thin leading edge (see Fig. 6). 

5.2 Detailed FE model 
Based on modeling information provided by Lockheed-Martin, we construct a 
detailed three-dimensional FE structural dynamics model of the F-16 Block 40 
in clean wing configuration with a missile and launching system at each wing 
tip. This FE model features bar, beam, solid, plate, shell, metallic as well as 
composite elements, and a total of 168,799 dofs (see Fig. 7(a)). Like the TWS, 
this FE model reproduces correctly the first dry bending and torsion frequencies 
measured to be 4.76 Hz and 7.43 Hz, respectively. Using the Gridgen™ software 
and F-16 CAD data provided by the Air Force Research Laboratory at Wright 
Patterson, we ignore the wing tip missiles and generate first a surface grid with 
63,044 grid points (see Fig. 7(b)). Then, we generate a fluid volume mesh with 
403,919 vertices. 

5.3 Parameter identification 

Let fben (ftor) and äben (ätor) denote respectively the frequency (in Hz) and 
damping coefficient of the first aeroelastic mode of the F-16 configuration consid- 
ered herein that is dominated by bending (torsion). To determine these aeroe- 
lastic parameters, we mimic the procedure employed in flight testing. Whether 
using the TWS or detailed FE model, we excite the structure in an appro- 
priate manner and simulate numerically its response to the prescribed initial 
disturbance. In the case of the TWS model, the numerical simulation generates 
two signals: h(t) and 9(t). In the case of the detailed FE model, it generates 
168,799 signals, one for each dof of this model. Hence, in the latter case, we 
focus only on the vertical displacement dofs at one tip node and one root node 
of each wing. This corresponds to positioning output sensors at these locations 
for flight testing. Once the signals are generated for a sufficiently long period 
of time, we apply the Eigensystem Realization Algorithm (ERA) [36] to extract 
from them the aeroelastic parameters ft,en, ftor, äben, and ätor- 

The ERA is a real-time parameter identification method that is less sensitive 
to noise than the classical logarithmic decay method. It can handle multi-input 
multi-output (multi-dof) systems. Most importantly, it is capable of identifying 
the frequencies and damping coefficients of the two lowest dominating modes of 
a structure using as few as 2 cycles of response history, as long as the sampling 
rate is on the order of 500 to 1000 Hz (At = 1 to 2 milliseconds) [37]. Hence, it 
is particularly attractive to time-domain aeroelastic applications as it requires 
the simulation of only two cycles of the vibration of the structure. 
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5.4 Validation 
We have chosen the F-16 configuration described in this paper because it is 
the only configuration for which we were able to obtain modeling information. 
However, the only F-16 flight test data we were successful in obtaining is for 
the aeroelastic torsional mode of a Block 40 configuration flying at the same 
altitude of 3,000 m, but equipped with 3 launchers, 2 pylons, and one missile 
(close to the tip) under each wing. Hence, at least because of these differences 
in wing configurations, some discrepancy is to be expected between the results 
predated by our simulations for 0.8 < Moo < 1-4 (for example, see Fig. 8) and 
the available flight test data. 

The results reported in Figs. 9-10 show that 

• The aeroelastic bending frequencies predicted using the TWS model differ 
from those predicted using the detailed three-dimensional FE model by 
less than 5%. For the aeroelastic torsional mode, the maximum relative 
difference is 12.5% and occurs around M<x> = 1. 

• The aeroelastic torsional frequencies predicted using both structural mod- 
els correlate reasonably well with flight test results. Those predicted using 
the detailed three-dimensional FE model are however more accurate: de- 
pending on the Mach number, they either agree very well with the aeroe- 
lastic torsional frequencies measured during flight test or differ at most by 
7%. 

• The aeroelastic damping coefficients of the torsional mode computed us- 
ing the TWS model do not correlate well with flight test data. They 
erroneously predict flutter for 0.9 < M^ < 1.4. 

• The aeroelastic damping coefficients of the torsional mode obtained using 
the detailed three-dimensional FE model correlate reasonably well with 
flight test data. In particular, they reproduce the same trend of variation 
with the Mach number. 

It follows that while the TWS model offers obvious practical and computa- 
tional advantages that make it popular — at least in the research community 
— for flutter analysis, it does not appear to be reliable for fighter applications. 
This is partly because the TWS model is realistic only for fairly homogeneous 
wings with high aspect ratios and small angles of sweep. However, the results 
reported herein also show that when applied to three-dimensional structural 
and fluid models, our nonlinear aeroelastic simulation capability predicts well 
the aeroelastic parameters of the chosen F-16 configuration, including in the 
transonic regime. 

5.5 Performance results 

Finally, we briefly discuss the speed of the nonlinear aeroelastic simulation tech- 
nology described in this paper, particularly in the context of this second quote 
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from [6]: "Even at present, existing CFD codes should be able to obtain five flut- 
ter solutions in one year." For this purpose, we focus on the more interesting 
case of the detailed FE model of the F-16 fighter with 168,799 dofs. 

First, we remind the reader that we need to predict only the first two cycles 
of the response of the structure to an initial disturbance (see Section 5.3). For 
the F-16 configuration considered herein, our numerical algorithms sustain a 
coupling time-step on the order of 1 millisecond. This time-step corresponds 
to sampling the period of the first dry torsional mode of this fighter with 134 
points. It also turns out that this time-step is such that 271 time-steps are 
needed to simulate the first twc cycles of the structural response. Second, we 
note that we assume a linear behavior of the structure (see Eq. (9)), which is 
justified for flutter clearance applications in level flight. 

We report in Table 1 the performance results obtained on an Origin 2000 
computer equipped with R10000 195 MHz chips, as a function of the number 
of processors Nproc allocated to the simulation. These results correspond to a 
single Mach number point, and two cycles of the response of the structure. In 
all cases, we assign a single processor to the structure solver because it is less 
computationally intensive than the flow and mesh motion solvers. We observe 
that on average, 60% of the total CPU time is elapsed in the flow solver, 38% 
in the mesh motion solver, and only 2% in the structure solver. The small 
percentage of the total CPU time consumed by the structure solver is due to 
the assumed linear nature of the structural problem. (We note however that for 
maneuvering applications where nonlinear geometric effects must be accounted 
for, the percentage of the total CPU time elapsed in structural computations is 
on the order of 15%). 

The parallel speed-up and parallel efficiency results reported in Table 1 high- 
light the good parallel scalability of our three-field based nonlinear aeroelastic 
simulation technology. One can reasonably argue that today, most aerospace 
engineers have access to a 6-processor computational platform. From the results 
reported in Table 1, we conclude that using such a computing system, the tran- 
sonic aeroelastic parameters of a full fighter configuration can be extracted in 
12.8 hours. For a given Mach number, finding the flutter speed usually requires 
a bracketing procedure. It is our experience that such a bracketing procedure 
typically incurs 4 to 5 simulatio^s that are similar to the one discussed herein. 
Hence, for a given Mach number, it is also our experience that extracting the 
flutter speed requires between 51 and 64 hours CPU on a 6-processor computa- 
tional platform. Therefore, using the AERO-F, AERO-S, and MATCHER suite 
of codes on a 6-processor configuration, we can obtain five flutter point solutions 
for a fighter in the transonic regime in less than 2 weeks. Using 24 processors 
for this purpose reduces the total simulation time to less than 4 days. These 
estimates, which do not include the time needed for building the FE structural 
model and generating the fluid grid, are also confirmed by our experience with 
the F-16 Block 40 aircraft. 
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6    Conclusions 

High performance military aircraft are usually nutter critical in the transonic 
regime where the linear flow theory fails to predict correctly the unsteady aero- 
dynamic forces acting on an aircraft. Consequently, flutter testing of scaled 
models in transonic wind tunnels is always used to generate corrections to flut- 
ter speeds predicted by linear methods. Because the design of a wind tunnel 
flutter model and the analysis of the corresponding data require over a year's 
time, it has been suggested that computational fluid dynamics (CFD) based 
nonlinear aeroelastic simulations could be used as a replacement for wind tun- 
nel testing, if they prove to be practical — that is, fast enough — and reliable [6]. 
We believe that the nonlinear aeroelastic simulation methodology presented in 
this paper, as well as other similar capabilities developed elsewhere, are today 
sufficiently mature to take on this challenge. At the present time, they may 
not be sufficiently fast to be used as a design tool. However, on a 6-processor 
computing platform, our nonlinear aeroelastic simulation technology is capable 
of computing five flutter point solutions for a fighter in the transonic regime 
in less than 2 weeks. On a 128-processor system, it can complete the same 
job in less than a day. In general, nonlinear solution methodologies such as 
the one overviewed in this paper do not target flutter problems in the subsonic 
and supersonic regimes where simpler linear methods appear to satisfy industry. 
They are rather meant to address those nonlinear aeroelastic problems which 
simply cannot be tackled by the linear theory of aeroelasticity. These include, 
among others, flutter at transonic speeds, buffeting, and prediction of transient 
loads and stresses during agressive maneuvering. The nonlinear aeroelastic sim- 
ulation capability described in this paper has tremendously benefited from the 
technical interaction with the Flight Test Center at the Edwards Air Force Base, 
and its application to F-16 problems. Similar interactions with industry should 
accelerate its transformation into a "production" tool. 
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Figure 1: Unstructured moving fluid grid 
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x;+1= < r sr xT2=uR+l 

Figure 2: CSS: the conventional serial staggered procedure 

xrm=<;+^Ki x„+W=u„r+^&nr 

n-1/2 n+1/2 

Figure 3: ISS: the improved serial staggered procedure 

28 



Figure 4: A typical wing section: elastic center (C), center of gravity (G), 
fuselage (F), angle of attack (att), free-stream velocity (VQO), a typical point in 
the flow domain (N) 

1: cross-section chosen for identifying the structural properties 
2: cross-section chosen for identifying the aerodynamic properties 

Figure 5: FE model of the right wing of an F-16 Block 40 
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Figure 6: Discretization of the flow domain around an F-16 airfoil 
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(a) Detailed FE structural model 

(b) Fluid surface grid 

Figure 7: CSM and CFD models for an F-16 Block 40 
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Figure 8: Mach contours and streamlines for an F-16 Block 40 at M» = 0.9 
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Figure 9: F-16 Block 40: aeroelastic frequencies at an altitude of 3,000 m 
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Figure 10: F-16 Block 40: aeroelastic damping coefficients at an altitude of 
3,000 m 
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jVproc CPU CPU CPU CPU Parallel Parallel 

Total Fluid Mesh Structure Speed-up Efficiency 

1 69.8 hrs 62.4 % 37.4 % 0.2% 1.0 100% 

3 24.6 hrs 64.6 % 34.8 % 0.6% 2.8 95% 

6 12.8 hrs 63.3 % 35.4 % 1.3% 5.4 91% 

12 5.9 hrs 57.1 % 40.1 % 2.8% 11.9 99% 

24 3.3 hrs 52.7 % 42.7 % 4.6% 20.9 87% 

Table 1: F-16 flutter clearance: Euler flow model with 403,919 grid points, FE 
structural model with 168,799 dofs — Performance results on an Origin 2000 
for a single Mach number point and two cycles of the response of the structure 
(271 coupling time-steps) 
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