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COMPUTERIZED GENERATION AND SIMULATION OF MESHING 
AND CONTACT OF NEW TYPE OF NOVIKOV-WILDHABER 

HELICAL GEARS 

Faydor L. Litvin, Pin-Hao Feng, and Sergei A. Lagutin 
The University of Illinois at Chicago 

Chicago, Illinois 60607 

SUMMARY 

In this report, we propose a new geometry for low-noise, increased-strength helical gears of the Novikov- 
Wildhaber type. Contact stresses are reduced as a result of their convex-concave gear tooth surfaces. The gear tooth 
surfaces are crowned in the profile direction to localize bearing contact and in the longitudinal direction to obtain a 
parabolic function of transmission errors. Such a function results in the reduction of noise and vibrations. 

Methods for the generation of the proposed gear tooth surfaces by grinding and hobbing are considered, and a 
tooth contact analysis (TCA) computer program to simulate meshing and contact is applied. The report also investi- 
gates the influence of misalignment on transmission errors and shift of bearing contact. Numerical examples to illus- 
trate the developed approaches are proposed. 

The proposed geometry was patented by Ford/UIC (Serial Number 09-340-824, pending) on June 28,1999. 

1.0 INTRODUCTION 

In comparison with conventional involute helical gears, Novikov-Wildhaber (N-W) gears (refs. 1 and 2) have 
reduced contact stresses. This reduction has been achieved because at the point of contact, there is only a small dif- 
ference between the curvatures of the concave and convex mating gear tooth surfaces. At every instant, the tooth 
surfaces are in a point contact spread under the load over an elliptical area; therefore, we say that the bearing contact 
is localized. There is a probability that the lubrication conditions of N-W gears are slightly improved because in the 
process of meshing, the instantaneous contact ellipse moves not across the tooth surface but in the longitudinal 
direction. This direction of the contact path is favorable because it causes a "pumping effect." However, the same 
direction of the contact path can also be achieved for involute helical gears if profile modification is provided. 

Novikov-Wildhaber gears or the generating imaginary rack-cutters are provided with circular-arc profiles. There 
are two versions of Novikov gears, the first having one zone of meshing (fig. 1.1) and the other having two. The 
design of gears with two zones of meshing was an attempt to reduce high bending stresses caused by point contact. 
Novikov gears with two zones of meshing have been standardized in the former USSR and in China (refs. 3 and 4). 
Figure 1.2 shows imaginary rack-cutters for the generation of Novikov gears with two zones of meshing. 

Unfortunately for Novikov followers, who enthusiastically thought that N-W gears would be a substitute for 
conventional involute helical gears, their expectations have not been realized. After more than 40 years since their 
invention, N-W gears have found application only in low-speed reducers manufactured in the oil and mine indus- 
tries. These gears are still applied in areas where manufacturers try to avoid grinding and expect that a sufficient 
bearing contact will be obtained by running under the load and lapping in the gear drive housing. Only soft materials 
are still applied for N-W gears, and the gear tooth surfaces are not hardened and nitrified. 

The major disadvantage of N-W gears is that gear misalignment (such as a change in the shaft angle or in the 
lead) causes an impermissible noise. Because of this high-level noise, the only example of the application of N-W 
gears in high-speed transmissions is that of the Westland Helicopter Company. The other disadvantage of N-W 
gears is the shift in the bearing contact (to the addendum or dedendum areas) that results from a change in the center 
distance. This shift can be reduced by increasing the difference between the curvatures of the tooth surfaces but this 
negates the attempt to reduce the contact stresses. 

Experience with the design and application of involute helical gears shows that the resources used to employ 
them have almost been exhausted. Attempts to localize bearing contact had been concentrated on profile modifica- 
tion, but such efforts could not reduce the noise level. Even though the geometry of involute helical gears presents 
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Figure 1.1.—Novikov gears of previous design. 

Figure 1.2.—Profiles of rack-cutter for Novikov gears with 
zones of meshing. 
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Figure 1.3.—Helical gears with new geometry. 

an obstacle in the reduction of contact stresses and noise, they are still an example of high-precision gear drives 
because of the possibility of grinding by a worm or form grinding. 

The new type of helical gears developed by the authors of this report has presented new possibilities for the 
design and manufacture of low-noise, increased-strength helical gear drives. Although the details of this 
development are covered in sections 2.0 to 5.0, a brief summary of the project follows: 

1. The bearing contact is localized and the contact stresses are reduced because of the tangency of concave- 
convex tooth surfaces of the mating gears. Two versions of the proposed design were investigated (see sees. 2 to 4): 
one has a convex pinion tooth surface and the other a concave. Figure 1.3 is a three-dimensional view of the 
designed helical gears with convex pinion teeth. 

2. The conjugation of pinion-gear teeth is based on the application of two imaginary rack-cutters with mis- 
matched surfaces Zc and Z, (see details in subsec. 2.1). The normal section of each rack-cutter is a parabola as 
shown in figure 1.4. A current point of the parabola is determined in an auxiliary coordinate system S- by the 
equations 

*,•=",•>   yi=aiu? (L1) 

where u is a variable parameter that determines the location of the current point in the normal section and ai is the 
parabolic coefficient. 

Henceforth, we designate by an abbreviated symbol Sk an orthogonal coordinate system Sk(xk, yk, zk) where (xt 

yk, zk) indicate the coordinate axes of Sk. 
3. The normal profiles of mating rack-cutters are in tangency at reference point Q, and axis y ■ (fig. 1.4) is the 

normal to the profiles at Q. The normal profiles are mismatched (fig. 1.5) because different parabolic coefficients a, 
for the mating rack-cutters have been applied. Points Q of various normal sections of the mating rack-cutters form 
a line of tangency of their surfaces Ec and £,. It is imagined that rack-cutter surfaces are rigidly connected to each 
other and generate separately the pinion and gear tooth surfaces. The generated pinion-gear tooth surfaces are in a 
point contact that spreads under load over an elliptical area (ref. 5). 

4. The advantages of applying rack-cutter parabolic profiles in comparison with applying circular-arc profiles in 
previous designs are as follows: 

a. The possibility of increasing the height of the pinion addendum that is limited by tooth pointing and the 
height of the pinion dedendum that is limited by the possibility of undercutting 

b. The possibility of increasing the tooth thickness at the point of tangency of the active profile with the 
fillet and reducing the bending stresses 

These advantages are illustrated by figure 1.6, which shows parabolic profile 1 and circular-arc profile 2 with 
the same curvature radius Pj at point Q. Point Cx is the center of the circle of radius pt; a is the profile angle at Q. 
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(a) 

Figure 1.4.—Parabolic profile of rack-cutter in normal 
section. 

Figure 1.5.—Rack-cutter applied for generation, 
(a) Normal profiles of rack-cutters, (b) and (c) 
Normal sections of pinion and gear rack-cutters. 

Figure 1.6.—Comparison of parabolic (1) and circular 
(2) profiles of rack-cutters. 
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Point P is the point of intersection of the normal to the tooth profile with the axis of the tooth symmetry and is lo- 
cated on the instantaneous axis of rotation. Points L and Lc indicate limiting points of tooth profiles (for the new 
and previous design, respectively) obtained from the condition of no undercutting. Similarly, K and Kc indicate 
limiting points of tooth profiles obtained from the condition of pointing determined for tooth profiles with the same 
value of Sa. Parameters h and hc are the possible tooth heights for the new and previous designs, respectively. 
Dimensions S and Sc are the possible tooth thicknesses at the point of tangency of the active profile and the fillet 
for the new and previous designs, respectively. 

5. The curvature radii of the rack-cutter profiles for the new gear design are substantially larger than those of the 
existing design that are based on the application of circular-arc profiles. Thus, the advantages of the new design are 
that they allow one to 

a. Increase the dimensions of the instantaneous contact ellipse and obtain a more favorable orientation, as 
shown in figure 1.7 where \il is the angle between the major axis of the contact ellipse and the tangent 
to the path of contact on the pinion tooth surface. The center of the contact ellipse coincides with the 
point of contact Q. The dimensions of the contact ellipse have been determined by considering that the 
elastic approach of tooth surfaces is 8 = 0.00025 in. 

b. Reduce the sensitivity of the gear drive to a change in the gear center distance AE, which causes a shift 
of the bearing contact to the tooth addendum or dedendum (depending on the sign of AE). 

6. The generation of gears for the new and previous designs is based on the application of two mating hobs or 
grinding worms that are conjugated to the rack-cutters shown in figure 1.5. Two shaped grinding disks can be ap- 
plied instead of hobs or grinding worms. 

In both designs, the bearing contact of tooth surfaces is localized (the tooth surfaces are in point contact at every 
instant). 

7. The main differences in the generation methods for both designs are 

a. Only profile crowning is provided in the generation of gears for the previous design. Therefore, the 
function of transmission errors is almost a linear discontinuous one for a misaligned gear drive 
(fig. 1.8(a)). Such transmission errors cause vibration for Novikov-Wildhaber gears when the mesh- 
ing of one pair of teeth is changed for another one. 

in. 

Path of contact 

Path of contact 

Figure 1.7.—Contact ellipse on pinion tooth surface for (a) 
proposed design and (b) previous design. 
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Figure 1.8.—Functions of transmission errors, (a) Linear 
function of transmission errors caused by error of shaft 
angle A7 = 3 arc min. (b) Reduction and transformation 
of errors provided by new geometry of tooth surfaces. Figure 1.9.—Plunging of grinding worm. 

b. The new design provides crowning in two directions: profile and longitudinal. The longitudinal crown- 
ing is obtained by the varied plunge of the tool when a grinding worm is applied (fig. 1.9). The shortest 
distance E between the axes of the grinding worm and the workpiece is represented by 

E(l) = E0-al2 
(1.2) 

where / is the displacement along the axis of the workpiece; E0 is the nominal value of the shortest axis distance; and 
a is the parabolic coefficient. A parabolic function £(/) must also be provided for generation by hobbing and form 
grinding. 

The varied plunge makes it possible to provide a predesigned parabolic function of transmission errors 
(fig. 1.8(b)) that can absorb the linear functions of transmission errors caused by gear misalignment and also reduce 
the magnitude of transmission errors (refs. 5 and 6). The varied plunge of the tool is required only for the generation 
of one of the mating gears, either the pinion or the gear. 

8. The absorption of the linear functions of transmission errors by a parabolic function (provided by tool plung- 
ing) is confirmed by tooth contact analysis (TCA) for gears of the new design (see sec. 2.8). The reduction of noise 
and vibration in the new gears means that they can be used in high-speed transmissions. 

9. The misalignment of the new gears may cause a shift in the bearing contact to the edge (fig. 1.10). Drawings 
in figure 1.10 show the contact path for the following cases: (a) without errors of alignment; (b) a change in the gear 
center distance A£ of 0.1 mm; (c) a change in the shaft angle Ay of 3 arc min; (d) a change in the lead angle AX of 
3 arc min. 

The authors have developed a method to correct the contact path (and the bearing contact) by correcting the lead 
angle of the pinion or the gear. Because of the existence of a predesigned parabolic function of transmission errors, 
correcting the lead angle will allow the location of the contact path to be restored without causing transmission 
errors. 

10. The new geometry of helical gears can be extended to conventional involute helical gears as follows: (a) one 
of the imaginary rack-cutter surfaces is a plane that generates a conventional screw involute surface; (b) the mating 
rack-cutter is provided with a parabolic profile in the normal section (fig. 1.4) but with a very small curvature; (c) 
the crowning in the longitudinal direction is accomplished by tool plunging (fig. 1.9), making it possible to obtain a 
predesigned parabolic function. 

NASA/CR—2000-209415 



Gear 

Pinion 

Figure 1.10.—Contact paths on pinion and gear 
surfaces for one cycle of meshing obtained for 
helical gears with new geometry, (a) Without 
errors of alignment, (b) Change of center distance 
A£ = 0.1 mm. (c) Change of shaft angle A7 = 3 arc 
min. (d) Change of lead angle AX = 3 arc min. 

The advantage of the proposed modification of conventional involute helical gears is the possibility of reducing 
the magnitude of transmission errors and transforming their shape (see plot (b) in fig. 1.8). 

This report covers 

1. The computerized design and imaginary rack-cutter generation of two versions of profile-crowned helical 
gears. The two versions are designed as pinion convex-gear concave (sec. 2.0) and pinion concave-gear convex 
(sec. 3.0). The designed gearing is a new type of Novikov-Wildhaber helical gear. 

2. The avoidance of undercutting and tooth pointing (sees. 2.0 and 3.0). 
3. The grinding (or cutting) of the designed helical gears crowned in the profile and longitudinal directions by 

the application of a disk or worm (sec. 4.0). 
4. The computerized simulation of the meshing and contact of the designed helical gears crowned in (a) the 

profile direction only, and (b) the profile and longitudinal directions (sees. 2.0 to 4.0). 

2.0 HELICAL PINION CONVEX AND GEAR CONCAVE PROFILE-CROWNED TOOTH SURFACES 

2.1 Basic Considerations 

This section covers the geometry, generation, design, and simulation of the meshing and contact of profile- 
crowned tooth surfaces. The pinion and gear tooth surfaces are convex and concave. Section 3.0 discusses another 
version of tooth surfaces, pinion concave and gear convex. 

The generation of pinion-gear tooth surfaces is based on the following ideas: 

1. Two imaginary rigidly connected rack-cutters for the separate generation of the pinion and the gear are 
applied (fig. 1.5). 

2. The axodes of the pinion and the gear in mesh with the rack-cutters are two pitch cylinders of radii r x and 
r 2 (fig. 2.1.1(a)). The axode of the rigidly connected rack-cutters is plane II that is tangent to the pitch cylinders. 
The pinion and gear perform rotational motions about their axes whereas the rack-cutters perform translational 
motions, all of which are related. The pitch cylinders and plane II are in tangency at line P-P, which is the instanta- 
neous axis of rotation in relative motion. 

3. The rack-cutters are provided with skew teeth (fig. 2.1.1(b) and from the drawings, it is obvious that a left- 
hand rack-cutter generates a left-hand pinion and a right-hand gear. The helix angles on the pinion-gear pitch cylin- 
ders are equal to angle ß of the skew teeth of the rack-cutters. 
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Figure 2.1.1.—Axodes of pinion, gear, and rack-cutter, 
(a) Axodes. (b) Direction of rack-cutter teeth. 

Figure 2.1.2.—Normal sections of rack-cutters 
(a) Profiles of pinion and gear rack-cutters. 
(b) Pinion rack-cutter, (c) Gear rack-cutter. 

4. The normal profiles of rack-cutters are obtained by the intersection of rack-cutter surfaces by a vertical plane 
that is perpendicular to the direction of rack-cutter teeth. The normal profiles are two mismatched parabolas in tan- 
gency at point Q (fig. 2.1.2(a)), and their common normal passes through point P that belongs to the instantaneous 
axis of rotation/'-/' (fig. 2.1.1(a)). 

5. Using various intersecting normal planes (fig. 2.1.1(b)) results in the same rack-cutter normal profiles shown 
in figure 2.1.2(a). Henceforth, we will consider two rack-cutter surfaces Ef and Z, that generate the pinion and gear 
tooth surfaces Ij and 2^, respectively. Surfaces Ef and I, are in tangency along a straight line that passes through 
points Q of tangency of various normal profiles. The orientation of the line of tangency of Zf and £, is determined 
by angle ß. 

Because the rack-cutter surfaces are mismatched, the pinion-gear tooth surfaces are in point contact (but not in 
line contact) and therefore the bearing contact is localized. 

2.2 Derivation of Pinion Tooth Surface Sj 

Pinion rack-cutter surface Ef.—The derivation of rack-cutter surface Zc is based on the following procedure: 

Step 1: The normal profile of Zc is a parabola and is represented in coordinate system 5 (fig. 2.1.2(b)) by equa- 
tions that are similar to equations (1.1): 

ra{uc) = [uc     We     0    *] (2.2.1) 

where a is the parabolic coefficient. 
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Step 2: The normal profile is represented in Sb by matrix equation 

rb(uc) = Mbara(uc) (2.2.2) 

The distance \OaOb\ is designated as lc, and Mba indicates the 4x4 matrix used for the coordinate transformation 

from coordinate system Sa to Sb (ref. 7). Homogeneous coordinates of a point are considered in reference 7. 
Step 3: Consider that rack-cutter surface Xc is formed in Sc while coordinate system Sb with the normal profile 

performs a translational motion in the direction a-a of the skew teeth of the rack-cutter (fig. 2.2.1). 
Surface X is determined in coordinate system S in two-parameter form by the following matrix equation: 

rc («e. 0c) = Mcb (6C )M6arö (uc ) = Mca (9C )ra (uc) (2.2.3) 

where 6C = \OcOb\ (fig. 2.2.1) and (uc, 9C) are surface parameters. 

Step 4: The normal N to rack-cutter surface Z is determined by matrix equation (ref. 7) 

Here 

NC(MC,GC) = Lcö(ec)LteNa(Mc) 

N>f) = kaxJ^ 

(2.2.4) 

(2.2.5) 

where Lcb indicates the 3x3 matrix that is the submatrix of Mc& and is used for the transformation of vector compo- 
nents; kfl is the unit vector of axis za. 

The transverse section of rack-cutter Sc is shown in figs. 2.2.2(a) and (b). 

Figure 2.2.1.—For derivation of pinion rack-cutter 
surface 2C- 

(c) 

Figure 2.2.2.—Rack-cutter transverse profiles, 
(a) Mating profiles, (b) Pinion rack-cutter profile, 
(c) Gear rack-cutter profile. 
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Figure 2.2.3.—Generation of pinion by rack-cutter Xc 

Determination of pinion tooth surface £r—The determination of Zj is based on the following considerations: 

1. Movable coordinate systems Sc and Sl (fig. 2.2.3) are rigidly connected to the pinion rack-cutter and the pin- 
ion, respectively. The fixed coordinate system Sm is rigidly connected to the cutting machine. 

2. The rack-cutter and the pinion perform related motions, as shown in figure 2.2.3 where sc = r .vj{ is the dis- 
placement of the rack-cutter in its translational motion, and \|/j is the angle of rotation of the pinion. 

3. A family of rack-cutter surfaces is generated in coordinate system Sl and is determined by the matrix 
equation 

i-j (uc, Gc, v j) = Mlf (y j )rc (uc, 0f) (2.2.6) 

4. The pinion tooth surface Zj is generated as the envelope to the family of surfaces rj(Mc,8 ,\|/j). Surface S1 is 
determined by simultaneous consideration of vector function r1(Mc,9c,\|/1) and the so-called equation of meshing: 

/lc(«c.ef,Vi) = 0 (2.2.7) 

5. To derive the equation of meshing (2.2.7), apply the following theorem (refs. 5 and 7): The common normal 
to surfaces Ic and Z} at their line oftangency must pass through the instantaneous axis of rotation P (fig. 2.2.3). 
The result is 

■*c     xc _ V     Jc _ "C     -c Zr-. 

JV,. iVv N.. 
(2.2.8) 

where (xc, yc, zc) are the coordinates of a current point of Zc; (A^c, N  , N.c) are the components of the normal to Lc; 
Xc = 0, Yc = rpl\|/j, and Zc are the coordinates of the intersection point of normal Nf with the instantaneous axis of 
rotation P (fig. 2.2.3). 

To derive the equation of meshing (2.2.7), it is sufficient to consider equation 

Nxc(uc,Qc) Nyc(uc,ec) 
(2.2.9) 
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that yields 

f\c (uc> 0c. Vl) = (0»1 Vl - Jc )^c + xcNyc = 0 (2.2.10) 

Equations (2.2.6) and (2.2.10) represent the pinion tooth surface by three related parameters. Taking into 
account that the equations above are linear with respect to 8C, we may eliminate 0C and represent the pinion tooth 
surface by vector function r J(HC,\|/J). 

2.3 Derivation of Gear Tooth Surface X2 

Gear rack-cutter surface Zf.—The derivation of ~Lt is based on the procedure similar to that applied for the deri- 
vation of Xc (see eqs. (2.2.3)). The normal profile of Sf is a parabola represented in S by equation (fig. 2.1.2(c)) 

re(ut) = ]ut    atuf    0   l] (2.3.1) 

which is similar to equation (2.2.1). Use coordinate systems Sk (fig. 2.1.2(c)) and St that are similar to Sb and Sc 

(fig. 2.2.1) to represent surface Zf by matrix equation 

r,(«„e,) = Mrt(9, )Mkere(ut) = Mtere(ut) (2.3.2) 

Equation (2.3.2) can be used to represent surface Xf by vector function rt(ut,&t), which is similar to rc(uc,Qc). 
The difference in the representation of Zf is the change in the subscript c to t. 

The normal to surface Sf is determined by equations similar to (2.2.4) and (2.2.5). 
Gear tooth surface Z2.—The generation of E2 by rack-cutter surface Xf is represented schematically in 

figure 2.3.1. The rack-cutter and the gear perform related translational and rotational motions designated as 

Figure 2.3.1.—Generation of gear by rack-cutter 2f. 
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The gear tooth surface is represented by equations 

r2=r2(«,,ef,y2) (2.3.3) 

(2.3.4) /2,(M„e/,v2) = o 

Equation (2.3.3) represents in S2 the family of rack-cutter surfaces £, determined as 

r2(n„e„\|/2) = M2,(\|/2)r,(n„e,) (2-3-5) 

The derivation of the equation of meshing (2.3.4) may be accomplished similarly to that of equation (2.2.10) 

f2t(«,,9,, y2) = (rp2y2 ->vK? + x,Nyt = 0 (2.3.6) 

Drawings of figs. 2.1.1 and 2.3.1 show that a left-hand rack-cutter generates a right-hand gear. Equations (2.3.5) 
and (2.3.6) represent the gear tooth surface by three related parameters. The linear parameter Qt can be eliminated 
and the gear tooth surface represented in two-parameter form by vector function r2(ut ,\|/2). 

2.4 Avoidance of Undercutting and Pointing 

The generation of a helical tooth surface by a rack-cutter may be accompanied by undercutting of the surface 
being generated. The discovery of undercutting is based on the following theorem proposed in references 5 and 7: 
Singular points of the generated surface Z occur when the velocity of a contact point in its motion over Z becomes 
equal to zero. Note that at a singular surface point, the surface normal is equal to zero. Thus, the appearance of a 
singular point heralds the oncoming of surface undercutting. 

References 5 and 8 propose an approach for determining a line L of regular points on the tool surface that gener- 
ates singular points on the generated surface. The dimensions of the tool surface must be limited by line L to avoid 
undercutting. In the case of generation by a rack-cutter, the limiting line L of the rack-cutter surface determines the 
limiting height of the rack-cutter addendum. 

Pitch line 

1.2 

0.8 

,0.4 

*   0.0 

-0.4 -- 

-0.8 

ha(Pn) 

Pitch line 

Figure 2.4.1.—For determination of conditions of 
undercutting and pointing by rack-cutter. 

Figure 2.4.2.—Permissible dimensions of rack-cutter 
addendum ha and dedendum h,j. 
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The pointing of generated teeth means that the topland width of the generated teeth becomes equal to zero. In 
the present project, pointing was avoided because a minimal value of the topland width was provided. 

Figure 2.4.1 shows the transverse profiles of the rack-cutter space and the profiles of the generated pinion tooth. 
Point Ac is the limiting one of the rack-cutter left profile that generates the singular point A j of the left pinion trans- 
verse profile. Point Bc of the rack-cutter profile generates point B^ of the pinion profile. The width of the pinion 
topland is designated by Sfl. The left transverse profiles of the rack-cutter and the pinion are shown at a position 
where they are in tangency at point Q. Point P belongs to the instantaneous axis of rotation. The heights ha and hd of 
the working parts of the rack-cutter addendum and dedendum are measured from the pitch line of the rack-cutter. 

The results of the present investigation are illustrated by the curves of figure 2.4.2, which represent functions 
ha{Nx) and h/NJ determined for the data ß = 20°, an = 25°, 10<Nl< 30, and Pn = 1/in. These curves were ob- 
tained by considering the meshing of the transverse profile of the rack-cutter with the transverse profile of the pinion 
(or the gear). Note that the normal profile of the rack-cutter is a parabola and the rack-cutter surface Zc is a parabolic 
cylinder. The transverse profile of the rack-cutter has also been proven to be a parabola. The parabolic coefficients 
a * and ac of the transverse and normal profiles are related as 

ar = ar 
cos3 a, 

cos a„cosß 
(2.4.1) 

The surface of action between the rack-cutter surface and the generated pinion (or gear tooth surface) is a cylin- 
drical surface. The transverse section of the surface of action is shown in figure 2.4.3. 

In summarizing the results of this investigation, we may state that undercutting may occur for a pinion with 
a small number of teeth (see fig. 2.4.2). A sufficient working height h = ha + hd of the teeth is in the range 
(l.5/Pn)<h<(l.9/Pn). 

Figure 2.4.3.—Transverse profiles and lines of action, 
(a) Rack-cutter profile, (b) Pinion profile, (c) Lines of 
action. 

2.5 Principal Curvatures and Directions of Pinion-Gear Tooth Surfaces 

Knowledge of principal curvatures and directions of the contacting surfaces Sj and S2 is required to determine 
the dimensions of the instantaneous contact ellipse. Determining the principal curvatures of surfaces Xj and X2 is 
based on the approach developed in references 5 and 7. The advantage of this approach is that the sought-for curva- 
tures are expressed in terms of the principal curvatures and directions of the tool surface and the parameters of mo- 
tion. In the case of the helical gears under discussion, the principal curvatures and directions of pinion-gear tooth 
surfaces can be expressed in terms of the principal curvatures and directions of rack-cutters and the parameters of 
motion. 
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Figure 2.5.1.—Principal directions on generating and 
generated surfaces;;' = c,t;j = 1,2. 

Let us start the derivations by determining the curvatures of the rack-cutter. The surface of rack-cutter Zc (or Zf) 
is a cylindrical surface whose generatrix has the direction of skew rack-cutter teeth. Such a surface is a ruled "devel- 
oped" surface, which means that it is formed by straight lines (the generatrices of the cylindrical surface), and the 
normals along the generatrix do not change their direction. The generatrix is the surface principal direction and the 
principal curvature in this direction is equal to zero. This means that 

,('). = 0    {i = c,t) (2.5.1) 

The other principal direction is the tangent to the parabola that represents the normal profile and the principal 
curvature is the curvature of the parabola determined at point Q as 

,(0 = = 2a j (i = c,t) (2.5.2) 

The principal curvatures and directions of the pinion (or gear) tooth surface generated by the rack-cutter are 
determined by using the approach developed in references 7 and 8, which enables us to determine the following: a, 
the angle formed by principal directions e^ and e^'' (fig. 2.5.1) and principal curvatures on directions e/7)and e^ 
on surface Z-. Here, j =1 when / = c (when pinion tooth surface Zj generated by rack-cutter Zc is considered). Simi- 
larly, j = 2 when / = t (when gear tooth surface Z2 generated by rack-cutter Z, is considered). 

We have limited the determination of principal curvatures and directions on surfaces Zj and Z2 only at point Q 
of the tangency of the generating and generated surfaces (fig. 2.1.2). In an ideal profile-crowned gear drive, the path 
of contact on Zj (and Z2) is a helix generated by point Q, and the principal curvatures and directions at any point of 
the helix are the same. 

The approach discussed above is illustrated by an example with the following data: tooth numbers N{ = 17, 
N2 = 77; the normal profile angle an = 25°; the normal diametral pitch Pn = 5; the parabolic coefficients ac = 0.425 
and at = 0.394; the helix angle ß = 19.548°. 

The results of computing the principal curvatures of Zj and Z2 at point Q (fig. 2.1.2) are as follows: 
K(/} = 0.0125, K$ = 1.5605, K(

;
2) = 0.0083; and K(

;f = 0.5940. 
Therefore, for the pinion tooth surface with a convex normal profile, both principal curvatures are positive. The 

Gaussian curvature K^ = K^K^ > 0 and all points of this surface are elliptic ones. 
For the gear tooth surface with a normal profile, the principal curvatures have opposite signs. The Gaussian 

curvature K^ = K^K^ > 0 and all points of this surface are hyperbolic. 
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2.6 Determination of Contact Ellipse 

The determination of the instantaneous contact ellipse is based on the following considerations (refs. 5 and 7): 

1. Consider as known: the principal curvatures and directions on surfaces Ej and X2 and angle a formed by unit 
vectors e^ and e^2) (fig. 2.6.1). The details for determining the principal curvatures of contacting surfaces are 
given in reference 7. 

2. The elastic deformation 8 of contacting surfaces is given. 

Now, determine the orientation of the contact ellipse by using angle oc(1) and the dimensions a and b of the con- 
tact ellipse and by using the following equations: 

cos2oc(1) = 
g1-g2cos2g 

(si2-2gig2cos2c + gf) 
(2.6.1) 

sin2oc(1)=- 
g2sin2o 

(g2-2g1g2cos2G + g2 1/2 (2.6.2) 

Axes of the contact ellipse are determined with equations 

2a = 2 
1/2 

2b = 2 
1/2 

(2.6.3) 

where 

4 
KE} - KE2) - (si ~ 2§iS2 cos 2a + gf) (2.6.4) 

B = Kf - 42) + (g2 - 2gjg2 cos 2a + g2) (2.6.5) 

Figure 2.6.1.—Contact ellipse. 
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-0.2 

-0.2 

Figure 2.6.2.—Contact ellipses on pinion and gear 
tooth surfaces. 

,(0 ,(0 , v(0 A0 _ v(0 
// (' = 1,2) (2.6.6) 

Figure 2.6.2 shows the contact ellipses determined on pinion and gear tooth surfaces Sj and X2. To avoid mis- 
understanding, we have to emphasize that the tangents to contact paths on the mating rack-cutter surfaces Ec and X, 
coincide with each other (they are directed along the line of tangency of If and Z,). However, the tangents to the 
contact paths on pinion-gear tooth surfaces £j and X2 at point Q of surface tangency slightly differ from each other. 
Therefore, the orientation of contact ellipses is determined by different angles (A, and u2, as shown in figure 2.6.2. 
The dimensions and orientation of the contact ellipse have been determined for these design parameters: tooth num- 
bers Nl = 17 and N2 = 77; normal profile angle cc;i = 25°; normal diametral pitch Pn = 5; parabolic coefficients 
ac = 0.425 and at = 0.394; helix angle ß =19.548°; elastic deformation 5 = 0.0025 in. The other design parameters 
are the same as those mentioned in section 2.5. 

2.7 Recommended Parameters of Rack-Cutter Normal Profiles 

The normal profiles of mating rack-cutters are shown in figure 2.7.1 (see also fig. 2.1.2(a)); Q is the point of 
tangency of the profiles; P relates to the pitch line (the instantaneous axis of rotation); /,• = ]ßP\ (i = c,t), an is the 
normal pressure angle; C2 and Cl are the centers of curvature at point Q of the gear and pinion profiles. The choice 
and determination of design parameters shown in figure 2.7.1 are based on the following considerations: 

1. The normal pressure angle an is chosen as 25° to 30°, which is in agreement with previous experience in 
designing the Novikov-Wildhaber helical gears. The increase in the pressure angle causes a higher sensitivity of the 
gearing to the error in the center distance and a larger value of the contact force. However, using a larger value of a 
allows us to obtain more favorable relations between the curvatures of the gear tooth surfaces, thereby reducing the 
stresses. 

2. The distance /,- (/' = c,t) is chosen as /,• = (cosan) / (/>„), where Pn is the normal diametral pitch. 

3. The recommendation for pc = \QC2\ and pf = |gC2| (fig. 2.7.1) are based on the following relations: 

a. The radius of curvature of the gear rack-cutter must satisfy the inequality 

N-?sino.„ 

2P„ cos3 ß 
(2.7.1) 
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Figure 2.7.1.—Choice of design parameters for two 
rack-cutter normal profiles. 

where N2 is the number of gear teeth and ß is the helix angle. 
Inequality (2.7.1) is derived by using the Euler-Savari equation that relates the curvatures of the transverse pro- 

files of the gear rack-cutter and the gear. Inequality (2.7.1) is the condition of the gear normal profile to be concave 
in the neighborhood of the designated point Q. 

b. We recommend that the radii of curvature pt and pc be 

6.35 5.8 (2.7.2) 

to yield 

Pl- 
Pc 

:1.08 (2.7.3) 

Observing equations (2.7.2) and (2.7.3) allows us to keep the bearing contact shift caused by the change in the 
center distance in the working dimensions of the teeth. 

c. The profiles of the rack-cutters are parabolic curves (see sec. 2.2). The parabolic coefficients ac and at 

and the curvature radii are related as follows 

1 

2pc 

1 

2pf 

(2.7.4) 

4. The values of the addendum and dedendum of the rack-cutter profiles must guarantee that the undercutting 
and pointing of generated teeth be avoided. Section 2.4 gives the results of an investigation of the avoidance of 
undercutting and pointing. 

2.8 Tooth Contact Analysis of Profile-Crowned Helical Gears 

The purpose of a TCA (tooth contact analysis) of profile-crowned helical gears is to prove that the meshing of 
such gears is accompanied by an unfavorable shape of the function of transmission errors that causes vibration and 
noise. Therefore it is necessary, as shown in section 4.0, to combine profile crowning with longitudinal crowning to 
transform the function of transmission errors to enable a reduction in the level of vibration and noise. Generating 
helical gears with profile and longitudinal crowning requires that existing technology be modified (see sec. 4.0). 
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Zq,z2 

Figure 2.8.1.—Coordinate systems applied for TCA 
(tooth contact analysis). 

Figure 2.8.2.—Determination of change of normal 
pressure angle &an caused by change of center 
distance A£. (a) Initial tangency of profiles <r1 and 
<r2 at PO'nt Q. (b) Tangency of a^ and a2 at point Q' 
that corresponds to error of center distance AE. 

Computer programs developed for TCA are based on the simulation of the continuous tangency of misaligned 
gear tooth surfaces. For this purpose, apply the following: (a) movable coordinate systems Sj and S2 rigidly con- 
nected to the pinion and the gear and (b) the basic fixed coordinate system S* where the meshing of the gears is con- 
sidered (fig. 2.8.1). Coordinate systems S and S are auxiliary coordinate systems applied to simulate errors of 
alignment AE, a change in the shortest center distance, and Ay, a change in the shaft angle. In addition, the error in 
the lead angle AX. ■ (i = 1,2) is also considered. 

The TCA algorithm is based on the following procedure: 

Step 1.—The pinion and gear tooth surfaces and their unit normals in coordinate systems Sx and S2 are initially 
represented as follows: 

1. Surface Zj and surface unit normal rij are represented by vector functions r^w^ij/j) and n^u^y^. 
2. Similarly, for surface X2, we have vector functions r2(ur\\i2) and n2(wr,V|/2). 

Step 2.—Using coordinate transformation, represent Zj, iij, 1^, and n2 in S* The continuous tangency of Zj and 
Z2 is represented by the vector equations 

rf)(uc,\\fh^l,AXpl) = r(/)(ut,^2,<f>2,Ay,AE) (2.8.1) 

n/1)("c.Vi.<Pi.AXpl) = n^2)(M„\|/2,(p2,AY) (2.8.2) 
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Errors of alignment Ay and AE are simulated by the proper installment of coordinate system S with respect to S. 
(fig. 2.8.1). It is assumed that the error of the lead angle is considered for the pinion only. Angles (pj and cp2 repre- 
sent the rotation of pinion and gear being in mesh with each other. 

Step 3.—Vector equation (2.8.1) is equivalent to three independent scalar equations, but (2.8.2) is only equiva- 

lent to two independent scalar equations since n^/ = n^   = 1. The system of vector equations (2.8.1) and (2.8.2) is 

equivalent to five independent scalar equations in six unknowns represented as 

fi(uc,yh(pl,ut,\\f2,(p2) = 0 (2.8.3) 

One of the unknowns, for example <pj, can be chosen as the input with the goal being to obtain the solution of 
the equations by functions 

uc (<Pl )> Vi (<Pi )> «f (<Pi). ¥2 (<Pi). 92 (<Pi) (2-8.4) 

This is an iterative process that requires at each iteration the first guess and the observation of the inequality 
(refs. 7 and 8). 

D{hJ2,h,UJs)   ^0 (285) 
D(uc,yl,yl,ut,\\f2,(p2) 

The iterative process is computerized by using the program DNEQNF (ref. 9). The output of TCA enables us to 
determine the function of transmission errors A(p2((p1) and the shift of the bearing contact caused by misalignment. 

Investigation shows that the most dominating error for the shift of bearing contact is the error of the center dis- 
tance. The approach developed in this report is based on an investigation of the meshing of the normal profiles of 
mating rack-cutters. 

Step 1.—Figure 2.8.2(a) shows that the normal profiles C7j and CT2 of the rack-cutters are initially in tangency at 
point Q. The curvature radii are pj = Q Cj and p2 = Q C2, and the location of the centers of curvature Cj and C2 

with respect to P is determined by b^ and b2. 
Step 2.—Simulate the tangency of <Jj and CT2 when the center distance of the pinion and the gear is changed, 

imagining that a2 is held at rest and normal profile <jj is turned about C2 through dan (fig. 2.8.2(b)). Then, center Cj 
will take position C[ and the normal profiles become in tangency at Q'. The new pressure angle is a'n, and the shift 
of the tangency point over o2 is 

52=p25a„,   81 = p18a„ (2.8.6) 

It is easy to verify that 

äna'n = b2~bl~M (2.8.7) 
P2-P1 

To reduce the shift of the point of contact over the profiles of the rack-cutters (and over the surfaces of the pin- 
ion and gear), it is necessary to increase the magnitude of (p2 - p j). The new design of helical gears developed in 
this report provides more room for such a solution without substantially affecting the contact stresses because the 
curvature radii p2 and pj are substantially larger in comparison with the previous design of Novikov-Wildhaber 
gears. 

Although the approach discussed for investigating the influence of AEj is an approximate one, it provides a 
high precision that is confirmed by applying the developed TCA computer program. The change of center distance 
AE does not cause transmission errors. 

Figures 2.8.3 and 2.8.4 graphically represent the influence of errors Ay and AX j on the transmission errors. The 
function of transmission errors becomes a discontinuous one and worsens the conditions for the transfer of meshing. 
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Figure 2.8.3.—Linear transmission error function when 
only profile crowning is applied; Ay = 3 arc min. 
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Figure 2.8.4.—Linear transmission error function when 
only profile crowning is applied; A\ = 3 arc min. 

Gear vibration and noise become inevitable if only profile crowning is provided. This is the reason why combined 
crowning (in the profile and longitudinal directions) has been developed by the authors (see sec. 4.0). 

3.0 HELICAL PINION CONCAVE AND GEAR CONVEX PROFILE-CROWNED TOOTH SURFACES 

3.1 Introduction 

Section 2.0 covers the proposed design of helical gears with a pinion convex-gear concave type of surface con- 
tact. We consider in this section helical gears with pinion concave-gear convex surface contact. Our investigation 
shows that the first type of contact is preferable (see sees. 3.3 and 3.4). However, for the purpose of completeness 
of the project, the pinion concave-gear convex contact of surfaces is covered in this section, in addition to the inves- 
tigation accomplished in section 2.0. 

This investigation used the same design methodology as applied in section 2.0. The contents of this section 
cover the choice of design parameters based on the results of investigating undercutting and pointing, determining 
the contact ellipse, and comparing the results obtained with those obtained in section 2.0. 

3.2 Preliminary Choice of Design Parameters of the Normal Section of Rack-Cutters 

As mentioned in section 2.0, two imaginary rigidly connected rack-cutters Ef and £ are applied to generate 
the pinion and the gear. The normal sections of the rack-cutters are shown in figure 3.2.1. The radius of curvature 
\OaCc\ of the pinion rack-cutter at point Q must satisfy the inequality 

\°cCc\ = Pc< 
A^ since,, 

2/>„cos3ß 
+ /, (3.2.1) 

The right side of the inequality represents the curvature radius of the rack-cutter that generates point Q of the 
pinion profile of an infinitely large curvature radius. The derivation of inequality (3.2.1) is based on the application 
of the Euler-Savari equation. 

Inequality (3.2.1) guarantees that the pinion transverse profile is concave only at point Q but not at any point of 
the pinion profile. This is illustrated by the drawings of figure 3.2.2, which shows transverse profiles of the pinion 
and the rack-cutter. The pinion profile is concave-convex. However, choosing proper design parameters makes it 
possible to obtain a concave pinion profile in the whole area. An example of a set of such design parameters is 

cc„=25°, lc = 
0.906 1 

2pf 

l.25Pn,   a, 
2p, 

= 1.389/>„,   Npl>l6 
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Figure 3.2.1.—Normal sections of rack-cutters, (a) 
Profiles of pinion concave an gear convex rack- 
cutters, (b) Pinion rack-cutter, (c) Gear rack-cutter. 

Axis of symmetry 

l^- Axis of symmetry 

Cutter 
Pinion 

Figure 3.2.2.—Concave-convex pinion and convex 
rack-cutter transverse profiles. 

The limitations of the rack-cutter addendum and dedendum are determined in subsection 3.3. 

3.3 Avoidance of Undercutting and Pointing 

The developed approach is based on the same considerations that have been represented in section 2.4. The final 
results of the concluded investigation are formulated as follows: 

1. Undercutting by a rack-cutter may occur only for the generated convex profile gear and does not occur for the 
concave profile pinion. Undercutting may be avoided by limitations of the active part of the rack-cutter addendum. 
Function hJ>

n{N2) is represented in figure 3.3.1 by curve 1. 
2. Pointing may occur for a gear with a small number of teeth. Curve 2 in figure 3.3.1 shows function hdPn(N2) 

where hd is the active part of the rack-cutter dedendum. The curve has been determined under the condition that the 
tooth thickness on the gear addendum circle be chosen as t = (0.3/Pn). 

i 
1 2 

L 1 

0.8 

— 

S£  0.4 
ha{Pn) 

■c 

0.0 ■ Pitch line 

 ——.  hd(Pn) 2 

-0.4 I                        I I              I  ► 
20 40 60 

N2 

80 100 

Figure 3.3.1.—Permissible dimensions of rack-cutter 
addendum ha and dedendum h^. 
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(a) Path of contact 

Path of contact 

Figure 3.4.1.—Contact ellipse on pinion tooth surfaces, 
(a) Concave pinion tooth surface, (b) Convex pinion 
tooth surface. 

The whole active tooth height for a gear with tooth number N2 > 70 is 

h = ha+hd 
1.4 

(3.3.1) 

Note that we have h = (1.8/Pn) in the case of the pinion convex-gear concave design that is obtained in section 
2.0. The reduction of tooth height in the second version is a disadvantage of the pinion concave-gear convex design. 

3.4 Contact Ellipse 

Applying the approach discussed in 2.5 and 2.6, we have obtained the pinion and gear principal curvatures 
and directions and then have determined the dimensions and orientation of the instantaneous contact ellipse. The 
numerical computations have been obtained for both designed versions of helical gears and then were compared. 
The design parameters are the same as those applied in section 2.0. The obtained contact ellipses for both versions 
are shown in figure 3.4.1. It is evident that because of the decrease in the contact ellipse, the second version of the 
design cannot be recommended for application. The preferable design version is the pinion convex-gear concave 
type of surface contact. 

4.0 GENERATION OF DOUBLE-CROWNED PINION TOOTH SURFACE BY GRINDING DISK 

4.1 Research Goals and Developed Approaches 

In sections 2.0 and 3.0, profile crowning of pinion-gear tooth surfaces £j and E2 
was shown to be sufficient 

only for the localization of bearing contact. If crowning is accomplished in the profile direction only, misalignment 
of the gear drive will cause almost linear discontinuous functions of transmission errors (see curve a in figure 1.8 
and figs. 2.8.3 and 2.8.4). Then, high vibration of the gear drive becomes inevitable. To avoid such a defect, the 
authors have proposed the following methods for crowning: 

1. Profile and longitudinal crowning is applied for pinion generation. Profile crowning is based on the mismatch 
of imaginary rack-cutter surfaces used to derive theoretical pinion-gear tooth surfaces. Longitudinal crowning of the 
pinion tooth surface is achieved by tool plunging. The tool may be (a) a grinding (or a cutting) disk or (b) a grinding 
worm (a hob). 
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2. Only profile crowning is applied for gear generation, which is achieved by the mismatch of imaginary rack- 
cutter surfaces as mentioned above. 

This section covers the (1) generation of the pinion tooth surface by a plunging disk; (2) generation of the pin- 
ion tooth surface by a plunging worm; and (3) TCA for aligned and misaligned gear drives. 

4.2 Generation of Pinion Tooth Surface by Plunging Disk 

The proposed method for the generation is a modification of the existing method of form grinding and is based 
on the following considerations. 

1. Consider initially that the pinion tooth surface Ej is a helicoid determined as the envelope to the imaginary 
rack-cutter surface E . Surface Ej is represented by vector function rj (uc, V|/j) (see 2.2). 

2. Then determine surface E^ of the shaped disk, considering as given the pinion tooth surface Ej (refs. 5 and 7). 
The axes of the pinion and the disk are crossed and the installment of the disk with respect to the pinion is shown in 
figure Al of appendix A. The disk surface ~Ld is determined as the envelope to the family of pinion tooth surfaces. 
Figure 4.2.1 shows the cross-sectional profile of the grinding disk. 

3. Consider at this stage that surface Y.d of the grinding disk is given and that the grinding disk performs a screw 
motion and is plunged with respect to the pinion. It is obvious that surface Erf will generate a modified pinion tooth 
surface En as the envelope to the family of surfaces Erf of the grinding disk. 

P u 

Detailed derivations are presented in appendixes A and B. 
The meshing and contact of pinion-gear tooth surfaces generated as proposed above have been tested by the 

TCA method, and the results are presented in section 5.5. 

/\ 

\y 
Figure 4.2.1.—Cross-sectional profile of grinding disk. 
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APPENDIX A 
DETERMINATION OF SURFACE Zrf OF GENERATING DISK 

Introduction 

Recall that the derivation of the pinion tooth surface generated by a plunging disk is divided into following 
stages (see 4.2): 

1. Determination of disk surface l.d (ud,Qd) that is conjugated to the profile-crowned pinion tooth surface 
£J(MC,\|/J), which is considered a helicoid. 

2. Determination of pinion tooth surface Sj {ud$d) generated by disk surface T.d (udfid) that is plunged during 
the process generation. 

Stages 1 and 2 of the derivations are presented in appendixes A and B. 

Algorithm for Computation of Surface I.d 

The derivation of ~Ld is based on the following procedure. 

Step 1.—Apply three fixed coordinate systems Sy, Sd, and SF. Coordinate systems S{ and Sd are rigidly con- 
nected to the pinion and the disk (figs. A.l and 2). Coordinate system SF is an auxiliary fixed coordinate system. 
The drawings of figures A. 1 and 2 illustrate the applied coordinate systems in orthogonal projections and in three- 
dimensional space. The need for three coordinate systems and the reason they are considered as fixed is discussed in 
the following derivations. 

Step 2.—The installment of the disk with respect to the pinion is defined by the shortest distance Ed and the 
crossing angle yd. The shortest distance Ed is determined by 

Ed=R0+rld (Al) 

where R0 is the outer radius of the grinding disk and rld is the dedendum radius of the pinion. 
The crossing angle yd between the axes of rotation of the grinding disk and of the pinion is identical to the lead 

angle \v 

Step 3.—The pinion tooth surface Xj and its normal Nj are represented in coordinate system Sy by (sec. 2.2) 

rl=rl("oVl) (A 2) 

N^Ni^.v,) (A3) 

where (MC,\|/J) are the surface parameters. 
Equations (A2) and (A3) are obtained for the case when axis Xj is the tooth axis of symmetry (fig. A.3(a)). The 

grinding disk generates the pinion space and therefore we need the pinion tooth surface equations with axis xl as the 
axis of symmetry of space (fig. A.3(b)). This can be achieved by turning the pinion through angle 

e,=-£- (A4) 
Nl 

where In/N^ is the pinion pitch angle. Using coordinate transformation, the pinion tooth surface and its normal may 
be represented now by vector equations 

rl=rl(McVi+ei) (A5) 

N^N^yi+ej) (A 6) 
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Figure A.1.—Installment of grinding disk. 
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Figure A.2.—Coordinate systems applied for derivation 
of td. (a) Coordinate systems, (b) Disk axial section. 

Figure A.3.—Orientation of axis of symmetry of 
(a) tooth and (b) space. 
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Step 4.—Our next goal is to determine on surface Zj the instantaneous line of tangency of surfaces Zj and Zrf. 
This can be accomplished considering that the normal Nj to Zj at any point of tangency of Zj and Zrf must pass 
through the grinding disk axis (refs. 5 and 7). This requirement, which follows from the condition that the disk sur- 
face be a surface of revolution, is represented by equations (refs. 5 and 7) 

^l-^l(«c.Vl)=>l-yi(«c.Vl) = Z1-=i(t«c,\|f1) 
Nxt {uc. Vl) Nyt («c> Vl) AL (MC, V,) 

where (xv yv r,) and \NXl ,Nyi,N:i 1 are the point coordinates and the components of Nj at a current point on Sp 

Zj, Kj, Zj are the coordinates of the point of intersection of normal Nj to surface Zj with the disk axis. Here, for the 
case when a left-hand pinion is generated (figs. A.4, 1, and 2), we have 

Xi=Ed,    ^- = tanyd (A 8) 
zl 

In the case of a left-hand helicoid, we have (refs. 5 and 7) 

yiNXl-xiNyi=-pNZi (A 9) 

Equations (A7) to (A9) yield the relation 

4 ("c• Vi) = (£rf - x\ + Pi cot Yrf)AL - £j cot YdJVyi + =iNXl = 0 (A 10) 

Equation fd = 0 may be called the equation of meshing of surfaces Zj and Z^. 

The line of tangency of Zj and Z^is determined by applying simultaneously equations (A5), (A6), and (A10). 
The same equations determine the line of tangency of Zj and ~Ld in coordinate system SF because coordinate systems 
Sj and SF coincide with each other (figs. A.l and 2). 

Step 5.—The line of tangency between surfaces Zj and Z^ is determined in coordinate system Sd by 

r
£/("c.Vi) = M^rf(Mc,v1),   Nd(uc,yl) = LdFNF(uc,yl),   fdF{uc^x)=0 (All) 

where rF(uc,\\>l) = rl(uc,^fl +9,), fiF(uc,^i)s N^,^ + ei)> /rff(«c.Vl)s/rfl(«c.Vi) = 0. 
Step 6.—The next goal is to determine the axial profile of the grinding surface ~Ld. Equations (All) enable us to 

determine the coordinates of the current point M of the line of tangency of ~Ld and Zj by equations 

Xd = xd{uc>v\)> yd = yd{uc>Vi\ :d = :d(uc>Vi\ /</f(«cVi) = o (A12) 

The axial profile of the grinding disk (fig. A.5) is determined by 

4M)=-P = -(^)°'5>   4M)K.Vi).   /dF(«c,Vl) = 0 (A13) 

The disk surface ~Ld (ud,Qd) may be formed by rotating the axial profile about the disk axis; parameter Qd is the 
current angle of rotation of the axial profile. 
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Figure A.4.—Orientation of coordinate system Stf 

with respect to S-j or a left-hand pinion. 
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Figure A.5.—Derivation of axial profile of grinding disk. 

Determination of Crossing Angle yd 

The determination of crossing angle yd must satisfy the following requirements: 

1. The line of tangency between ~Ld and Sj has to contain point Q of the tangency of the pinion rack-cutter and 
the pinion tooth surface in their common normal section (fig. 4.1.1). Recall that point Q is simultaneously the point 
of tangency of pinion-gear tooth surfaces for an aligned gear drive. This requirement is satisfied with pinion surface 
parameter uc = 0. 

2. The normal to the pinion tooth surface should not only intersect the axis of the grinding disk but pass through 
a point of the pinion tooth surface Sj that belongs to plane zF = 0. 

These two requirements yield the following equations in two unknowns, \|/x and yd: 

41)("c¥i)s41)(°'Vi) = 0 (A14) 

/di(«c Vi)s /rfi(0,Vi) = [Ed -x
(P(0,^i) + Pi cotyd]N^(0,^i)-Ed coty^>(0, Vi) = 0        (A15) 

where (A15) is the transformed equation of meshing. 
The final equation for the determination of yd is 

cotyrf = 
_   Ed-XF\0M)]N^t) 

£^«(0,^)-PliV«(0)¥i) 
(A 16) 

where v|/j is determined from 

^KH (A 17) 
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APPENDIX B 
COMPUTERIZED GENERATION OF PINION TOOTH SURFACE BY PLUNGING DISK 

We designate the pinion tooth surface generated by the plunging disk as Zj (V|/j,V|0 to differentiate it from sur- 
face Xj (M^.VJ). Recall that Zj (MC,1|/J) is a profile-crowned pinion surface whereas Zjfyj.y ) is the pinion surface 
crowned in the profile and longitudinal directions. The longitudinal crowning is provided by the plunge of the grind- 
ing disk. 

For the derivation of Z^y^X)/), we apply two coordinate systems: Sn, the fixed, and S , the movable, which is 
rigidly connected to the pinion (fig. B.l). The derivation of pinion surface ZjOj/pX)/_) is based on the following con- 
siderations: 

1. In appendix A, the line of tangency of profile-crowned pinion tooth surface EJ(M .x^) and the grinding disk 
surface Zrf has been determined. This line of tangency is represented in S by 

r(D _ M) r» («cVi).   /</i(wc>Vi) = 0 (Bl) 

where r^\uc,\^i) = r1(wc,\(/1 + G^Csee eq. (A5)), and/rfl = 0 is the equation of meshing represented by (A10). 

2. Coordinate system Sn and the grinding disk are held at rest while coordinate system 5 performs a screw 
motion with the pinion and in addition is plunged with respect to Sn. The plunge is provided to the pinion instead 
of the disk. Figure B.l shows the screw motion of a left-hand pinion and the components of this motion are (a) dis- 
placement / = p1w, where/?j is the pinion screw parameter, and (b) rotation through angle \j/   Additionally pro- 
vided is the plunge displacement AEd (\|/ ) of the pinion in the direction of the shortest distance where 

r T2 9 
(B2) 

zirzp 

Figure B.1.—Coordinate systems applied for derivation 
of pinion surface Si. 

Figure B.2.—Determination of normal to generated 
pinion tooth surface X-). 
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The pinion-generated surface is determined as the family of spatial lines generated in the Sp coordinate system 
while the pinion performs the motions described above. Surface Zj is represented by 

r1(uc,\\fl,yp) = Mpn(yp)rn(uc,\\Fl),   fdn(uc>Vi) = ° (B3) 

where fdn(uc,y1) = fdF(uc,\yx) = f<n(uc,yi) = 0. 

Here (fig. B.l) 

cosily sinyp 0 -AEdUf p)cosy p 

-sin\\fp cos\|/p 0 AEd\y p)sin\y p 

0             0 1 /(v|/p) 

0             0 0 1 

Mp„(V; (B4) 

Consider that surface £j is represented by vector function 

*l [uc (Vi)> Vi. ¥P ] = n (Vi. WP) 

Function MC(V|/J) can be determined using the equation of meshing/dl = 0 (see eq. (A10)). 

Then, determine the normal to ^(x^Y ) 

(B5) 

(B6) 

where 

3rj _ 3rj duc     3rj 

d^i     duc dxj/j     öl)/! 
(B7) 

A simphfied approach to the derivation of normal Nj to surface X1(\|/1,\|i_) is based on the following consider- 
ations: 

1. The initial position of the common normal NM (fig. B2) to surface Xj and the grinding disk surface T,d is 
determined in coordinate system Sn by equation (A3) as 

N„(MC. Vi) = ^l(uc,^i),    fdn(uc>Vl) = 0 (B8) 

2. In the grinding process, the normal performs in coordinate system S two motions simultaneously: (a) rota- 
tion about the pinion axis of angle \|/ (fig. Bl) and (b) rotation about the y„-axis of angle |J.(\|/p) (fig. B2) determined 
by 

(B9) 
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Then normal Nl can be determined as 

Ni(«c,Vi.Vp) = Lpn(Vp)Ln[ji(Vp)]NJI(Mc,\|f1) 

where Lpn(yp) is the 3x3 submatrix of matrix Mpn(\\fp) (see eq. (B4)) and LH can be determined as 

(BIO) 

4^P)} = 
cosfi   0   -sin|i 

0       1        0 

sinn    0    C0SH 

Parameters uc and \|/j are related by the equation of meshing (A10). 

(Bll) 
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5.0 GENERATION OF PINION TOOTH SURFACE BY PLUNGING OF GRINDING WORM 

5.1 Introduction 

The generation of a pinion (gear) by a grinding worm (hob) must be considered as a two-parameter enveloping 
process in which the related motions of the worm and the workpiece are represented by two independent groups. 
One of these two groups includes the related rotations of the worm and the workpiece. The other group is referred to 
as the feed motion provided in the direction of the workpiece. 

In our case, the workpiece is the pinion and the longitudinal crowning is provided by the plunging of the worm 
with respect to the pinion in the direction of the shortest distance. 

5.2 Installment, Related Motions, and Applied Coordinate Systems 

Derivation of crossing angle.-Consider that a left-hand pinion is generated by a left-hand hob (grinding worm). 
It is more favorable for cutting conditions if the pinion and hob helices are in the same direction. The drawings of 
figure 5.2.1 show a left-hand hob (fig. 5.2.1(a)) and its installment with respect to a left-hand pinion (fig. 5.2.1(b)). 
It can be easily verified from the drawings that the crossing angle yw is determined as 

:90°-ßf (5.2.1) 

where ß is the pinion helix angle and Xw is the worm lead angle. 

Pinion axis 

Figure 5.2.1.—Derivation of crossing angle yw between pinion and worm axes, (a) Left-hand 
worm with lead angle Aw (b) Installment of worm with respect to pinion. 

Related motions performed during feed motion.—Figure 5.2.2 shows two positions of the worm axis when the 
feed motion along the pinion axis is provided. The relative motion of the worm surface with respect to the pinion 
surface during the feed motion must be provided along the pinion screw surface, and therefore an additional transla- 
tion motion of the worm (perpendicular to the pinion axis) determined as lw tan ß^ must be provided. 

Axial worm translational motion.—A conventional method for generating spur and helical gears by a worm 
is based on the requirement that the piecework and the worm perform related rotations about their axes. However, 
for the purpose of simplifying the derivations, the rotation of the worm can be substituted by its translational motion 
in the axial direction. The following derivations are based on the consideration that the worm and the pinion being 
generated are simultaneously in mesh with the same rack that has generated the pinion. 

Figure 5.2.3 shows the velocity polygon during the meshing process of the worm and the rack. The axial 
displacement of the worm may be represented in two components: sw cos \ and sw sin Xw that are directed perpen- 
dicular to the tangent t-t to the helix and along the helix. Similarly, the displacement of the rack may be represented 
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.Worm axis 

Sw COS kw = Sr COS ßp 

SlA/   COS   A.M 

Sr COS ßp 

Figure 5.2.2.—Components of translational motion of        Figure 5.2.3.—Derivation of relations between axial 
worm performed during feed motion. displacement of worm and angle of rotation of pinion. 

in normal and tangential components sr cos ßp and sr sin ßp. The normal components of the worm and rack displace- 
ments must be equal. Therefore, we have 

sw cosÄ.,,. =sr cosß. (5.2.2) 

The tangential components sw sin Xw and sr sin ß are not equal, which indicates sliding of the worm and rack 
surfaces. The displacement sr of the rack and the angle of pinion rotation are related by 

sr = rpy pTp (5.2.3) 

Finally, we obtain the following relations between the axial displacement sw of the worm and the angle of gear 
rotation 

Ju. 
_rpcosPp 

cos 
(5.2.4) 

Apphed coordinate systems.—Movable coordinate systems Sw and S are rigidly connected to the worm and the 
pinion; Sm is the fixed coordinate system (fig. 5.2.4). Pinion axis :p coincides with the rm-axis. The pinion and worm' 
axes form the crossing angle yw. Planes n and xm = 0 are parallel to the plane that is tangent to the pitch cylinders of 
the pinion, and the gear worm axis zw lies in plane n. The shortest distance between planes n and x   = 0 is varied in 
the generation process because of the plunging of the worm with respect to the pinion. The location of origin O , of 
coordinate system Sw is represented in plane n by vectors AB and BO ,, where 

A5 = -/M,tanßpjm+/M,k„ (5.2.5) 

BOw=sw(smywjm+cosywkm) (5.2.6) 

5.3 Generation of Pinion Surface Z 
P 

Worm surface.—The worm surface is determined as the envelope to the family of rack-cutter surfaces as dis- 
cussed in section 2.0. The worm design parameters are 

1. The normal diametral pitch, the same as the pinion normal diametral pitch 
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Figure 5.2.4.—Coordinate systems applied for generation of pinion by worm, (a) Sm and Sw. (b) Sm and Sp. 

2. The worm thread number N  (usually, Nw =1) 
3. The worm pitch radius r pw 

The worm lead angle is determined as 

Xw = arc sm 
N„ 

IP r y^' n' pw ) 
(5.3.1) 

The worm surface is represented by vector function r (K , ), which is similar to vector function r^w ,\Ci) (see 
eq. (2.2.6)). 

Parameters of two-enveloping generation of pinion.—Surface E is the envelope to the two-parameter family of 
worm surfaces EM„ which is (the family) represented in S . The independent parameters of motion are (1) the angle 
of pinion rotation \|/ and (2) the worm displacement lw in feed motion. The worm axial displacement sw depends on 
parameter \|/ and other worm displacements depend on parameter lw. 

The tangential displacement of the worm determined as (Aß) jm substitutes an additional angle of pinion rota- 
tion Ayp that occurs in the real machine process and is determined as 

Av|f„=- 
, tanß 

(5.3.2) 

The shortest distance E between the worm and pinion axis is 

E{lw) = E0-all] (5.3.3) 

The axial worm displacement sw is a function of parameter Mf (see eq. (5.2.4)). 
Generation of worm family surfaces.—The family of worm thread surfaces is represented in S by matrix 

equation 

Rp(uw,yw,lw,\\rp) + MpmMmwrw(uw,yw) (5.3.4) 
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Here (fig. 5.2.4) 

Mpm = 

COS\|/„ 

sinyp 

0 

0 

- sin \j/ _ 0 0 

COS\\fp 0 0 

0 1 0 

0 0 1_ 

(5.3.5) 

M„ 

-1      o o      (owom\\w 

0    -cosyH,    sinyvl,    (owOm)jw 

0      sinyH,     cosyH.    (owOm)-kn. 

0 0 1 

(5.3.6) 

(°wOm)-'\w=E0-alll=Exm 

(°w°m) • Jw = -lw tan ß - myp sin y M, = Eyr 

(°w°m)-K= lw ~mVP cosyH. = E.m 

(5.3.7) 

Equations of meshing of worm and pinion tooth surfaces.—In the two-parameter enveloping process, apply two 
equations of meshing (refs. 5 and 7): 

(H,) _   I *<p,y/t 
1]m      *m :^i("M-.VM.,Vp,/„.) (5.3.8) 

N' ("•).„("?.'»■). F2(uw,yw,yp,lw) (5.3.9) 

where subscript m indicates that vectors in equations (5.3.8) and (5.3.9) are represented in coordinate system Sm; 

vector N^ represents the normal to the worm surface; vector \^p'V/p 'represents the relative velocity in the motion 

when parameter \\rp is varied and parameter lw is fixed. Similarly, v^p''"^is the relative velocity determined for the 
conditions when lw is the variable parameter and \|/ is fixed. 

Equations (5.3.4), (5.3.8), and (5.3.9) represent the pinion tooth surface by four related parameters. The deriva- 

tion of relative velocities \m 

procedure: 

wp,y. (*P.'„ and rm  '"*'represented in equations (5.3.7) and (5.3.8) is based on the following 

Step 1: Represent the velocity v »•/wP as 

(wp,yp) _   (wp,\ffp) _(p,Vp) 
= V (5.3.10) 

and then determine vj„ '  '''andv^'  p> 

Step 2: Represent v£'^    bY 

(5.3.11) 
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where 

«4p) = [o   0   if (5.3.12) 

taking Ico^l = 1 rad / sec and rm is the 3x1 vector. The 4x1 vector rm is determined by matrix equation (see eqs. 

(5.3.6) and (5.3.7)) 

*\v       '"«»'"» 
-yw cos yw + zw sin yw + Eym 

ywsxayw + zwcosyw + Ezm 

1 

W,l|/ 
Step 3: Vector vm' 

Pl is represented as (see eqs. (5.3.6)) 

(5.3.13) 

«wf 3£vm      d£L 
-17- 

ym      PC;m 

3¥p     dVp 
= [0   wsinyM,    wcosym] (5.3.14) 

Step 4: Equations (5.3.10) to (5.3.14) yield the following expression for vv
m 

w/Wp 
Eym-yw cosy w+zwsmyv 

msmyw-Exm+x, 

wcosYy 

(5.3.15) 

Step 5: The determination of velocity v)%     is based on the following considerations: 

>/>.') _>,0_V(P.')=>) 
a. 

(5.3.16) 

since v)%'l> = 0 (the pinion is considered as being at rest when the feed motion is provided), 

b. 

vLW'°=^-(ÖÄ) = [-2Vw-tanß   if (5.3.17) 

Thus we found both of the relative velocities using the equations of meshing (5.3.8) and (5.3.9). The normal to 
the worm surface is determined by expression 

N^=Lmw-Nw{uw,^w) (5.3.18) 

where Lmw is the 3x3 submatrix of matrix Mmw (see eq. (5.3.6)). The normal to the worm surface does not depend 
on the relative motion parameters y and lw because the worm performs only translative motion in the fixed coordi- 
nate system S . 
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5.4 Relations Between Tool Plunging and Parabolic Function of Transmission Errors 

Recall that tool plunging Aspl and transmission errors A(p2 are represented by the following parabolic functions: 

tepi=apil2 (5.4.1) 

Aq>2(<Pi)=VI>? (5.4.2) 

where apl (1/in.) and ^(1/rad) are the parabolic coefficients. 
Our investigation resulted in the following approximate equation that relates the parabolic coefficients: 

<W tanq„ since,, Nf 

aplm? cos2 ß + aprmw sin a„ tan2 ß 2P„N2 

Here 

apr=ac-at (5.4.4) 

where ac and at are the parabolic coefficients for the normal profiles of the rack-cutters (see sec. 2.0) and 

mt=\-2atl, (5.4.5) 

mw=\-2aplrpw (5.4.6) 

where r    is the radius of the worm pitch cylinder. 
Errors of alignment cause a shift A/ of the bearing contact as shown in figure 5.4.1. The relation between the 

error of alignment (AX or Ay) and the shift (A/) is represented by 

., A\m... 
Al = -  (5.4.7) 

2a p! tana,, cos ß 

An effective way to restore the central location of the bearing contact by the correction of the lead (or the lead 
angle) is by using equation (5.4.7). The advantage of this approach is that the correction of the lead angle will not 
cause additional transmission errors because a parabolic type of transmission error is predesigned. The reader should 
recall that a predesigned parabolic function of transmission errors absorbs the almost linear functions of the trans- 
mission errors caused by misalignment. 

The accuracy of equation (5.4.3) was tested by a computerized simulation of meshing. Curves a and b in 
figure 5.4.1 represent the parabolic functions of transmissions obtained by TCA and by equation (5.4.3). The simula- 
tion of meshing was accomplished for a helical gear drive with a pinion crowned in the profile and longitudinal 
directions. The following input data were used for the computation: Nl = 17,N2 = 77,P = 5 in.-1, ß = 19.95°, 
a„ = 25°, ac = 0.425 in."1, a, = 0.394 in."1, apl = 0.00139 in."1, rpw = 3.82 in. The small difference between curves a 
and b confirms that equation (5.4.3) may provide sufficient accuracy for the magnitude of a , when the magnitude of 
a  is a given. 

A simpler but less accurate equation may be applied as a substitute for equation (5.4.3). The derivation of the 
proposed equation is based on the following considerations: 

Step 1.—We consider initially that the gear teeth are profile crowned, the path of contact is a helix, and the line 
of action is a straight line that is parallel to the gear axes. Figure 5.4.2(a) shows the transverse profiles in mesh after 
rotation from the initial position through angle <pj = n/Nl and displacements of the point of contact along the line of 
action on the distance / = B/2, where B is the working width of the gear (not shown in this figure). 
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Figure 5.4.1.—Parabolic functions of transmission 
errors, (a) Obtained by simulation of meshing by 
TCA. (b) Obtained by approximate equation (5.4.3). 
(c) Obtained by approximate equation (5.4.12). 

Figure 5.4.2.—Derivation of relation between coeffic- 
ients of parabolas of transmission and plunging 
functions, (a) Transverse profiles £i and YQ. in initial 
meshing, (b) Transverse profiles after plunge of Zi • 
(c) Representation of X1 and S2 as equidistant 
profiles. 

Step 2.—Figure 5.4.2(b) shows that due to the plunge of transverse profile Xj, there is a backlash between 
points Qx and Q2 of the transverse profiles determined as 

Aspl = a pi (5.4.8) 

Step 3.—For simplification, consider the equidistant transverse profiles (fig. 5.4.2(c)). The backlash As l may 
be compensated after the turning of profile E2 through angle 

A(p2 = 
Aspi tan a, 

(5.4.9) 
rp2 

where A<p2 is the transmission error. 
The goal of plunging is to provide a parabolic function of transmission errors: 

A<p2(<Pi) = V>i (5.4.10) 

Step 4.—Figure 5.4.3 shows the development of the helix on the pinion pitch cylinder, where H is the lead. 
Drawings of the figure yield 

B 
_   r22n   _     n 

iVjtanß    />?tanß 
(5.4.11) 
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Figure 5.4.3.—Development of helix. 

Step 5.—Equations (5.4.8) to (5.4.11), taking (pj = n/Nl in equation (5.4.1), yield the following relation between 
the coefficients of the parabolic functions of transmission and plunging: 

*(p = 
Nf tan a, 

ani =■ V 
Ni tana„ 

2/>tf2tan%   "     2PnN2sinz$p 

a
Pl (5.4.12) 

Function A(p2((Pj) determined by equation (5.4.12) is illustrated by curve c in figure 5.4.1. 
For the case of a modified pinion ground by a shaped disk, the relations between the coefficients of the para- 

bolic functions of transmission errors and plunging are similar to the relations represented by expressions (5.4.3) or 
(5.4.12). We have to accept only equivalent coefficients of plunging parabolas for grinding disk ad and for grinding 
worm apl that are related by the following approximate equation: 

ad*> 
ap! sin a, 

sin(a,+<p10) 
(5.4.13) 

where cp10 = n/N^ 

5.5 Tooth Contact Analysis 

The conditions of meshing and the contact of gears with the proposed geometry are investigated for an ideal and 
misaligned gear drive. The results of TCA are presented in the following two cases. 

Case 1: pinion generated by grinding disk.—Figures 5.5.1 and 5.5.2 show the almost linear functions of trans- 
mission errors caused by errors Ay = 3 arc min and AX, = 3 arc min. The magnitude of maximal transmission errors is 
40.48 arc sec in both cases. Figure 5.5.3 shows the predesigned parabolic function for an aligned gear drive with the 
pinion generated by a grinding disk. The magnitude of the maximal transmission error is 11.54 arc sec. Figure 5.5.4 
shows the resulting parabolic function of transmission errors when Ay = 3 arc min; the magnitude of the maximal 
transmission error is 11.66 arc sec. Figure 5.5.5 shows the resulting parabolic function of transmission errors when 
AX = 3 arc min; the magnitude of the maximal transmission error is 10.11 arc sec. 

Case 2: pinion generated by worm.—Figures 5.5.6 and 5.5.7 show the almost linear functions of transmission 
errors caused by errors Ay = 3 arc min and AX = 3 arc min. The magnitude of maximal transmission errors is 
40.48 arc sec in both cases. Figure 5.5.8 shows the predesigned parabolic function for an aligned gear drive with the 
pinion generated by a worm. The magnitude of the maximal transmission error is 7.21 arc sec. Figure 5.5.9 shows 
the resulting parabolic function of transmission errors when Ay = 3 arc min; the magnitude of the maximal 
transmission error is 8.33 arc sec. Figure 5.5.10 shows the resulting parabolic function of transmission errors when 
AX = 3 arc min; the magnitude of the maximal transmission error is 5.41 arc sec. 
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Figure 5.5.1.—Function of transmission errors of gear 
drive with pinion generated by grinding disk. Change 
in shaft angle A7 = 3 arc min. 
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Figure 5.5.2.—Function of transmission errors of gear 
drive with pinion generated by grinding disk. Change 
in lead angle AX = 3 arc min. 
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Figure 5.5.3.—Predesigned parabolic function for gear 
drive with pinion generated by grinding disk. 
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Figure 5.5.5.—Resulting function of transmission 
errors obtained for following conditions: pinion 
generated by a grinding disk; change in lead 
angle A\ = arc min. 
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Figure 5.5.6.—Function of transmission errors of gear 
drive with pinion generated by worm; change in 
shaft angle A7 = 3 arc min. 
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Figure 5.5.7.—Function of transmission errors of gear 
drive with pinion generated by worm; change in 
lead angle Ay = 3 arc min. 
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Figure 5.5.8.—Predesigned parabolic function for gear 
drive with pinion generated by worm. 
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Figure 5.5.9.—Resulting function of transmission 
errors obtained for following conditions: pinion 
generated by worm; change in shaft angle 
AY = arc min. 

70 -30   -20   -10     0      10     20     30     40     50 
«Pl.deg 

Figure 5.5.10.—Resulting function of transmission 
errors obtained for following conditions: pinion 
generated by worm; change in lead angle A\ = 
3 arc min. 

Figure 5.5.11.—Contact ellipses on pinion tooth 
surface. 

The completed computations have confirmed in both cases that the plunging of the tool provides a parabolic 
function of transmission errors and such a function absorbs transmission errors caused by misalignment. Figure 
5.5.11 shows the contact ellipses on the pinion tooth surface. 
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APPENDIX C 
DERIVATION OF GRINDING WORM THREAD SURFACE 

The generation of the worm thread surface ZM, is based on the following idea: The worm is a helicoid and is 
generated by an imaginary rack-cutter Z having the same normal section as the rack-cutter Zc that is applied for the 
generation of the pinion. 

The derivation of Zw is based on this procedure: 
Step 1.—Apply movable coordinate systems Sr and Sw that are rigidly connected to the imaginary rack-cutter 

and the worm. The fixed coordinate system Sn is rigidly connected to the housing of the generating machine. 
Step 2.—The rack-cutter Z;. has skew teeth determined by angle ß;. (fig. C.l), which is correlated with the worm 

lead angle X . The rack-cutter surface is generated in Sr while the coordinate system Sb with the normal profile of 
the rack-cutter performs a translational motion along the direction of the skew rack-cutter teeth (along the jft-axis). 

Zn Zu 

Figure C.1.—Skew rack-cutter Xr used for worm 
generation. 

Step 3.—Figure C.2 shows the installment of the left-hand worm with respect to rack-cutter Zr It is obvious 
that axes zb and zw form the angle 90° -\w and ß;. = Xw. 

Zr>Zw 

90° -X„ 

Figure C.2.—Installment of worm with respect to 
rack-cutter. 
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Step 4.—During the worm generation process, the rack-cutter performs translation Sr while the worm rotates 
through angle \\fw (fig. C.3), where 

sr     'pwWw (Cl) 

yn>yr 

Figure C.3.—Applied coordinate systems for grinding 
worm and pinion. 

Step 5.—The family of rack-cutter surfaces generated in Sw is represented by the matrix equation (fig. C.3) 

rw(uc,ec,yw) = Mw„MnrMrbrb(uc) (C2) 

where (see eq. (2.2.2)) 

rb(iic) = Mbara(uc) (C3) 

Here 

MH7,(v|/H,) = 

-cosv|/M, -sinv|/H. 0    rpw cosv|/M, 

sin\|/M. -cosv)/H. 0   -rpwsmyw 

0 0 10 

0 0 0            1 

(C4) 

MBr(vM.) = 

10 0        0 

0    1 0 -rpM,xj/M, 

0   0 1 0 

0   0 0 1 

(C5) 
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Mrft(ec) = 

1      o 0 0 

0   sin %w    - cos Xw   -6C cos Xw 

0   cos5iw     sinXw       BpSinA.^ 

0       0 0 1 

(C6) 

Step 6.—The worm thread surface is the envelope to the family of surfaces rw(« ,9 ,V|/ ). To determine the 
envelope, apply the theorem (refs. 5 and 7) that the common normal to surfaces Z   and X passes through the 
instantaneous axis of rotation that coincides with the z^-axis. 

Then we obtain 

Xr - xr _ Yr - yr _ Zy 

Nr Nyr N,_y 
(C7) 

where (fig. C4) Xr = 0, Yr = -sr = - r   yw, Zr are the coordinates of a current point of the instantaneous axis of 
rotation; N is the normal to rack-cutter surface Er determined as 

N,.=LrfcL^Nü (C8) 

where (see fig. 2.1.2(b)) 

Na=[-2acuc   1   Of (C9) 

The first equation of the system of equations (C7) yields 

(rpwVw+yr)Nxr 

Nv 

= f(uc,ec,\\fw) = o (CIO) 

Equations (C2) and (CIO) represent the worm surface in three-parameter form. Equation (CIO) is linear with 
respect to \|/w and 0C. Therefore 0C can be represented by Qc(uc,\\>w). Using this relation in equation (C2), the worm 
surface may be determined in two-parameter form as 

rw(uc,yw) = Mwn(yw)Mni.(yw)Mrb(yw)rb(uc) (Cll) 

6.0 COMPARISON OF THREE TYPES OF NOVIKOV-WILDHABER HELICAL GEARS 

6.1 Introduction 

The purpose of this section is to summarize the advantages and disadvantages of three types of Novikov- 
Wildhaber helical gears that will serve as directions for designers and manufacturers. For this purpose, section 6.2 
will cover the following items: 

1. Comparison of normal sections of rack-cutters used for generation 
2. Description of existing and proposed methods for generation 
3. Evaluation of the influence of errors of alignment on transmission errors and the shift of the bearing contact 
4. Comparison of the dimensions of contact ellipses 
5. Perspectives for the substitution of conventional involute helical gears by Novikov-Wildhaber helical gears 
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6.2 Description and Comparison of Three Types of Novikov-Wildhaber Gears 

Three versions of Novikov-Wildhaber gears are compared with (a) circular-arc profiles of rack-cutters, one zone 
of meshing, and a very small (0.5 percent) difference between the curvature radii of the rack-cutters (refs. 1 and 2); 
(b) circular-arc profiles of rack-cutters and two zones of meshing in accordance with Russian and Chinese standards 
(refs. 3 and 4); and (c) parabolic profiles of rack-cutters (proposed by the authors of this completed project). 

Input data.—The results of a numerical computation performed for the three versions are based on the following 
input data: 

Normal diametral pitch, P„, in.~' 5 
Pinion-gear teeth numbers 

AT, 17 

N2 77 
Shortest center distance, E, in 10 
Pitch helix angle, ß, deg 19.548 
Normal pressure angle, a„, deg 

Versions 1 and 2 27 
Version 3 25 

Profiles of rack-cutters.—The normal profiles of rack-cutters for three versions of the design are presented in 
figure 6.2.1. 

Figure 6.2.1.—Profiles of rack-cutters for generating 
pinion tooth, (a) Version 1. (b) Version 2. (c) Version 3. 
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Versions 1 and 2 have circular-arc profiles. The centers of circular arcs that generate convex tooth addendums 
of the pinion (in both versions) and the gear (in version 2) are located on pitch straight lines of the rack-cutters. 

In version 3, the normal profiles are mismatched parabolic curves instead of circular arcs. In addition, the cur- 
vature radii of the parabolic curves are much larger than the distance QP between the designed point of tangency Q 
and the pitch point P. 

The normal curvature radii of the rack-cutters that generate the pinion and gear teeth are presented in table 
6.2.1. 

TABLE 6.2.1—NORMAL CURVATURE 
RADII OF RACK-CUTTERS 

Version Pinion, Gear, 
in. in. 

1 0.200 0.201 
"2 .230 .258 

(.258) (.230) 
3 1.176 1.270 

"For design 2, the upper (lower) values 
correspond to pinion addendum (dedendum) 
and gear dedendum (addendum). 

Table 6.2.1 shows that design version 3 provides much larger curvature radii and therefore the tooth shape 
is more favorable. 

The reader is reminded that the application of parabolic profiles of rack-cutters and the enlargement of the 
curvature radii allow one to increase the height of the pinion addendum, which is limited by tooth pointing, and 
the height of the pinion dedendum, which is limited by the possibility of undercutting. 

The dimensionless heights of the active parts of the addendum hJPn and the dedendum hdPn of rack-cutters that 
generate the pinion teeth are shown in table 6.2.2, which gives data for three versions of the design. 

TABLE 6.2.2.—RACK-CUTTER TOOTH 
ELEMENT PROPORTIONS 

Version Dimensionless heights of 

Addendum, 
hJP„ 

Dedendum, 
h„P„ 

Total 
height, 

hP„ 

1 
2 
3 

0.00 
.90 
.55 

0.87 
.90 

1.25 

0.87 
1.80 
1.80 

Table 6.2.2 shows that the parabolic rack-cutter (design version 3 with one zone of meshing) has the same tooth 
height as that of the circular-arc rack-cutter (design version 2 with two zones of meshing): 

h = ha+hd = 
1.8 

(6.2.1) 

Another important advantage of the developed gearing is the possibility of increasing the tooth thickness at the 
point of tangency of the active profile with the fillet. We may expect that this will allow designers to reduce the 
bending stresses, but this is a subject of further investigation. 
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Another advantage of the developed gearing (design version 3) is the possibility of reducing the sensitivity of 
the gear drive to the change A£ of the center distance. Table 6.2.3 presents for all three versions the influence of AE 
on the following parameters: 

1. 8a: the normal pressure angle variation caused by the increase of AE = 0.0001 mm of center distance E 
2. 8j: the ratio of the contact point shift over the pinion tooth profile to the tooth active height 

Values 8a and 8j have been determined twice by approximate formulas presented in section 2.0 and by the 
application of TCA in section 3.0. 

The data of table 6.2.3 show that 

1. The original version 1 of Novikov-Wildhaber gears is not applicable in a real design because of a high sensi- 
tivity to the change of center distance. 

2. Version 3 is less sensitive to error AE in comparison with version 2 and therefore is preferable. 

TABLE 6.2.3—SENSITIVITY TO CHANGE 
OF THE CENTER DISTANCE AE 

Version 5«. 
deg 

5, 

1 19.50 0.383 
2 2.28 0.051 
3 0.68 0.038 

Contact ellipses and their orientation.—The contact ellipses and their orientation with respect to the tangent of 
the contact path (determined by angle (Xx) are shown in figure 6.2.2. The parameters of the contact ellipse axes for 
three versions of the design are presented in table 6.2.4. 

TABLE 6.2.4.—PARAMETERS OF CONTACT ELLIPSE 
[All values are determined for elastic approach, 

8 = 0.00025 in.] 

Version Major axis, Minor axis, Area, 
2a, 2b, F, 
m. in. in." 

1 0.285 0.237 0.053 
2 .237 .065 .012 
3 1.034 .045 .037 

Figure 6.2.2. and table 6.2.4 show that "ideal" version 1 has the most favorable contact ellipse parameters. 
However, as mentioned in the previous paragraphs, this version cannot be applied in practice because of the high 
sensitivity to the change AE of the center distance. This defect requires that the difference of curvature radii be 
increased as was foreseen in version 2. Therefore, the area of the contact ellipse in version 1 is decreased by more 
than four times. 

The proposed design version 3 has a contact ellipse area three times larger than the standard version 2. We may 
expect that this will substantially decrease the contact stresses. Therefore, we consider that version 3 has a great 
advantage in comparison with the existing Novikov-Wildhaber gear designs. 
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Figure 6.2.2.—Contact ellipses on pinion tooth surface, 
(a) Version 1. (b) Version 2. (c) Version 3. 

6.3 Methods of Generation in Industrial Application 

Gears of designs 1 and 2 can be manufactured only by hobbing. Helical gears of the new design (version 3) can 
be ground as proposed by a shaped grinding disk or by a grinding worm. 

Presently, gears of designs 1 and 2 are applied to avoid the surface hardening that follows grinding. A good 
bearing contact for such versions of the design is achieved by running the gear drives in the housing. Therefore, 
helical gear designs 1 and 2 cannot compete with widely used conventional involute helical gears for which surface 
hardening is achieved by carbonizing and nitriding after grinding. Thus, Novikov-Wildhaber gears are not applied 
yet in high-power and high-speed reducers. The new type of helical gears (design 3) developed in this project is free 
of the disadvantages of existing Novikov-Wildhaber gears since the gear tooth surfaces can be hardened and ground. 

The greatest disadvantage of design versions 1 and 2 is that only profile crowning of tooth surfaces is provided. 
This means that in these two cases only localization of bearing contact can be achieved, but the gear drives are very 
sensitive to misalignment and noise. The gear drive vibration is inevitable. 

The newly developed gearing (design 3) is free of the disadvantages mentioned in the previous paragraph be- 
cause the design and manufacture of the gear drives are based on a combination of profile and longitudinal crown- 
ing. It was shown in sections 4.0 and 5.0 that such crowning makes it possible to obtain a favorable shape of 
transmission error function, reduce the level of transmission errors, and as a result, reduce the noise and vibration. 
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7.0 CONCLUSION 

A new geometry for Novikov-Wildhaber helical gears was developed, and contact stresses were reduced as a 
result of the contact of convex-concave gear tooth surfaces. 

The conjugation of gear tooth surfaces with profile crowning was achieved by applying two rack-cutters with 
parabolic profiles in the normal section. In addition, crowning in the longitudinal direction provides a predesigned 
parabolic function of transmission errors. This type of transmission error enables the design to absorb linear function 
errors caused by misalignment and to reduce the noise and vibration. 

Methods of generating tooth surfaces by worm grinding, form grinding, and hobbing were developed. 
Computerized simulation of meshing and contact was performed and a respective computer program for the 

investigation of transmission errors and the shift of the bearing contact was also developed. The output of the com- 
puter program confirmed the accuracy of the proposed approaches reported herein. 
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