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Abstract 

This document is serves as a final technical report for the AFOSR award F49620-95-1-0259. It reviews 
the formulation and application of optimization techniques based on control theory for aerodynamic shape 
design in viscous compressible flow. The theory is applied to a system defined by the partial differential 
equations of the flow, with the boundary shape acting as the control. The Frechet derivative of the cost 
function is determined via the solution of an adjoint partial differential equation, and the boundary shape 
is then modified in a direction of descent. This process is repeated until an optimum solution is approached. 
Each design cycle requires the numerical solution of both the flow and the adjoint equations, leading to a 
computational cost roughly equal to the cost of two flow solutions. Representative results are presented for 
viscous optimization of transonic wing-body combinations. 

1    Introduction: Aerodynamic Design 

The definition of the aerodynamic shapes of modern aircraft relies heavily on computational simulation 
to enable the rapid evaluation of many alternative designs. Wind tunnel testing is then used to confirm 
the performance of designs that have been identified by simulation as promising to meet the performance 
goals. In the case of wing design and propulsion system integration, several complete cycles of computational 
analysis follc-.ed by testing of a preferred design may be used in the evolution of the final configuration. 
Wind tunnel fasting also plays a crucial role in the development of the detailed loads needed to complete 
the structural design, and in gathering data throughout the flight envelope for the design and verification 
of the stability and control system. The use of computational simulation to scan many alternative designs 
has proved extremely valuable in practice, but it still suffers the limitation that it does not guarantee the 
identification of the best possible design. Generally one has to accept the best so far by a given cutoff date in 
the program schedule. To ensure the realization of the true best design, the ultimate goal of computational 
simulation methods should not just be the analysis of prescribed shapes, but the automatic determination 
of the true optimum shape for the intended application. 

This is the underlying motivation for the combination of computational fluid dynamics with numerical 
optimization methods. Some of the earliest studies of such an approach were made by Hicks and Henne [1,2]. 
The principal obstacle was the large computational cost of determining the sensitivity of the cost function 
to variations of the design parameters by repeated calculation of the flow. Another way to approach the 
problem is to formulate aerodynamic shape design within the framework of the mathematical theory for the 
control of systems governed by partial differential equations [3]. In this view the wing is regarded as a device 
to produce lift by controlling the flow, and its design is regarded as a problem in the optimal control of the 
flow equations by changing the shape of the boundary. If the boundary shape is regarded as arbitrary within 
some requirements of smoothness, then the full generality of shapes cannot be defined with a finite number 
of parameters, and one must use the concept of the Frechet derivative of the cost with respect to a function. 
Clearly such a derivative cannot be determined directly by separate variation of each design parameter, 
because there are now an infinite number of these. 
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Using techniques of control theory, however, the gradient can be determined indirectly by solving an 
adjoint equation which has coefficients determined by the solution of the flow equations. This directly cor- 
responds to the gradient technique for trajectory optimization pioneered by Bryson [4]. The cost of solving 
the adjoint equation is comparable to the cost of solving the flow equations, with the consequence that the 
gradient with respect to an arbitrarily large number of parameters can be calculated with roughly the same 
computational cost as two flow solutions. Once the gradient has been calculated, a descent method can be 
used to determine a shape change which will make an improvement in the design. The gradient can then 
be recalculated, and the whole process can be repeated until the design converges to an optimum solution, 
usually within 50 to 100 cycles. The fast calculation of the gradients makes optimization computationally fea- 
sible even for designs in three-dimensional viscous flow. There is a possibility that the descent method could 
converge to a local minimum rather than the global optimum solution. In practice this has not proved a diffi- 
culty, provided care is taken in the choice of a cost function which properly reflects the design requirements. 
Conceptually, with this approach the problem is viewed as infinitely dimensional, with the control being the 
shape of the bounding surface. Eventually the equations must be discretized for a numerical implementation 
of the method. For this purpose the flow and adjoint equations may either be separately discretized from 
their representations as differential equations, or, alternatively, the flow equations may be discretized first, 
and the discrete adjoint equations then derived directly from the discrete flow equations. 

The effectiveness of optimization as a tool for aerodynamic design also depends crucially on the proper 
choice of cost functions and constraints. One popular approach is to define a target pressure distribution, 
and then solve the inverse problem of finding the shape that will produce that pressure distribution. Since 
such a shape does not necessarily exist, direct inverse methods may be ill-posed. The problem of designing a 
two-dimensional profile to attain a desired pressure distribution was studied by Lighthill, who solved it for 
the case of incompressible flow with a conformal mapping of the profile to a unit circle [5]. The speed over 

the profile is 

q = 11 Vfl , 
where <j> is the potential which is known for incompressible flow and ft is the modulus of the mapping function. 
The surface value of ft can be obtained by setting q = qd, where qd is the desired speed, and since the mapping 
function is analytic, it is uniquely determined by the value of ft on the boundary. A solution exists for a 
given speed goo at infinity only if 

— j> qd6 = 9oo, 

and there are additional constraints on q if the profile is required to be closed. 
The difficulty that the target pressure T»ay be unattainable may be circumvented by treating the inverse 

problem as a special case of the optimization problem, with a cost function which measures the error in the 
solution of the inverse problem. For example, if pd is the desired surface pressure, one may take the cost 
function to be an integral over the the body surface of the square of the pressure error, 

■-\Jj,-*f 'dB, 

or possibly a more general Sobolev norm of the pressure error. This has the advantage of converting a 
possibly ill posed problem into a well posed one. It has the disadvantage that it incurs the computational 
costs associated with optimization procedures. 

The inverse problem still leaves the definition of an appropriate pressure architecture to the designer. 
One may prefer to directly improve suitable performance parameters, for example, to minimize the drag at a 
given lift and Mach number. In this case it is important to introduce appropriate constraints. For example, 
if the span is not fixed the vortex drag can be made arbitrarily small by sufficiently increasing the span. In 
practice, a useful approach is to fix the planform, and optimize the wing sections subject to constraints on 
minimum thickness. 

2    Formulation of the Design Problem as a Control Problem 

The simplest approach to optimization is to define the geometry through a set of design parameters, which 
may, for example, be the weights at applied to a set of shape functions bi(x) so that the shape is represented 



Then a cost function I is selected which might, for example, be the drag coefficient or the lift to drag ratio, 
and / is regarded as a function of the parameters a*. The sensitivities £- may now be estimated by making 
a small variation Son in each design parameter in turn and recalculating the flow to obtam the change in I. 

Then 2L ~ *(<»< + &*)-*(<*) 
doti ~ Sen. 

The gradient vector J£ may now be used to determine a direction of improvement. The simplest procedure 
is to make a step in the negative gradient direction by setting 

Qn+1 = an _ XSa 

so that to first order _, T 

More sophisticated search procedures may be used such as quasi-Newton methods, which attempt to estimate 
the second derivative J^J- of the cost function from changes in the gradient f£ in successive optimization 
steps. These methods also generally introduce line searches to find the minimum in the search direction which 
is defined at each step. The main disadvantage of this approach is the need for a number of flow calculations 
proportional to the number of design variables to estimate the gradient. The computational costs can thus 
become prohibitive as the number of design variables is increased. 

Using techniques of control theory, however, the gradient can be determined indirectly by solving an 
adjoint equation which has coefficients defined by the solution of the flow equations. The cost of solving the 
adjoint equation is comparable to that of solving the flow equations. Thus the gradient can be determined 
with roughly the computational costs of two flow solutions, independently of the number of design variables, 
which may be infinite if the boundary is regarded as a free surface. The underlying concepts are clarified by 
the following abstract description of the adjoint method. 

For flow about an airfoil or wing, the aerodynamic properties which define the cost function are functions 
of the flow-field variables (w) and the physical location of the boundary, which may be represented by the 

function T, say. Then 

and a change in T results in a change 

\dIT 

81 = 
dw ,t"+[wilr (1) 

in the cost function. Here, the subscripts I and II are used to distinguish the contributions due to the 
variation Sw in the flow solution from the change associated directly with the modification ST in the shape. 
This notation assists in grouping the numerous terms that arise during the derivation of the full Navier- 
Stokes adjoint operator, outlined later, so that the basic structure of the approach as it is sketched in the 
present section can easily be recognized. 

Suppose that the governing equation R which expresses the dependence of w and T within the flowfield 
domain D can be written as 

R(w,F) = 0. (2) 

Then Sw is determined from the equation 

MiLMiL— (3) 
Since the variation SR is zero, it can be multiplied by a Lagrange Multiplier V and subtracted from the 
variation 61 without changing the result. Thus equation (1) can be replaced by 

-{£-*1§i]}/-{£-«1lf]L- 



Choosing ip to satisfy the adjoint equation 

(5) 

(6) 

dR' 
dw 

dl 
dw 

the first term is eliminated, and we find that 

SI = GST, 

where 

0 = 
di* 
dT V dR' 

The advantage is that (6) is independent of Sw, with the result that the gradient of I with respect to an 
arbitrary number of design variables can be determined without the need for additional flow-field evaluations. 
In the case that (2) is a partial differential equation, the adjoint equation (5) is also a partial differential 
equation and determination of the appropriate boundary conditions requires careful mathematical treatment. 

In reference [6] Jameson derived the adjoint equations for transonic flows modeled by both the potential 
flow equation and the Euler equations. The theory was developed in terms of partial differential equations, 
leading to an adjoint partial differential equation. In order to obtain numerical solutions both the flow and 
the adjoint equations must be discretized. The control theory might be applied directly to the discrete flow 
equations which result from the numerical approximation of the flow equations by finite element, finite 
volume or finite difference procedures. This leads directly to a set of discrete adjoint equations with a matrix 
which is the transpose of the Jacobian matrix of the full set of discrete nonlinear flow equations. On a 
three-dimensional mesh with indices i,j,k the individual adjoint equations may be derived by collecting 
together all the terms multiplied by the variation Swtjtk of the discrete flow variable u>i,j,fc- The resulting 
discrete adjoint equations represent a possible discretization of the adjoint partial differential equation. If 
these equations are solved exactly they can provide an exact gradient of the inexact cost function which 
results from the discretization of the flow equations. The discrete adjoint equations derived directly from the 
discrete flow equations become very complicated when the flow equations are discretized with higher order 
upwind biased schemes using flux limiters. On the other hand any consistent discretization of the adjoint 
partial differential equation will yield the exact gradient in the limit as the mesh is refined. The trade-off 
between the complexity of the adjoint discretization, the accuracy of the resulting estimate of the gradient, 
and its impact on the computational cost to approach an optimum solution is a subject of -ngoing research. 

The true optimum shape belongs to an infinitely dimensional space of design parameter«7 One motivation 
for developing the theory for the partial differential equations of the flow is to provide an indication in 
principle of how such a solution could be approached if sufficient computational resources were available. 
Another motivation is that it highlights the possibility of generating ill posed formulations of the problem. 
For example, if one attempts to calculate the sensitivity of the pressure at a particular location to changes 
in the boundary shape, there is the possibility that a shape modification could cause a shock wave to pass 
over that location. Then the sensitivity could become unbounded. The movement of the shock, however, 
is continuous as the shape changes. Therefore a quantity such as the drag coefficient, which is determined 
by integrating the pressure over the surface, also depends continuously on the shape. The adjoint equation 
allows the sensitivity of the drag coefficient to be determined without the explicit evaluation of pressure 
sensitivities which would be ill posed. 

The discrete adjoint equations, whether they are derived directly or by discretization of the adjoint 
partial differential equation, are linear. Therefore they could be solved by direct numerical inversion. In 
three-dimensional problems on a mesh with, say, n intervals in each coordinate direction, the number of 
unknowns is proportional to n3 and the bandwidth to n2. The complexity of direct inversion is proportional 
to the number of unknowns multiplied by the square of the bandwidth, resulting in a complexity proportional 
to n7. The cost of direct inversion can thus become prohibitive as the mesh is refined, and it becomes more 
efficient to use iterative solution methods. Moreover, because of the similarity of the adjoint equations to 
the flow equations, the same iterative methods which have been proved to be efficient for the solution of the 
flow equations are efficient for the solution of the adjoint equations. 



Studies of the use of control theory for optimum shape design of systems governed by elliptic equations 
were initiated by Pironneau [7]. The control theory approach to optimal aerodynamic design was first applied 
to transonic flow by Jameson [8,6,9-12]. He formulated the method for inviscid compressible flows with 
shock waves governed by both the potential flow and the Euler equations [6]. Numerical results showing the 
method to be extremely effective for the design of airfoils in transonic potential flow were presented in [13], 
and for three-dimensional wing design using the Euler equations in [14]. More recently the method has been 
employed for the shape design of complex aircraft configurations [15,16], using a grid perturbation approach 
to accommodate the geometry modifications. The method has been used to support the aerodynamic design 
studies of several industrial projects, including the Beech Premier and the McDonnell Douglas MDXX and 
Blended Wing-Body projects. The application to the MDXX is described in [10]. The experience gained in 
these industrial applications made it clear that the viscous effects cannot be ignored in transonic wing design, 
and the method has therefore been extended to treat the Reynolds Averaged Navier-Stokes equations [12]. 
Adjoint methods have also been the subject of studies by a number of other authors, including Baysal and 
Eleshaky [17], Huan and Modi [18], Desai and Ito [19], Anderson and Venkatakrishnan [20], and Peraire 
and Elliot [21]. Ta'asan, Kuruvila and Salas [22], who have implemented a one shot approach in which 
the constraint represented by the flow equations is only required to be satisfied by the final converged 
solution. In their work, computational costs are also reduced by applying multigrid techniques to the geometry 
modifications as well as the solution of the flow and adjoint equations. 

The next sections discuss the application of the method to automatic wing design with the flow modeled 
by the three-dimensional Euler and Navier-Stokes equations. The computational costs are low enough that 
it has proved possible to determine optimum wing designs using the Euler equations in a few hours on 
workstations such as the IBM590 or the Silicon Graphics Octane. 

3    The Navier-Stokes Equations 

For the derivations that follow, it is convenient to use Cartesian coordinates (xi,x2,a:3) and to adopt the 
convention of indicial notation where a repeated index V implies summation over i = 1 to 3. The three- 
dimensional Navier-Stokes equations then take the form 

dt     dxi      axi 
(7) 

where the state vector w, inviscid flux vector / and viscous flux vector /„ are described respectively by 

w 
pUiUi + p5n 

* ,       fi= {  PUiUZ + P5'2 
puiuz + p8i3 

puiH 

>, fvi=  < 

0 
(TijSji 

<Tij5j2 

<?ijÖj3 

„ ujaij + ^a^7, 

>. (8) 

In these definitions, p is the density, u1,u2,u3 are the Cartesian velocity components, E is the total energy 
and 8ij is the Kronecker delta function. The pressure is determined by the equation of state 

p={l-\)p\E--{uiUi)\, 

and the stagnation enthalpy is given by 
# = £ + -, 

P 

(9) 

where 7 is the ratio of the specific heats. The viscous stresses may be written as 

fdm     duj\ duk 
ai* = »{dx-+dx-)+X6ijdx-k> 

where p. and A are the first and second coefficients of viscosity. The coefficient of thermal conductivity and 
the temperature are computed as 

■*-£■  T'h (I0) 



where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R is the gas constant. 
For discussion of real applications using a discretization on a body conforming structured mesh, it is also 

useful to consider a transformation to the computational coordinates (6,6.6) defined by the metrics 

Kij — 
dxi 

,   J = det(iO,   K^ = 
dti 
dxj L#6 

The Navier-Stokes equations can then be written in computational space as 

djM+d(Fi-Fvi)= (n) 

dt d£i 

where the inviscid and viscous flux contributions are now defined with respect to the computational cell 
faces by F< = S^/, and Fvi = S0/„j, and the quantity % = JK^ represents the projection of the & cell 
face along the Xj axis. In obtaining equation (11) we have made use of the property that 

^il=0 (12) 

which represents the fact that the sum of the face areas over a closed volume is zero, as can be readily verified 
by a direct examination of the metric terms. 

4    Formulation of the Optimal Design Problem for the Navier-Stokes Equations 

Aerodynamic optimization is based on the determination of the effect of shape modifications on some perfor- 
mance measure which depends on the flow. For convenience, the coordinates & describing the fixed compu- 
tational domain are chosen so that each boundary conforms to a constant value of one of these coordinates. 
Variations in the shape then result in corresponding variations in the mapping derivatives defined by K^. 

Suppose that the performance is measured by a cost function 

1 = f M{w,S)dBi+ f V(w,S)dDs, 
JB JV 

containing b'-th boundary and field contributions where dB$ and dD^ are the surface and volume elements 
in the computational domain. In general, M and V will depend on both the flow variables w and the metrics 
S defining the computational space. The design problem is now treated as a control problem where the 
boundary shape represents the control function, which is chosen to minimize I subject to the constraints 
defined by the flow equations (11). A shape change produces a variation in the flow solution 5w and the 
metrics 5S which in turn produce a variation in the cost function 

SI 

This can be split as 

with 

/ SM{w, S) dB,: + f 6T(w, S) dD,:. (13) 
JB JT> 

SI = SIi + SIn, (14) 

SM = [MJ[j Sw + SMII, 

Sr = [Vw]I6w + SVu, (15) 

where we continue to use the subscripts / and U to distinguish between the contributions associated with 
the variation of the flow solution Sw and those associated with the metric variations 5S. Thus [Mv\i and 
\Pw\j represent ^ and f£ with the metrics fixed, while SMn and SVu represent the contribution of the 
metric variations SS to SM and SV. 



In the steady state, the constraint equation (53) specifies the variation of the state vector Sw by 

6R=£-6{Fi-Fvi) = 0.   r (16) 
"si 

Here, also, SR, SFi and SFvi can be split into contributions associated with Sw and SS using the notation 

SR = 6Rj + oRu 

6Fi = [Fiw]I6w + SFiII 

SFvi = [Fviw]j Sw + SFvin. (17) 

The inviscid contributions are easily evaluated as 

[Fiw]j = Sij;—,     SFviII = SSijfj. 

The details of the viscous contributions are complicated by the additional level of derivatives in the stress 
and heat flux terms. 

Multiplying by a co-state vector rp, which will play an analogous role to the Lagrange multiplier introduced 
in equation (4), and integrating over the domain produces 

L •   i>T^rHFi-Fvi)dV^ = Q. (18) 
V        °t,i 

Assuming that ip is differentiable the terms with subscript I may be integrated by parts to give 

/ mi>Tö {Ft - Fvi), dB^ - [ ^-S (F - F„i)/ dVz + f tpT5RndV^ = 0. (19) 

This equation results directly from taking the variation of the weak form of the flow equations, where ip is 
taken to be an arbitrary differentiable test function. Since the left hand expression equals zero, it may be 
subtracted from the variation in the cost function (13) to give 

SI = SIH - I ifSRndDe - f [SMt - n^S (Fi - Fvi)j] dBf. 
Jv JB 

+ Jv [sVj + ^-S (Ft - Fvi),] d% (20) 

Now, since tp is an arbitrary differsnaable function, it may be chosen in such a way that SI no longer 
depends explicitly on the variation of the state vector Sw. The gradient of the cost function can then be 
evaluated directly from the metric variations without having to recompute the variation Sw resulting from 
the perturbation of each design variable. 

Comparing equations (15) and (17), the variation Sw may be eliminated from (20) by equating all field 
terms with subscript "/" to produce a differential adjoint system governing rp 

^- [Fiw - FviyAj + [Vw]i = 0   in V. (21) 

The corresponding adjoint boundary condition is produced by equating the subscript "/" boundary terms 
in equation (20) to produce 

nii)
T[Fiw-Fviw]I = [Mw\I   onB. (22) 

The remaining terms from equation (20) then yield a simplified expression for the variation of the cost 
function which defines the gradient 

SI = SIn + ( VSRudVs, (23) 
Jv 

which consists purely of the terms containing variations in the metrics with the flow solution fixed. Hence 
an explicit formula for the gradient can be derived once the relationship between mesh perturbations and 
shape variations is defined. 



Comparing equations (15) and (17), the variation 8w may be eliminated from (20) by equating all field 
terms with subscript "J" to produce a differential adjoint system governing ip 

|f [Fiw - Fviw]j +VW = 0   mV. (24) 

The corresponding adjoint boundary condition is produced by equating the subscript "J" boundary terms 
in equation (20) to produce 

nixl>T\Fiw-Fviw)1=Mw   onB. (25) 

The remaining terms from equation (20) then yield a simplified expression for the variation of the cost 
function which defines the gradient 

61= f {8MB - n;VT [8Ft - 8Fvi] u} dB^ +J IsPn + ^- [6 Ft - 6Fvi]7/| dD€. (26) 

The details of the formula for the gradient depend on the way in which the boundary shape is parameterized as 
a function of the design variables, and the way in which the mesh is deformed as the boundary is modified. 
Using the relationship between the mesh deformation and the surface modification, the field integral is 
reduced to a surface integral by integrating along the coordinate lines emanating from the surface. Thus the 
expression for 81 is finally reduced to the form of equation (6) 

JB 
Q8TdBt 

B 

where T represents the design variables, and Q is the gradient, which is a function defined over the boundary 
surface. 

The boundary conditions satisfied by the flow equations restrict the form of the left hand side of the 
adjoint boundary condition (25). Consequently, the boundary contribution to the cost function M cannot 
be specified arbitrarily. Instead, it must be chosen from the class of functions which allow cancellation of 
all terms containing 8w in the boundary integral of equation (20). On the other hand, there is no such 
restriction on the specification of the field contribution to the cost function V, since these terms may always 
be absorbed into the adjoint field equation (24) as source terms. 

It is convenient to develop the inviscid and viscous contributions to the adjoint equations separately. Also, 
for simplicity, it will be assumed that the portion of the boundary that undergoes shape modifications is 
restricted to the coordinate surface f2 = 0. Then equations (20) a-id (22) may be simplified by incorporating 
the conditions 

"i = "3 = 0J     «2 = 1,     dB$ = d£id£3, 

so that only the variations 8F2 and 6Fv2 need to be considered at the wall boundary. 

5    Derivation of the Inviscid Adjoint Terms 

The inviscid contributions have been previously derived in [13,23] but are included here for completeness. 
Taking the transpose of equation (21), the inviscid adjoint equation may be written as 

C?|^=0   inP, (27) 

where the inviscid Jacobian matrices in the transformed space are given by 

C-S ^ 

The transformed velocity components have the form- 

Ui = SijUj, 



and the condition that there is no flow through the wall boundary at & = 0 is equivalent to 

u2 = o, 

so that 
6U2 = 0 

when the boundary shape is modified. Consequently the variation of the inviscid flux at the boundary reduces 

to 

SF2 = 6p < 

0 0 

S-21 SS21 

S22 ► +p< SS22   ' 

S23 SS23 

0 
V             J 

0 

(28) 

Since 6F2 depends only on the pressure, it is now clear that the performance measure on the boundary 
M{w, S) may only be a function of the pressure and metric terms. Otherwise, complete cancellation of the 
terms containing 5w in the boundary integral would be impossible. One may, for example, include arbitrary 
measures of the forces and moments in the cost function, since these are functions of the surface pressure. 

In order to design a shape which will lead to a desired pressure distribution, a natural choice is to set 

= \jBiP-Päf dS 

where pd is the desired surface pressure, and the integral is evaluated over the actual surface area. In the 
computational domain this is transformed to 

I=\fj   {p-Pd)2\S2\diidi3, 

where the quantity 
|S2| = y/S2jS2j 

denotes the face area corresponding to a unit element of face area in the computational Domain. Now, to 
cancel the dependence of the boundary integral on Sp, the adjoint boundary condition redoes to 

-ipjUj = p-Pd (29) 

where n_, are the components of the surface normal 

>2j 

\S2 

This amounts to a transpiration boundary condition on the co-state variables corresponding to the momen- 
tum components. Note that it imposes no restriction on the tangential component of V at the boundary. 

In the presence of shock waves, neither p nor pd are necessarily continuous at the surface. The boundary 
condition is then in conflict with the assumption that ip is differentiable. This difficulty can be circumvented 
by the use of a smoothed boundary condition  [23]. 

6    Derivation of the Viscous Adjoint Terms 

In computational coordinates, the viscous terms in the Navier-Stokes equations have the form 



Computing the variation 5w resulting from a shape modification of the boundary, introducing a co-state 
vector V and integrating by parts following the steps outlined by equations (16) to (19) produces 

J V {5S2jfvj + S2j5fvj) dBt-JJj^ {SSiifvi + SyÄAy) dZ>€> 

where the shape modification is restricted to the coordinate surface f2 = 0 so that ni = n3 = 0, and n2 = 1. 
Furthermore, it is assumed that the boundary contributions at the far field may either be neglected or else 
eliminated by a proper choice of boundary conditions as previously shown for the inviscid case [13,23]. 

The viscous terms will be derived under the assumption that the viscosity and heat conduction coefficients 
/x and it are essentially independent of the flow, and that their variations may be neglected. This simplification 
has been successfully used for may aerodynamic problems of interest. In the case of some turbulent flows, 
there is the possibility that the flow variations could result in significant changes in the turbulent viscosity, 
and it may then be necessary to account for its variation in the calculation. 

Transformation to Primitive Variables 

The derivation of the viscous adjoint terms is simplified by transforming to the primitive variables 

wT = (p,Ui,u2,U3,p)T, 

because the viscous stresses depend on the velocity derivatives f^-, while the heat flux can be expressed as 

dxi \p) 

where K = j| k _      7F_     The relationship between the conservative and primitive variations is defined by 

the expressions 
6w = M5w,    Sib = M~ Sw 

which make use of the transformation matrices M = ff and M_1 = ff. These matrices are provided in 
transposed form for future convenience 

MT = 

1 U\ U2 «3 2 
0 p  0   0 pui 
0 0  p  0 f>U2 
0 0   0   p puz 
0 0   0   0 1 

7-1 J 

M- 

1-Jf 
0   * 
0   0 
0   0 
0   0 

«2  _»ia.      (7-l)"<"< 
" P P 2 
0 0 -(7 - l)ui 

1 0 -(7-l)U2 
0 1 -(7-l)«3 
0 0        7-1 

The conservative and primitive adjoint operators L and L corresponding to the variations 6w and 6w are 
then related by 

/ SwTI4 dP€ = / 5wTL4> dVe, 
Jv Jv 

with 
L = MTL, 

so that after detennining the primitive adjoint operator by direct evaluation of the viscous portion of (21), 
the conservative operator may be obtained by the transformation L = M_1 L. Since the continuity equation 
contains no viscous terms, it makes no contribution to the viscous adjoint system. Therefore, the derivation 
proceeds by first examining the adjoint operators arising from the momentum equations. 



Contributions from the Momentum Equations 

In order to make use of the summation convention, it is convenient to set VJ+i = <t>j for j = 1,2,3. Then 

the contribution from the momentum equations is 

f <t>k (SS2jakj + S2jSakj) dS^ ^ (8Sij(rkj + Stfa^ dV^. (30) 

The velocity derivatives in the viscous stresses can be expressed as 

dm _ dm dji _ Stj dm 
dxj ~ d£i dxj       J d£i 

with corresponding variations 

dxj *]>+[£].'(*) 

+ 

+ 

The variations in the stresses are then 

+{*[*(¥)%+n^)%]+*[wfr)&]}tr 
As before only those terms with subscript I, which contain variations of the flow variables, need be considered 
further in deriving the adjoint operator. The field contributions that contain 6m in equation (30) appear as 

This may be integrated by parts to yield 

where the boundary integral has been eliminated by noting that 8m = 0 on the solid boundary. By exchanging 
indices, the field integrals may be combined to produce 

f x      d Q   l,,(Sii d<t>k + Sik ^\ + XS-^^XdVs L   kWiSlj\fl\T~dU + ~Td^)+ X5>k J  a& JdV" 
which is further simplified by transforming the inner derivatives back to Cartesian coordinates 

The boundary contributions that contain 6m in equation (30) may be simplified using the fact that 

■£-5m=0    if    1 = 1,3 

on the boundary B so that they become 

/.** {" (^4**+*£**)+M^i{""} «■•       (32) 

Together, (31) and (32) comprise the field and boundary contributions of the momentum equations to the 
viscous adjoint operator in primitive variables. 



Contributions from the Energy Equation 

In order to derive the contribution of the energy equation to the viscous adjoint terms it is convenient to set 

te = e,    Qi = ^H + Kdx~.\-p)^ 

where the temperature has been written in terms of pressure and density using (10). The contribution from 

the energy equation can then be written as 

j 6{6S2jQj + SqSQj)dBZ-Jv^. (SS*Qi + Si*6Q^dV^                                (33) 

The field contributions that contain Suu5p, and Sp in equation (33) appear as 

-£gw*--££*{*"*+.** ^£(7-5T)K    
(34) 

The term involving Sakj may be integrated by parts to produce 

Jj«4sM<+°>£)+^£}^         (35) 

where the conditions u4 = 6m = 0 are used to eliminate the boundary integral on B. Notice that the other 
term in (34) that involves 6uk need not be integrated by parts and is merely carried on as 

- J SukakjSi—dV^                                                               (36) 

The terms in expression (34) that involve Sp and Sp may also be integrated by parts to produce both a 
field and a boundary integral. The field integral becomes 

jtf?;5?)*(«*&)"* 
which may be simplified by transform* ug,^the inner derivative to Cartesian coordinates 

r/sp_psp\er 5   W.W                                 {37) 
L\p. pp)% v   9X

JJ 

The boundary integral becomes 

r   fSp   p5P\s2jsijdedB                                        (a8j 

JB   V P     P P)    J    db 

This can be simplified by transforming the inner derivative to Cartesian coordinates 

fJSp_pSp\s^de_dB^                                     (39) 
JB    \P     p p J   J oxj 

and identifying the normal derivative at the wall 

dn       2j dxj' 

. 

and the variation in temperature 
rrp      1 (SP     PSP\ 
5T=R\J--pj)' 



to produce the boundary contribution 

/ ksAß,. (41) 
JB        

dn 

This term vanishes if T is constant on the wall but persists if the wall is adiabatic. 
There is also a boundary contribution left over from the first integration by parts (33) which has the 

form r 

/ eS(SvQj)dB^ (42) 
JB 

where o^7 

«' = **£' 
since u{ = 0. Notice that for future convenience in discussing the adjoint boundary conditions resulting from 
the energy equation, both the Sw and 5S terms corresponding to subscript classes I and Ü are considered 

simultaneously. If the wall is adiabatic 

dn 

so that using (40), 
S(S2jQj) = 0, 

and both the 6w and 6S boundary contributions vanish. 
On the other hand, if T is constant §£ = 0 for I = 1,3, so that 

Thus, the boundary integral (42) becomes 

M¥^(¥)HK 
Therefore, for constant T, the first term corresponding to variations in the flow field contributes to the 
adjoint boundary operator and the second set of terms corresponding to metric variations contribute to the 
cost function gradient. 

All together, the contributions from the energy equation to tha viscous adjoint operator are the three 
field terms (35), (36) and (37), and either of two boundary contributions (41) or ( 43), depending on whether 
the wall is adiabatic or has constant temperature. 

The Viscous Adjoint Field Operator 

Collecting together the contributions from the momentum and energy equations, the viscous adjoint operator 
in primitive variables can be expressed as 

(H>)i+1 = 4 (sX (£ + &)+ A*,ffe] } 
+ 4r{Sö/.(«ift+t.iÄ)+AÄtf«*^]} for    i-1,2,3 

W)s    = }A (*««£)• 
The conservative viscous adjoint operator may now be obtained by the transformation 

L - M-lTL. 



7    Viscous Adjoint Boundary Conditions 

It was recognized in Section 4 that the boundary conditions satisfied by the flow equations restrict the form 
of the performance measure that may be chosen for the cost function. There must be a direct correspondence 
between the flow variables for which variations appear in the variation of the cost function, and those variables 
for which variations appear in the boundary terms arising during the derivation of the adjoint field equations. 
Otherwise it would be impossible to eliminate the dependence of 51 on 5w through proper specification of 
the adjoint boundary condition. As in the derivation of the field equations, it proves convenient to consider 
the contributions from the momentum equations and the energy equation separately. 

Boundary Conditions Arising from the Momentum Equations 

The boundary term that arises from the momentum equations including both the 5w and 5S components 

(30) takes the form 

/ <j>kS(S2j^kj)dBi. 
JB 

Replacing the metric term with the corresponding local face area S2 and unit normal rij defined by 

1521 = y/S2jS2j,       Tlj = — 

then leads to 

JB IB 

Defining the components of the surface stress as 

Tfc = TljCTkj 

and the physical surface element 
dS=\S2\dB^ 

the integral may then be split into two components 

f <t>krk \8S2\ dBi + f <f>kSrkdS, (44) 
JB JB 

where only the second term contains variations in the flow variables and must consequently cancel the Sw 
terms arising in the cost function. The first term will appear in the expression for the gradient. 

A general expression for the cost function that allows cancellation with terms containing Srk has the form 

[ jV(r)dS, 
JB 

(45) 
JB 

corresponding to a variation 

61= f ^6rkdS, 

for which cancellation is achieved by the adjoint boundary condition 

Natural choices for J\f arise from force optimization and as measures of the deviation of the surface stresses 
from desired target values. 

For viscous force optimization, the cost function should measure friction drag. The friction force in the 

Xi direction is 

CDji = / GijdSj = / S2j(TijdB^ 
JB JB 



so that the force in a direction with cosines qt has the form 

Cqf = / qiS2j<rijdBi. 
JB 

Expressed in terms of the surface stress n, this corresponds to 

ndS, Cqf =   /  qiTit 
JB 

so that basing the cost function (45) on this quantity gives 

M = qiTi. 

Cancellation with the flow variation terms in equation (44) therefore mandates the adjoint boundary condi- 

tion 
<t>k = »*fc. 

Note that this choice of boundary condition also eliminates the first term in equation (44) so that it need 
not be included in the gradient calculation. 

In the inverse design case, where the cost function is intended to measure the deviation of the surface 
stresses from some desired target values, a suitable definition is 

M(T) = -Ulk {n - Tdl) (Tfc - Trffc) , 

where rd is the desired surface stress, including the contribution of the pressure, and the coefficients alk 

define a weighting matrix. For cancellation 

4>k8rk = o/fc (TJ - Tdi) Srk. 

This is satisfied by the boundary condition 

<t>k=alk(Tl-Tdi). (46) 

Assuming arbitrary variations in Srk, this condition is also necessary. 
In order to control the surface pressure and normal stress one can measure the difference 

ni {°kj + hj (P - Pd)} , 

where pd is the desired pressure. The normal component is then 

rn = nkn.jCFkj +p~Pd, 

so that the measure becomes 

*{T) = \< 

= ^ninmnknj {<rjm + Sim (p - Pd)} Wkj + Skj (p - Pd)} ■ 

This corresponds to setting 
aik = nink 

in equation (46). Defining the viscous normal stress as 

Tvn = nkTlj<7kj, 

the measure can be expanded as 

A/"(r) = -ninr„.nknjaim(rkj + - (nfcnjCTfci + njnmorjm)ip-Pd) + ^(p~Pd) 

= 2T«n + T«» CP - Pd) + 2 0» ~ Pdf ■ 



For cancellation of the boundary terms 

4>k (rijScrkj + nk5p) = {njnm<x,m +n?(p- pd)} nk {nj5akj + nkSp) 

leading to the boundary condition 
<t>k = nk (rvn +p-Pd)- 

In the case of high Reynolds number, this is well approximated by the equations 

<t>k = nk(p- Pd), (47) 

which should be compared with the single scalar equation derived for the inviscid boundary condition (29). 
In the cas*- of an inviscid flow, choosing 

requires 
<t>knk6p ={p-Pd) nkSp =(p-pd) 6p 

which is satisfied by equation (47), but which represents an overspecification of the boundary condition since 
only the single condition (29) need be specified to ensure cancellation. 

Boundary Conditions Arising from the Energy Equation 

The form of the boundary terms arising from the energy equation depends on the choice of temperature 
boundary condition at the wall. For the adiabatic case, the boundary contribution is (41) 

L kST^dBe, 
B       9n 

while for the constant temperature case the boundary term is (43). One possibility is to introduce a contri- 
bution into the cost function which depends on T or §£ so that the appropriate cancellation would occur. 
Since there is little physical intuition to guide the choice of such a cost function for aerodynamic design, a 
more natural solution is to set 

0 = 0 

in the constant temperature case or 

dn 
in the adiabatic case. Note that in the constant temperature case, this choice of 0 on the boundary would 
also elimirate the boundary metric variation terms in (42). 

8    Implementation of Navier-Stokes Design 

The design procedures can be summarized as follows: 

1. Solve the flow equations for p, ui, U2, u3, p. 
2. Solve the adjoint equations for ip subject to appropriate boundary conditions. 
3. Evaluate Q . 
4. Project Q into an allowable subspace that satisfies any geometric constraints. 
5. Update the shape based on the direction of steepest descent. 
6. Return to 1 until convergence is reached. 

Practical implementation of the viscous design method relies heavily upon fast and accurate solvers for both 
the state (w) and co-state (V>) systems. This work uses well-validated software for the solution of the Euler 
and Navier-Stokes equations developed over the course of many years [24-26]. 

For inverse design the lift is fixed by the target pressure. In drag minimization it is also appropriate to fix 
the lift coefficient, because the induced drag is a major fraction of the total drag, and this could be reduced 
simply by reducing the lift. Therefore the angle of attack is adjusted during the flow solution to force a 
specified lift coefficient to be attained, and the influence of variations of the angle of attack is included in the 
calculation of the gradient. The vortex drag also depends on the span loading, which may be constrained by 
other considerations such as structural loading or buffet onset. Consequently, the option is provided to force 
the span loading by adjusting the twist distribution as well as the angle of attack during the flow solution. 



Discretization 

Both the flow and the adjoint equations are discretized using a semi-discrete cell-centered finite volume 
scheme The convective fluxes across cell interfaces are represented by simple arithmetic averages of the 
fluxes computed using values from the cells on either side of the face, augmented by artificial diffusive terms 
to prevent numerical oscillations in the vicinity of shock waves. Continuing to use the summation convention 
for repeated indices, the numerical convective flux across the interface between cells A and B m a three 

dimensional mesh has the form 
hAB = 2SABj (fAj +fB,)- d-AB, 

where SAB is the component of the face area in the fh Cartesian coordinate direction, (fAj) and (fBj) 
denote the'flux /, as defined by equation (12) and dAB is the diffusive term. Variations of the computer 
program provide options for alternate constructions of the diffusive flux. 

The simplest option implements the Jameson-Schmidt-Turkel scheme [24,27], using scalar diffusive terms 

of the form 
dAB = e^2)Aw - e(4) (Aw+ - 2 Aw + Aw  ), 

where 
Aw = wB — wA 

and Aw+ and Aw~ are the same differences across the adjacent cell interfaces behind cell A and beyond 
cell B in the AB direction. By making the coefficient e<2> depend on a switch proportional to the undivided 
second difference of a flow quantity such as the pressure or entropy, the diffusive flux becomes a third order 
quantity proportional to the cube of the mesh width in regions where the solution is smooth. Oscillations are 
suppressed near a shock wave because e<2> becomes of order unity, while e<*> is reduced to zero by the same 
switch For a scalar conservation law, it is shown in reference [27] that e™ and e<4> can be constructed to 
make the scheme satisfy the local extremum diminishing (LED) principle that local maxima cannot increase 
while local minima cannot decrease. 

The second option applies the same construction to local characteristic variables. There are derived from 
the eigenvectors of the Jacobian matrix AAB which exactly satisfies the relation 

AAB (wB - wA) = SABi (fBi - fAj) ■ 

This corresponds to the definition of Roe [28]. The resulting scheme is LED in the characteristic variables. 
The third option implements the H-CUSP scheme proposed by Jameson [29] which combines differences 
fB - fA and wB - wA in a manner S"ca that stationary shock waves can be captured with a single interior 
point in the discrete solution. This scheme minimizes the numerical diffusion as the velocity approaches zero 
in the boundary layer, and has therefore been preferred for viscous calculations in this work. 

Similar artificial diffusive terms are introduced in the discretization of the adjoint equation, but with 
the opposite sign because the wave directions are reversed in the adjoint equation. Satisfactory results have 
been obtained using scalar diffusion in the adjoint equation while characteristic or H-CUSP constructions 

are used in the flow solution. 
The discretization of the viscous terms of the Navier Stokes equations requires the evaluation of the 

velocity derivatives J* in order to calculate the viscous stress tensor <ry defined in equation (9). These 

are most conveniently* evaluated at the cell vertices of the primary mesh by introducing a dual mesh which 
connects the cell centers of the primary mesh, as depicted in Figure (1). According to the Gauss formula for 
a control volume V with boundary S 

I  -^-dv = I UiTijdS 
Jv dxj Js 

where n, is the outward normal. Applied to the dual cells this yields the estimate 

dvi       1    v-> _     „ 
  =     >      UiTljS 
dxj      vol/-"       3 

faces 

where S is the area of a face, and ü{ is an estimate of the average of ut over that face. In order to determine 
the viscous flux balance of each primary cell, the viscous flux across each of its faces is then calculated from 



Fig. 1. Cell-centered scheme, aij evaluated at vertices of the primary mesh 

the average of the viscous stress tensor at the four vertices connected by that face. This leads to a compact 
scheme with a stencil connecting each cell to its 26 nearest neighbors. 

The semi-discrete schemes for both the flow and the adjoint equations are both advanced to steady state 
by a multi-stage time stepping scheme. This is a generalized Runge-Kutta scheme in which the convective and 
diffusive terms are treated differently to enlarge the stability region [27,30]. Convergence to a steady state is 
accelerated by residual averaging and a multi-grid procedure [31]. These algorithms have been implemented 
both for single and multiblock meshes and for operation on parallel computers with message passing using 
the MPI (Message Passing Interface) protocol [9,32,33]. 

In this work, the adjoint and flow equations are discretized separately. The alternative approach of 
deriving the discrete adjoint equations directly from the discrete flow equations yields another possible 
discretization of the adjoint partial differential equation which is more complex. If the resulting equations 
were solved exactly, they could provide the exact gradient of the inexact cost function which results from the 
discretization of the flow equations. On the other hand, any consistent discretization of the adjoint partial 
differential equation will yield the exact gradient as the ncsh is refined, and separate discretization has 
proved to work perfectly well in practice. It should also be noted that the discrete gradient includes both 
mesh effects and numerical errors such as spurious entropy production which may not reflect the true cost 
function of the continuous problem. 

Mesh Generation and Geometry Control 

Meshes for both viscous optimization and for the treatment of complex configurations are externally gen- 
erated in order to allow for their inspection and careful quality control. Single block meshes with a C-H 
topology have been used for viscous optimization of wing-body combinations, while multiblock meshes have 
been generated for complex configurations using GRIDGEN [34]. In either case geometry modifications are 
accommodated by a grid perturbation scheme. For viscous wing-body design using single block meshes, the 
wing surface mesh points themselves are taken as the design variables. A simple mesh perturbation scheme 
is then used, in which the mesh points lying on a mesh line projecting out from the wing surface are all 
shifted in the same sense as the surface mesh point, with a decay factor proportional to the arc length along 
the mesh line. The resulting perturbation in the face areas of the neighboring cells are then included in 
the gradient calculation. For complex configurations the geometry is controlled by superposition of analytic 
"bump" functions defined over the surfaces which are to be modified. The grid is then perturbed to conform 
to modifications of the surface shape by the WARP3D and WARP-MB algorithms described in [32]. 



Optimization 

Two main search procedures have been used in our applications to date. The first is a simple descent method 
in which small steps are taken in the negative gradient direction. Let'"T represent the design variable, and Q 

the gradient. Then the iteration 
6F = -xg 

can be regarded as simulating the time dependent process 

dt 

where A is the time step At. Let A be the Hessian matrix with elements 

dQi _    d2I 

Suppose that a locally minimum value of the cost function /* = 1(F) is attained when T = T*. Then the 
gradient Q* = G(F) must be zero, while the Hessian matrix A* = A(F) must be positive definite. Since 
Q* is zero, the cost function can be expanded as a Taylor series in the neighborhood of T* with the form 

/(jr) = r + |(^-^)A(JT-^) + ... 

Correspondingly, 
g(T) = A(F-T*) + ... 

As T approaches F, the leading terms become dominant. Then, setting J= = (T - F), the search process 

approximates 

dt 

Also, since A* is positive definite it can be expanded as 

A' = RMRT, 

where M is a diagonal matrix containing the eigenvalues of A*, and 

RRT = RTR = I. 

Setting 
v = RTF, 

the search process can be represented as 

— = -MD. 
dt 

The stability region for the simple forward Euler stepping scheme is a unit circle centered at -1 on the 
negative real axis. Thus for stability we must choose 

while the asymptotic decay rate, given by the smallest eigenvalue, is proportional to 

g—Crnl«' 

In order to make sure that each new shape in the optimization sequence remains smooth, it proves 
essential to smooth the gradient and to replace Q by its smoothed value Q in the descent process. This also 
acts as a preconditioner which allows the use of much larger steps. To apply smoothing in the f i direction, 
for example, the smoothed gradient Q may be calculated from a discrete approximation to 

§~wew§=G (48) 



where e is the smoothing parameter. If one sets 6T = -\§, then, assuming the modification is applied on 
the surface £2 = constant, the first order change in the cost function is 

61 = - /7Wd6<*£3 

-*//(fl-&£)s** 
~*//(fl,+'(ID>* 
<o, 

assuring an improvement if A is sufficiently small and positive, unless the process has already reached a 

stationary point at which Q = 0. 
It turns out that this approach is tolerant to the use of approximate values of the gradient, so that 

neither the flow solution nor the adjoint solution need be fully converged before making a shape change. 
This results in very large savings in the computational cost. For inviscid optimization it is necessary to use 
only 15 multigrid cycles for the flow solution and the adjoint solution in each design iteration. For viscous 
optimization, about 20-30 multigrid cycles are needed. 

Our second main search procedure incorporates a quasi-Newton method for general constrained opti- 
mization. In this class of methods the step is defined as 

where P is a preconditioner for the search. An ideal choice is P = A*~\ so that the corresponding time 

dependent process reduces to 

dt~    ' 

for which all the eigenvalues are equal to unity, and T is reduced to zero in one time step by the choice 
At = 1 if the Hessian, A, is constant. The full Newton method takes P = A~l, requiring the evaluation of the 
Hessian matrix, A, at each step. It corresponds to the use of the Newton-Raphson method to solve the non- 
linear equation Q = 0. Quasi-Newton methods estimate A* from the change in the gradient during the search 
process. This requires accurate estimates of the gradient at each time step. In order to obtain these, both 
the flow solution and the adjoint equation must be fully converged. Most quasi-Newton methods also require 
a line search in each search direction, for which the flow equations and cost function must be accurately 
evaluated several times. They have proven quite robust in practice for aerodynamic optimization [35]. 

In the applications to complex configurations presented below the optimization was carried out using 
the existing, well validated software NPSOL. This software, which implements a quasi-Newton method for 
optimization with both linear and non-linear constraints, has proved very reliable but is generally more 
expensive than the simple search method with smoothing. 

9    Industrial Experience and Results 

The methods described in this paper have been quite thoroughly tested in industrial applications in which 
they were used as a tool for aerodynamic design. They have proved useful both in inverse mode to find 
shapes that would produce desired pressure distributions, and for direct minimization of the drag. They 
have been applied both to well understood configurations that have gradually evolved through incremental 
improvements guided by wind tunnel tests and computational simulation, and to new concepts for which 
there is a limited knowledge base. In either case they have enabled engineers to produce improved designs. 

Substantial improvements are usually obtained with 20-200 design cycles, depending on the difficulty of 
the case. One concern is the possibility of getting trapped in a local minimum. In practice this has not proved 
to be a source of difficulty. In inverse mode, it often proves possible to come very close to realizing the target 
pressure distribution, thus effectively demonstrating convergence. In drag minimization, the result of the 
optimization is usually a shock-free wing. If one considers drag rninimization of airfoils in two-dimensional 



inviscid transonic flow, it can be seen that every shock-free airfoil produces zero drag, and thus optimization 
based solely on drag has a highly non-unique solution. Different shock-free airfoils can be obtained by starting 
from different initial profiles. One may also influence the character of the final design by blending a target 
pressure distribution with the drag in the definition of the cost function. 

Similar considerations apply to three-dimensional wing design. Since the vortex drag can be reduced 
simply by reducing the lift, the lift coefficient must be fixed for a meaningful drag minimization. In order 
to do this the angle of attack a is adjusted during the flow solution. It has proved most effective to make 
a small change 5a proportional to the difference between the actual and the desired lift coefficient at every 
iteration in the flow calculation. A typical wing of a transport aircraft is designed for a lift coefficient in 
the range of 0.4 to 0.6. The total wing drag may be broken down into vortex drag, drag due to viscous 
effects, and shock drag. The vortex drag coefficient is typically in the range of 0.0100 (100 counts), while 
the friction drag coefficient is in the range of 45 counts, and the shock drag at a Mach number just before 
the onset of severe drag rise is of the order of 15 counts. With a fixed span, typically dictated by structural 
limits or a constraint imposed by airport gates, the vortex drag is entirely a function of span loading, and is 
minimized by an elliptic loading unless winglets are added. Transport aircraft usually have highly tapered 
wings with very large root chords to accommodate retraction of the undercarriage. An elliptic loading may 
lead to excessively large section lift coefficients on the outboard wing, leading to premature shock stall or 
buffet when the load is increased. The structure weight is also reduced by a more inboard loading which 
reduces the root bending moment. Thus the choice of span loading is influenced by other considerations. The 
skin friction of transport aircraft is typically very close to flat plate skin friction in turbulent flow, and is very 
insensitive to section variations. An exception to this is the case of smaller executive jet aircraft, for which 
the Reynolds number may be small enough to allow a significant run of laminar flow if the suction peak 
of the pressure distribution is moved back on the section. This leaves the shock drag as the primary target 
for wing section optimization. This is reduced to zero if the wing is shock-free, leaving no room for further 
improvement. Thus the attainment of a shock-free flow is a demonstration of a successful drag minimization. 
In practice range is maximized by maximizing M j$, and this is likely to be increased by increasing the lift 
coefficient to the point where a weak shock appears. One may also use optimization to find the maximum 
Mach number at which the shock drag can be eliminated or significantly reduced for a wing with a given 
sweepback angle and thickness. Alternatively one may try to find the largest wing thickness or the minimum 
sweepback angle for which the shock drag can be eliminated at a given Mach number. This can yield both 
savings in structure weight and increased fuel volume . If there is no fixed limit for the wing span, such as 
a gate constraint, increased thickness can be used to allow an increase in aspect ratio for a wing of equal 
weight, in turn leading to a reduction in vortex drag. Since the vortex drag is usually the largest component 
of the 'to*a.i wing drag, this is probably the most effective design strategy, and it may pay to increase the 
wing thickness to the point where the optimized section produces a weak shock wave rather than a shock-free 

flow [23]. 
The first major industrial application of an adjoint based aerodynamic optimization method was the 

wing design of the Beech Premier [36] in 1995. The method was successfully used in inverse mode as a tool 
to obtain pressure distributions favorable to the maintenance of natural laminar flow over a range of cruise 
Mach numbers. Wing contours were obtained which yielded the desired pressure distribution in the presence 
of closely coupled engine nacelles on the fuselage above the wing trailing edge. 

During 1996 some preliminary studies indicated that the wings of both the McDonnell Douglas MD-11 
and the Boeing 747-200 could be made shock-free in a representative cruise condition by using very small 
shape modifications, with consequent drag savings which could amount to several percent of the total drag. 
This led to a decision to evaluate adjoint-based design methods in the design of the McDonnell Douglas 
MDXX during the summer and fall of 1996. In initial studies wing redesigns were carried out for inviscid 
transonic flow modeled by the Euler equations. A redesign to minimize the drag at a specified lift and Mach 
number required about 40 design cycles, which could be completed overnight on a workstation. 

Three main lessons were drawn from these initial studies: (i) the fuselage effect is to large to be ignored 
and must be included in the optimization, (ii) single-point designs could be too sensitive to small variations 
in the flight condition, typically producing a shock-free flow at the design point with a tendency to break up 
into a severe double shock pattern below the design point, and (iii) the shape changes necessary to optimize 
a wing in transonic flow are smaller than the boundary layer displacement thickness, with the consequence 
that viscous effects must be included in the final design. 



In order to meet the first two of these considerations, the second phase of the study was concentrated 
on the optimization of wing-body combinations with multiple design points. These were still performed with 
inviscid flow to reduce computational cost and allow for fast turnaround. It was found that comparatively 
insensitive designs could be obtained by minimizing the drag at a fixed Mach number for three fairly closely 
spaced lift coefficients such as 0.5, 0.525, and 0.55, or alternatively three nearby Mach numbers with a fixed 
lift coefficient. 

The third phase of the project was focused on the design with viscous effects using as a starting point 
wings which resulted from multipoint inviscid optimization. While the full viscous adjoint method was still 
under development, it was found that useful improvements could be realized, particularly in inverse mode, 
using the inviscid result to provide Lhe target pressure, by coupling an inviscid adjoint solver to a viscous 
flow solver. Computer costs are many times larger, both because finer meshes are needed to resolve the 
boundary layer, and because more iterations are needed in the flow and adjoint solutions. In order to force 
the specified lift coefficient the number of iterations in each flow solution had to be increased from 15 to 
100. To achieve overnight turnaround a fully parallel implementation of the software had to be developed. 
Finally it was found that in order to produce sufficiently accurate results, the number of mesh points had to 
be increased to about 1.8 million. In the final phase of this project it was planned to carry out a propulsion 
integration study using the multiblock versions of the software. This study was not completed due to the 
cancellation of the entire MDXX project. 

In the next subsections we present examples of the use of the adjoint method for viscous inverse and 
drag minimization in two dimensional flow. We then show a three-dimensional wing design using the Euler 
equations and a wing design using the full viscous adjoint method in its current form, implemented in the 
computer program SYN107.- These calculations were all performed using the simple descent method with 
smoothing of the gradient. This has proved to be very efficient: in all cases the final optimum design was 
achieved with a total computational cost equivalent to the cost of from 2 to 10 converged flow solutions. The 
remaining subsections present results of optimizations for complete configurations in inviscid transonic and 
supersonic flow using the multiblock parallel design program, SYN107-MB. 

Inverse design of an airfoil in transonic viscous flow 

Our first example shows an inverse design in two dimensional viscous transonic flow obtained using the 
two-dimensional design code SYN103. The target pressure is that of the section of the ONERA M6 wing 
at Mach .75 and a lift coefficient of .50. It was calculated using SYN103 in analysis mode, thus it should 
be exactly realizable. A C-type mesh was used which contained 256 intervals in the chordwise and 96 cells 
in the normal direction for a total of 24,576 cells. The design calculation was started with the NACA 0012 
airfoil as the initial profile, and the ONERA M6 pressure distribution was almost exactly recovered in 25 
design cycles. In the first cycle 120 iterations were used in both the flow and the adjoint solutions. In the 
subsequent cycles only 30 iterations were used in both the flow and adjoint solutions. Figure 2 shows 
the initial profile and pressure distribution with the pressure coefficient plotted vertically in the negative 
direction. It then shows the results after one, five and twenty five design cycles, with the target represented 
by circles. It also superposes on each redesigned profile the smoothed gradient plotted in the direction of the 
shape modification. A fixed scale is used so that it is possible to observe the decrease in the magnitude of 
the gradient as the calculation converges enough to ensure that they were fairly close to convergence. The 
root mean square error between the target and actual pressure was reduced from .0530 to .0016 in the course 
of the entire calculation which took 3569 seconds using a single Silicon Graphics R10000 processor. A fully 
converged flow solution using 500 iterations on the same mesh took 936 seconds, so the cost of the entire 
design calculation was about that of three flow solutions. 

Drag reduction of an airfoil in viscous flow 

The next example shows a redesign of the RAE2822 airfoil to reduce the drag at a fixed lift coefficient of 
.65 in transonic flow at Mach .75. In this case a shock free flow was obtained after 10 design cycles, in 
each of which both the flow and the adjoint solutions were calculated with 25 multigrid cycles. A grid with 
512 x 64 cells was used. The pressure drag was reduced from .0091 to .0041, while the viscous drag remained 
essentially constant. The constraint was imposed that the thickness of the profile could not be reduced 



by only permitting outward movement from the initial profile. Figure 3 displays the sequence of pressure 
dLlutbns showing the elimination of the shock wave. It also shows the initial profile, and the smoothed 
S£S^ed oSn the subsequent profiles. It can be seen that the gradient continues to have an inward 
SmponentPindicating that the drag might be further reduced if a thickness reduction were permitted It 
3d be noted that the unsmoothed gradient is in the sense of crossing over the trading edge, because the 
Lullgnon physical shape would correspond to a sink in the free stream which would have a negative 
Sal 7he solution of the smoothing equation (48) with a two point boundary condition allow the trailing 

edge to be frozen. 

Three point inviscid redesign of the Boeing 747 wing 

The third example shows a redesign of the wing of the Boeing 747 to reduce its drag in a typical cruising 
cond tion. It hi been our experience that drag minimization at a single point tends to produce a wing 
which is shock free at its design point, but tends to display undesirable characteristics off its desyn pon£ 
Typically a double shock pattern forms below the design lift coefficient and Mach number, and a single 
Sy strong shock above the design point. To alleviate this tendency the calculation was performewith 
££ design points. In carrying out multipoint designs of this kind a composite gradient «■, «tailed ** a 
weighted average of the gradients calculated for each design point separately. In tins case the design points 
we reselected as lift coefficients of .38,42 and .46 for the exposed wing at Mach .85. Because the fuselage has 
Is gnificant effect on the flow over the wing, the calculations were performed for the wing body combma ion 
bufthe shape modifications were restricted to the wing alone. The fuselage also contributes to the lift, so 
that the total lift coefficient at the mid design point was estimated to be .50. 

The results are displayed in Figures 4- 6 and in Table 1 which shows the drag at three design points 
of the initial wing, and the final wing after 30 design cycles. It can been seen that a drag reduction was 
ootained over the entire range of lift coefficients, and at the mid design point the redesigned wing is almost 
shock free Figure 7 shows the modification in the wing section about half way out the span. It can be seen 
hat a useful drag reduction can be obtained by a very small change in the wing shape This is because of 

the extreme sensLity of the transonic flow. Also, it is clear that without a tool of this kind it would be 

almost impossible to find an optimum shape. 

Design Conditions      Initial Three Point Design 
Mach CL CD Original Cp Redesign Cp Reduction (%) 
~Ö85 Ö38 ÖÖÖ71 0.0064 9^8 

0.85 0.42 0.0086 0.0U7 10.4 
0.85 0.46 0.0106 0 00^5 10-3 

Table 1. Drag Reduction for Multipoint Design. 

Transonic Viscous Wing-Body Design 

A typical result for drag minimization of a wing body combination in transonic viscous flow is Presented 
next The viscous adjoint optimization method was used with a Baldwin-Lomax turbulence model The 
initial wing is similar to one produced during the MDXX design studies. Figures 8-10 show the result of the 
wing-body redesign on a C-H mesh with 288 x 96 x 64 cells. The wing has sweep back of about 38 degrees 
at the 1/4 chord A total of 44 iterations of the viscous optimization procedure resulted in a shock-free wing 
at a cruise design point of Mach 0.86, with a lift coefficient of 0.61 for the wing-body^combination at a 
Reynolds number of 101 million based on the root chord. Using 48 processors of an SGI Origin2000 parallel 
computer, each design iteration takes about 22 minutes so that overnight turnaround for such a calculation 
is possible. Figure 8 compares the pressure distribution of the final design with that of the initial wmg. The 
final wing is quite thick, with a thickness to chord ratio of about 14 percent at the root and 9 percent at 
the tip The optimization was performed with a constraint that the section modifications were not allowed 



to decrease the thickness anywhere. The design offers excellent performance at the nominal cruise point. A 
draK reduction of 2.2 counts was achieved from the initial wing which had itself been derived by inviscid 
optimization. Figures 9 and 10 show the results of a Mach number sweep to determine the drag rise. The 
drag coefficients shown in the figures represent the total wing drag including shock, vortex and skin friction 
contributions It can be seen that a double shock pattern forms below the design point, while there is actually 
a slight increase in the drag coefficient at Mach 0.85. This wing has a low drag coefficient however, over a 
wide range of conditions. Above the design point a single shock forms and strengthens as the Mach number 

increases. 

10    Conclusions 

The adjoint design method developed under this grant is now well established and has proved effective in a 
variety of industrial applications. The method combines the versatility of numerical optimization methods 
with the efficiency of inverse design methods. The geometry is modified by a grid perturbation technique 
which is applicable to arbitrary configurations. Both the wing-body and multiblock version of the design 
algorithms have been implemented in parallel using the MPI (Message Passing Interface) Standard, and 
they both yield excellent parallel speedups. The combination of computational efficiency with geometric 
flexibility provides a powerful tool, with the final goal being to create practical aerodynamic shape design 

methods for complete aircraft configurations. 
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2a: Cp after Zero Design Cycles. 
Design Mach 0.75, Ci = 0.5008, 

Cd = 0.0225. 

2b: Cp after One Design Cycle. 
Design Mach 0.75, Ci = 0.4841, 

Cd = 0.0185. 

& 
^** ii. 

2c: Cp after Five Design Cycles. 
Design Mach 0.75. C( = 0.4994, 

Cd = 0.0148. 

2d: Cp after Twenty five Design Cycles. 
Design Mach 0.75, C/ = 0.5007, 

Cd = 0.0118. 

Fig. 2. Inverse Design of an ONERA Airfoil. The vectors on the airfoil surface represent the direction and magnitude 

of the gradient. 



3a: Cp after Zero Design Cycles. 
Design Mach 0.75, Ci = 0.6450, 

dipressure) = 0.0091,' 
Cd{viscous) = 0.0056. 

3b: Cv after One Design Cycle. 
Design Mach 0.75, C, = 0.6512, 

Cdipressure) - 0.0066. 
Cd{viscous) = 0.0057. 

'1 

3c: Cp after Two Design Cycles. 
Design Mach 0.75, Ct = 0.6510, 

Cdipressure) = 0.0054, 
Cd(viscous) = 0.0057. 

3d: Cp after Ten Design Cycles. 
Design Mach 0.75, & = 0.6460, 

Cdipressure) - 0.0041. 
Cd(viscous) = 0.0058. 

Fig. 3. Drag Minimization of an RAE2822 Airfoil. The vectors on the airfoil surface represent the direction and 
magnitude of the gradient. 



COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
BOEING 747 WING-BODY 

REN = 0.00 , MACH =0.850 

4    0.6    0.8    r.0 
X/C 

A0.44 Span 

Fig. 4. Pressure distribution of the Boeing 747 Wing-Body before optimization. 

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
BOEING 747 WING-BODY 

REN= 0.00 , MACH = 0.850 

Fig. 5. Pressure distribution of the Boeing 747 Wing-Body after a three point optimization. 



COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
BOEING 747 WING-BODY 

REN= 0.00 . MACH = 0.850 . CL = 0.420 

Fig. 6. Comparison of Original and Optimized Boeing 747 Wing-Body at the mid design point 
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£    0.0 

SYMBOL   AIRFOIL   ETA    R-LE    Tavg   Tmax    @X 
    Wing 1.018     56.9      0.224      2.70       3.98     44.50 

Wing 2.018     56.9      0.253      170       3.97     43.02 

-70.0 
0.0      10.0     20.0     30.0     40.0     50.0     60.0     70.0     80.0     90.0     100.0 

Percent Chord 

Fig. 7. Original and Re-designed Wing section for the Boeing 747 Wing-Body at mid-span. 



COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
MPX5X WING-BODY >'" 

REN =101.00 , MACH = 0.860 , CL = 0.610 

Fig. 8. Pressure distribution of the MPX5X before and after optimization. 

COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
MPX5X WING-BODY 

REN =101.00 , CL = 0.610 .|0 

Fig. 9. Off design performance of the MPX5X below the design point. 
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS 
MPX5X WING-BODY 
REN= 101.00 , CL = 0.610 , 

u   0.0 *£^ 
0.2 0.4     0.6N&X_>!( 

X/C 
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Fig. 10. Off design performance of the MPX5X above the design point. 


