We are requesting funds to purchase a psec visible wavelength laser which will be used to build a psec Z-scan and a degenerate 4-wave mixing experimental apparatus to allow us to measure the optical nonlinearities of our new crystalline colloidal array optical limiting and switching materials. In addition, this laser will be used to create psec optical defects in the photonic bandgap crystals (PBGC) we recently fabricated, in order to determine whether we can devise methods to inject and extract light into and from these enabling materials. This equipment will enhance the education of graduate students and postdoctoral fellows in the areas of nonlinear optical measurements. Most importantly, it will enable rational experimental design of materials since the same researchers synthesize the materials and then walk into an adjacent lab to prove the material's properties.
Psec Nonlinear Optical Measurements of Photonic
Crystal Materials

FINAL PROGRESS REPORT

PROFESSOR SANFORD A. ASHER

DECEMBER 13, 2000

U.S. ARMY RESEARCH OFFICE

GRANT NUMBER DAAD-19-99-1-0078

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15260

APPROVED FOR PUBLIC RELEASE

DISTRIBUTION UNLIMITED

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION
TECHNICAL PROGRESS REPORT

A. STATEMENT OF PROBLEM

We were to use these funds together with a DURIP proposal funded by ONR to purchase a psec laser in order to construct a Z-scan and a degenerate 4-wave mixing experimental apparatus to measure the nonlinear response of our new crystalline colloidal array optical limiting and switching materials. In addition, this laser was to be used to create psec optical defects in our photon bandgap crystals in order to determine whether we can devise methods to inject and extract light into and from these enabling materials.

B. SUMMARY OF IMPORTANT RESULTS

We have ordered the laser and optical equipment and are awaiting its arrival. This laser will be placed in a new state-of-the art laser laboratory the University of Pittsburgh has built for these experiments. We expect its arrival in January, 2001.

C. PUBLICATIONS

None as yet.

D. LIST OF SCIENTIFIC PERSONNEL EMPLOYED ON PROJECT

Funding was only for equipment.

E. REPORT ON INVENTIONS

None, as yet.