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ANALYSIS OF MULTI-CRITERIA FIRE DETECTION SYSTEM DATA AND EARLY 
WARNING FIRE DETECTION PROTOTYPE SELECTION 

1. INTRODUCTION 

A series of tests were conducted to evaluate sensors for an early warning fire detection 
system under development. The tests were conducted from August 30-September 3, 1999 
onboard the ex-USS SHADWELL, the Naval Research laboratory's full scale fire research 
facility in Mobile, Alabama (reference (a)). The tests have been used to evaluate and improve 
the multivariate data analysis methods and candidate sensor suites described in references (b- 
d). The objective of the program is to develop an improved early warning fire detection 
system that will provide early fire detection with a low false alarm rate. 

2. BACKGROUND 

The system under development combines a multi-criteria (sensor array) approach with 
sophisticated data analysis methods. Together an array of sensors and a multivariate 
classification algorithm produce early fire detection with a low false alarm rate. Several 
sensors measuring different parameters of the environment produce a pattern or response 
fingerprint for an event.  Multivariate data analysis methods are trained to recognize the 
pattern of an important event such as a fire.  Multivariate methods are trained using data in a 
training set and the training set consists of sensor responses to events and nonevents under 
various conditions. The data sets used for sensor array evaluation require that the sensors be in 
close proximity so that it can be assumed that the sensors are observing the same test 
atmosphere. 

Multivariate classification methods rely on the comparison of events with nonevents. 
Variations in the response of sensors can be used to train an algorithm to recognize events 
when they occur. A key to the success of these methods is the appropriate design of sensor 
arrays and the training sets used to develop the algorithm. Although, the event is most 
important, it is critical that the algorithms recognize nonevents as well. 

Standard test procedures included a baseline response to establish initial sensor conditions, 
exposure test, and recovery back to baseline. For example, a typical test collected 10 minutes 
of ambient air, followed by an exposure to a fire for 20 minutes, then re-exposure to ambient 
conditions for 10 minutes. Chemical sensors are subject to noise and other fluctuations with 
time. Therefore, typical sensor performance or typical baseline responses over the test period 
were determined by exposing the sensors to ambient air for the entire test period. Baseline 
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tests conducted at different times of the day can be used to determine environmental effects 
and how they influence the sensors. 

Data were collected by the multi-criteria fire detection system on the ex-USS 
SHADWELL. These data were used to validate the performance of the system with respect to 
the laboratory database (ref (b)) and to optimize the sensor array selection for prediction. This 
report describes: 

(1) The evaluation of the candidate suites and the probabilistic neural networks for 
early and reliable detection of several types of fires (i.e., validation database); 

(2) The database that was used to improve the classifier for shipboard use (i.e., use the 
database as a secondary training set if the validation is not satisfactory); and 

(3) The reliability of the multi-sensor detection system with respect to nuisance alarms. 

The detection system was installed in the forward area of the ship on the second deck FR 
15-22 as shown in Figure 1 along with selected SHADWELL sensors including thermocouples 
and continuous oxygen (02), carbon monoxide (CO) and carbon dioxide (C02) gas sampling. 
The SHADWELL sensors were used to verify the detection system. The location of the fire is 
also shown in Figure 1. The standard test procedure was used and included 10 minutes of 
ambient background air, followed by an exposure to a fire for a fixed finite time (20 minutes), 
and then re-exposure to ambient conditions (10 minutes).  Background tests were conducted by 
exposing the sensors to the ambient condition for the entire test period (40 minutes).  After 
every 2 fire tests, a nuisance source test was conducted, so that the fire and nuisance tests 
were intermixed.  References (e and f) describe the field test parameters and the results. 

The sensors were calibrated prior to installation with calibration gas mixtures diluted to an 
appropriate level using clean breathing air (upper limit of sensor range). The calibration of the 
sensors was verified daily, while the sensors were mounted in place. 

3. FIRE SCENARIOS 

A total of 30 tests were conducted to evaluate the detection system.  Fire scenarios used 
common shipboard combustibles, such as oily rags, cardboard, paper, sheets, and mattresses 
as the fuel. Nuisance source scenarios represented common shipboard activities, such as 
welding, cutting steel with a torch, toasting, smoking, cleaning, personal products, and 
burning popcorn. The majority of the sources were located at 2-17-0. Table 1 summarizes 
the fire/nuisance source scenarios and other general test conditions for each test.  Replicates 
were not tested sequentially. The small heptane pan fire was used as our standard test and was 
used periodically to determine the reproducibility and the stability of the sensors during the 
test series. 

Table 2 presents a list of the sensors used in the test program.  Under the column labeled 
species, the parenthetical term represents the sensor name used throughout this program. The 
majority of the gas sensors were electrochemical cell technology, except as noted below. 
These sensors were used because they provided a means to economically measure many 



species. Past experience with the CO sensors indicated that these sensors are accurate at low 
ppm concentrations, are easy to operate and calibrate and are reliable over repetitive testing. 
The general hydrocarbon sensor (calibrated with ethylene) was a solid state metal oxide 
sensor. The C02 meter was designed for indoor air quality measurements based on non- 
dispersive infrared (NDIR) technology. All of the gas sensors operated via gas diffusion to the 
unit. 

At the beginning of each day, the daily checklist was completed.  Prior to each test, the 
fire area was cleared of all personnel not involved with testing. All hatches and doors were 
closed. Ventilation to the space remained off for the first 30 minutes of the test. After 
completion of these tasks, test personnel were positioned in the appropriate locations. When 
the fuel package was ready and the safety team was in position, data collection and videos 
were initiated to commence the test. Following approximately 10 minutes of background data, 
the source was initiated. For the smoldering fire scenarios, the soldering irons were 
energized. Event data were collected for 20 minutes. After the event was secured, and during 
compartment venting, the data collection continued for 10 additional minutes to assess the 
recovery of the sensors following an event. Once the Safety Team had deemed the test area 
safe for personnel without breathing protection, the test area was prepared for the next test. 
This preparation included any cleanup of the test area, equipment setup for the next test, and 
verification of instruments. 

All of the sensor responses were collected using the MASSCOMP on the SHADWELL. 
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Table 1. Summary of Test Scenarios 

TEST FIRE SCENARIO COMMENTS 

MV-00 Background 

MV-01 Flaming heptane in 15 cm (6.0 in.) diameter 
pan. 

Approximately 100 ml (3.5 fl. oz.) heptane in 
pan, Standard Test 

MV-02 Flaming heptane in 15 cm (6.0 in.) diameter 
pan. 

Repeat MV-01, Standard Test 

MV-03 Background Repeat MV-00 

MV-04 Flaming heptane in 15 cm (6.0 in.) diameter 
pan. 

Repeat MV-01, Standard Test 

MV-05 Flaming oily rags in small trash can 0.1 m2 (1 ft2) rags saturated with 118 ml (4 oz.) 
10W30 motor oil, ignited with a butane lighter 

MV-06 Burning Toast 4 slices of bread in a toaster locked on 

MV-07 Flaming paper and cardboard in small trash can 5 sheets of newspaper and 0.3 m2 (3 ft2) of cardboard, 
ignited with a butane lighter 

MV-08 Smoldering oily rags in small trash can 0.1 m2 (1 ft2) rags saturated with 118 ml (4 oz.) 
10W30 motor oil, ignited with a butane lighter 

MV-09 Burning Popcorn 1 bag of popcorn in microwave for 12 minutes 

MV-10 Flaming oily rags in small trash can Repeat of MV-05 

MV-11 Flaming paper and cardboard in small trash can Repeat of MV-07 

MV-12 Welding 
MV-13 Background Repeat MV-00 

MV-14 Smoldering paper in small trash can 5 sheets of newspaper and 0.3 m2 (3 ft2) of cardboard, 
ignited with a butane lighter 

MV-15 Smoldering cotton sheet, pillow, wool blanket, 
and mattress 

Fuel package heated with a 300 W heating coil 
energized to 54 V.  Coil on top center under its own 

weight. 

MV-16 Cutting Steel with an Acetylene Torch 
MV-17 Flaming fuel oil in 0.3 m x 0.3 m (1 ft x 1 ft) 

square pan 
1.1 liters (0.3 gal) F-76 with ethyl alcohol accelerant 

MV-18 Flaming 0.3 m x 0.3 m x 0.2 m 
(1 ft x 1 ft x 10 in.) wood crib 

Crib constructed with 4 rows of 4 - 51 mm x 51 mm x 
0.2 m sticks.  Crib ignited with a small heptane pan 

fire 

MV-19 Cleaning Supplies 
MV-20 Smoldering pillow in a pillow case, 15.2 cm x 

15.2 cm (6 in. x 6 in.) 
Fuel package heated with a 300 W heating coil 

energized to 54 V. Coil on top center under its own 
weight. 

MV- 
2V 

Flaming heptane in 15 cm (6.0 in.) diameter 
pan. 

MV-01, Standard Test 

MV-22 Cigarette Smoke 
MV-23 TODCO Wall Board exposed to a flame TODCO wallboard, 10 cm x 30 cm (4 in. x 1 ft.) 

exposed to a flame 
MV-24 Pipe Insulation exposed to flame Calcium silicate insulation with glass cloth lagging, 

painted (45 cm) exposed to a flame 
MV-25 Personal care products Rubbing alcohol, Ben-Gay, shaving cream, and 

Tinactin 

MV-26 Background Repeat MV-00 

MV-27 Smoldering cotton sheet, pillow, wool blanket, 
and mattress 

Repeat MV-15 

MV-28 Smoldering cables in overhead cable rack LSDSGU-14 cable (33 cm) ohmically heated with a 
600 A arc welder 

MV-29 Background Repeat MV-00 



Table 2. Sensors for Multi-criteria Detection Tests 

No. 
Species Sensor Range Resolution Model No. Manufacturer 

1 Oxygen (02) 0-25% 0.1% 02 6C City Technology 

2 Carbon monoxide (CO20000 

ppm/ 

0-20000 ppm 5 ppm City Technology 

3 Carbon monoxide w/ H2 

compensation (CO4000ppm) 
0-4000 ppm 1 ppm A3ME/F City Technology 

4 Carbon monoxide (CO50 ppm) 0-50 ppm 0.5 ppm TB7E-1A City Technology 

5 Carbon dioxide (C02) 0-5000 ppm Accuracy = greater 
of +5% of reading 
or +100 ppm 

2001V Telaire/Englehard 

6 C, to C6 (ETHYL) 
Hydrocarbons 
(will be calibrated with 
ethylene) 

0-50 ppm + 2.5 ppm SM95-S2 with 
general 
hydrocarbons 
solid state sensor 

International 
Sensor 
Technology 

7 C, to C6 (ETHYL) 
Hydrocarbons 

0-20000 ppm 

8 Nitric oxide (NO) 0-20 ppm 0.5 ppm TF3C-1A City Technology 

9 Hydrogen chloride (HC1) 0-10 ppm 0.5 ppm TL1B-1A City Technology 

10 Temperature (Thermocouple 
orTC) 

-200 to 1250EC lECorO.75% Type K, 0.127 
mm bare bead 
TC 

Omega 

11 Temperature (Temp Omega) -20EC to 75EC + 0.6EC 
accuracy 

HX93 transmitter 
(RTD) 

Omega 

12 Relative humidity (RH) 3-95% + 2% RH 
accuracy 

HX93 transmitter Omega 

13 Hydrogen Sulfide (H2S) City Technology 

14 Photoelectric smoke detector 
(PHOTO) 

0-19% Obs/m 4098-9701 Simplex 

15 Ionization smoke detector 
(ION) 

1.6-10% 
Obs/m 

4098-9716 Simplex 

16 Residential ionization smoke 
detector (RION) 

83R First Alert 

17 Optical Density Meter 
(ODM) (1 m path length) 

Infrared light 
emitting diode 
and receptor 

Meredith 

18 Optical Density Meter 
(ODM)(l m path length) 

Laser and 
PhOtodiode 

Motorola 

19 Optical Density Meter 
(ODM)(l m path length) 

White Light 



4. DATA ANALYSIS 

The data were received in two forms: raw and processed. The raw data were taken 
directly off the MASSCOMP. The processed data included engineering units, and the Optical 
Density Meter (ODM) and Simplex smoke detectors (PHOTO and ION) were in percent 
obscuration per meter (% obs/m) as described in reference (b). The first minute of 
background was used for the initial intensity I0 in the % obs/m calculation. The data from the 
Simplex sensors were collected every four to five seconds, while all the other sensors provided 
data every second. For pattern recognition, all of the data responses were consolidated into a 
data matrix containing all the sensor responses. Therefore, only the responses occurring at the 
same time as the Simplex sensors were included in the data matrix. The data sets were 
examined directly to determine the best parameters for shipboard detection. In addition, these 
tests were used as a prediction set to validate the algorithms developed using the laboratory 
data sets described in references (b-d). For this application, strong nuisance source rejection 
was given the highest consideration. 

The data were analyzed on a PC using routines written in MATLAB, version 5.2 
(Mathworks, Inc., Natick, MA). Many of the routines were implemented using the 
PLStoolbox, version 2.0c (Eigenvector Technologies, Inc., Manson, WA).  All the matrices 
were autoscaled (column mean of zero, unit variance). The classifier used in this study was a 
Probabilistic Neural Network (PNN) (reference (g)) that was developed at the Naval Research 
laboratory for chemical sensor arrays. A graphical user interface (GUI) for use with 
MATLAB entitled MATLAB Graphical Interface for Classification Algorithms (MAGICAL) 
was developed for easier implementation of PNN routines. The software has the capability to 
run the PNN in cross-validation and Venetian blinds (VB) mode (random selection of training 
and prediction sets from a single data set). The GUI has functionality that enables data 
visualization, manual and automated variable selection, sigma calculation and optimization, 
results plotting (PNN probabilities) and experiment / data storage. The PNN operates by 
defining a probability density function (PDF) for each data class based on the training set data 
and the optimized kernel width parameter. The PDF defines the boundaries for each data 
class. For classifying new events, the PDF is used to estimate the probability that the new 
pattern belongs to each data class. The output probability can be used as a level of confidence 
in the classification decision and can serve as a guide to reducing the false alarm rate.  Most of 
the studies organized the data into three classes for analysis: fire, nonfire (background), and 
nuisance sources. 

A new stepwise variable selection routine specifically designed for the PNN classifier was 
developed and used to select subsets of sensors. The code, called VARSELPR, used a 
straightforward implementation of forward selection using the sum of squared error from the 
PNN-cross validation algorithm as the criteria for the best sensor selection. The PNN variable 
selection routine allows the user to select the number of sensors to be included in the set and 
provides a mechanism to withhold sensors from consideration in the array. 



Two approaches were used to analyze the processed and raw data sets. The processed data 
related most closely to the analyses in references (b and c), while the raw data analysis 
methods corresponded most closely to the studies described in reference (d).  Both methods 
are given here for completeness. However, the raw data set methods are more relevant to 
real-time detection so they are used to determine the final candidate suites and to optimize the 
algorithms for real-time monitoring. 

In the previous studies that investigated the laboratory data sets (references (b-d)), several 
sets of sensors were found to be useful for accurate fire detection and nuisance source 
rejection. Similar experiments were conducted to determine whether these same sets of sensors 
are important for the SHADWELL field data. To distinguish these experiments from ones 
where the laboratory data set is the training set and the SHADWELL field data is the 
prediction set, these experiments will be termed, intra-set cross validation because training 
and validation is done using sensor data from only one site. The term, inter-set prediction will 
be reserved to specify training on data from one site and prediction of another. 

The last section of the report describes the experiments used to define two prototypes for 
testing on the SHADWELL in real time and the optimization of the algorithms for that 
application.  In those experiments, the entire SHADWELL test was used in a playback mode. 

4.1 Processed Data Analysis 

Using the SHADWELL data, training and prediction sets were constructed at distinct times 
using the alarm times for the Simplex Photoelectric detector on Board A at the 11, 1.63, and 
0.82 % obs/m sensitivity levels.  A pattern or fingerprint of the event for each sensor was 
generated at these response times.  The patterns were based on the average sensor readings for 
the last 10 data points and the rate of change (slope) from the last 25 values. For these 
experiments the training sets were taken from three points in time from each experiment. 
Thus, there are three patterns in the training set from each experiment resulting in a total of 90 
pattern vectors.  Background patterns were taken at two discrete times: two minutes after the 
data acquisition was initiated and a few seconds prior to ignition.  For real fire events and 
nuisance sources, the pattern was computed using data collected at the given alarm times.  For 
background events (mvOO, mv03, mvl3, mv26, and mv29) and nuisance sources that did not 
cause a false alarm, the third pattern was computed five minutes after source initiation or ten 
minutes after the start of data acquisition.  For fire events that did not trigger an alarm at the 
most sensitive setting, the maximum reading of the Simplex Photoelectric detector on Board A 
was used to set the time at which the sensor fingerprint was evaluated.  In all other cases, the 
alarm time from the next most sensitive level was used. 

The initial tests used the SHADWELL field data as a prediction set for the laboratory 
training set at the 0.82% obs/m level. The data set consisted of 90 events, 65 backgrounds, 
18 fires and 7 nuisance sources. The results are shown in Table 3a. These tests demonstrate 
the ability to train an algorithm with data from one location and predict data from another 
location under different environmental conditions, an inter-set prediction. There are some 
differences between the preprocessing of the laboratory data set (reference (b)) and the 



SHADWELL data set. It is likely that these differences led to numerical instabilities in the 
PNN. The laboratory data was filtered using a Savitzky-Golay smoothing routine; this was 
not used for the SHADWELL data because the way it was implemented in the training set was 
not applicable to real-time processing that will occur later in the program. Due to differences 
in the data acquisition, the residential ionization sensor (RION) was not scaled in the same 
way, so there was a mismatch in the training and prediction sets. In addition, the rate of 
change was not used with the preprocessed data due to the differences in the methods used to 
calculate it. 

Correct classification results range from 20-86%. The results are very low for some of the 
sensor combinations, particularly ones containing relative humidity (RH), 02 and hydrogen 
(H2) sensors. It appears that magnitudes are a problem for this application because the oxygen 
and humidity levels were very different between the two sites. When RH was in the sensor 
array, most of the experiments were classified as a fire. In addition, the hydrogen sensor 
changed its baseline response dramatically during the SHADWELL tests. The best performing 
results were for ION, PHOTO, and ODM sensor combinations. It is important to note that 
each of the sensors was converted to % obs/m, and thus have a form of background 
correction. Therefore, it was determined that background correction may be necessary. 

For the background corrected studies, the background corrected data matrix used in 
univariate analysis described in reference (b) was used. The data set consisted of 82 fires and 
38 nuisance sources. One minute of background was subtracted from the remainder of the 
data. It was necessary to treat the data as a two-class problem: fires and nuisance sources 
because all of the limited background data collected in those tests were used in the correction. 
The laboratory background corrected data matrix was studied using the leave-one-out cross- 
validation method (PNNCV) that sequentially trains all but one observation and predicts the 
one that was left out, an intra-set analysis approach. This procedure is repeated until all the 
observations or tests have been predicted. The results are shown in Table 3b. 

Using the VARSELPR, CO4000, RH, temperature (TC), ODM and PHOTO were found to 
be the best set of sensors. This set achieved 89% correct classification of the data set, 
correctly classifying 72 of the 82 fires and 35 of the 38 nuisances sources.  The CO4000 sensor 
was not functioning during the SHADWELL test; therefore, the CO50 sensor was used in the 
prediction.  When we change to CO50, the performance of the training set is reduced to 83%, 
due to increased nuisance source alarms. The results are similar to those observed in the early 
work, the three-class approach including background responses for the sensors. When the best 
set (02, H2S, RH, ION, and PHOTO) from reference (c) was used in this two-class approach, 
18 events were missed, producing 85% correct classification. The missed events were 4% 
higher than in the previous work using a three-class approach (fire, nonfire, and nuisance 
sources), where the same set of sensors missed 13 events and correctly classified 92% of the 
data set. Other high performing sensor sets are shown in Table 3b. 

The ability of the background corrected laboratory data to predict the SHADWELL data 
was investigated next. The prediction set, the SHADWELL data, was also background 
subtracted. In this case, the earliest background times described above were subtracted from 



the responses at the alarm time, and the later background time. This reduced the data set by 
one third, 18 fires and 42 backgrounds/nuisance sources. Two identical sensor combinations 
were tested with both background correction and no correction. 02, CO50, ETHYL, ION and 
PHOTO produced similar overall results for both methods; however, more fires were missed 
with the background correction.  The sensor array consisting of 02, H2S, RH, ION and 
PHOTO was greatly improved by background correction. While there was a big difference in 
relative humidity during the laboratory and SHADWELL tests, the change in relative humidity 
was similar. 

Using the VARSELPR, RH, ETHYL, TC, RION, and PHOTO were found to be the best 
set of sensors for the SHADWELL data set. The intra-set cross validation results for this set 
achieved 92% correct classification and correctly classified 16 of the 18 fires and 39 of the 42 
background and nuisances sources.  The misclassified tests were flaming rags, welding, cutting 
steel, cigarette smoke, and flame applied to pipe insulation. These overall results are excellent 
and are similar to results achieved with the laboratory data set.  However, prediction 
performance when the PNN is trained with the laboratory data is the goal for this study. 
Several sensor set combinations were investigated as shown in Table 3c. The set above 
provided the best fire detection, but the overall results were poor due to the high number of 
false alarms.  When the RION sensor was removed, the results for both fire and nuisance 
sources improved. When ION was substituted in the above array for RION, the results 
improved to only 12 missed events; however, the correctly identified fires were reduced from 
16 to 12.  Different combinations of these sensors were investigated.  The best overall 
performance using the SHADWELL data set as the prediction set was achieved with the ION 
sensor alone. The misclassified fires were flaming rags, welding, cutting steel, cigarette 
smoke, flame applied to pipe insulation, burning toast, and smoldering oily rags in a trash can. 
None of the sensor combinations were as strong as the intra-set results, suggesting that even 
with background subtraction there are significant differences between the laboratory and 
SHADWELL data sets that introduce calibration transfer issues.  The preprocessing of the two 
data sets is different and may have contributed to the unsatisfactory prediction results. 

Further tests with the processed data were abandoned due to the uncertainty of the results. 
The unsatisfactory results for some of the sensor arrays were likely due to the differences in 
the preprocessing approaches used for the laboratory and SHADWELL data sets.   The 
remainder of the report describes the investigations using the raw data and treats both the 
laboratory and SHADWELL data sets identically. 
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Table 3. PNN Classification Results 

Sensor Sets 

Number 
Wrong 

Number 
of Real 
Fires 
Correct 

Number 
of False 
Alarms 

Overall 
Percent 
Correct 

(a) 0.82% (No Background Correction) SHADWELL (90) (18) (72) 

CO50ODMION 20 5 7 78 

Temp RH ODM ION PHOTO 40 10 32 56 

02 H2 Ethyl ION PHOTO 45 11 38 50 

02 CO4Q00 H2 ION PHOTO 46 11 40 50 

02 CO50 Ethyl ION PHOTO 19 15 16 78 

O2CO50H2SRHION 72 18 72 20 

02 H2 Ethyl RION PHOTO 15 3 0 83 

CO ION PHOTO 17 7 6 81 

02 H2S RH ION PHOTO 71 18 71 20 

ION PHOTO 13 8 3 86 

ODM ION PHOTO 13 8 3 86 

CO50 NO ION PHOTO 18 4 4 80 

(b) 0.82% (Background correction) Laboratory (120) (82) (38) 

CO4000 RH TC ODM PHOTO 13 72 3 89 

CO50 RH TC ODM PHOTO 20 73 11 83 

02 CÖ4W0 RH ION PHOTO 21 63 3 82 

RH, Ethyl, TC, ION, PHOTO 20 69 7 83 

02 H2S RH ION PHOTO 18 72 8 85 

(c) 0.82% (Background correction) SHADWELL (60) (18) (42) 

RH, Ethyl, TC, RION, PHOTO (PNNCV) 5 16 3 92 

RH, Ethyl, TC, RION, PHOTO 24 16 22 60 

RH, Ethyl, TC, PHOTO 15 7 4 75 

RH, Ethyl, TC, ION, PHOTO 12 12 6 80 

TC, ION, PHOTO 7 15 4 88 

ION, PHOTO 8 14 4 87 

ION 7 15 4 88 

RH, Ethyl 14 9 5 77 

RH, Ethyl, PHOTO 15 11 8 75 

CO50RH TC ODM PHOTO 'B' 15 7 4 75 

02 CO50 Ethyl ION PHOTO 14 11 7 77 

CO50 RH TC ODM PHOTO 'A' 16 6 4 73 

02 H2S RH ION PHOTO 15 10 7 75 
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4.2 Raw Data Analysis 

The laboratory and SHADWELL data sets were preprocessed in an identical manner for 
this study and all the methods are applicable to real time analysis.  Several studies were 
conducted using the raw data. The electrochemical sensors in experiment MV-02 were prone 
to large spikes due to the Rf interference from the hand-held radios and interfered with the 
studies conducted using the raw data.  Rather than attempt to filter the spurious data, patterns 
obtained from this experiment were removed from the raw data analysis. This reduced the 
size of the SHADWELL data set to 87 patterns. 

Intra-Set Cross-Validation for the SHADWELL Field Test Data 

In the previous study that investigated the laboratory data sets (reference (d)), several sets 
of sensors were found to be useful for accurate fire detection and nuisance source rejection. 
For these tests, sensor magnitude and slopes were considered.  In reference (d), the magnitude 
of the sensor responses was sufficient for correct classification. Similar experiments were 
conducted to determine whether these same sets of sensors are important for the SHADWELL 
field data. Training and prediction sets were produced at the 11 and 0.82 % obs/m alarm 
levels as described earlier.  An additional training set was constructed at the 0.82% level using 
a 10-point window for the slope.  For each training set, VARSELPR was performed to select 
the optimal combination of sensors. Table 4 lists the fire detection and nuisance rejection 
accuracy of the three best sensor combinations.  An additional experiment is listed in which 
only the slopes from window methods 4 and 8 (10 point and 25 point slopes) were available to 
the variable selection algorithm. For comparison, the performance of the four commercial 
Simplex detectors is given in Table 5. 

To further elucidate the differences between the optimal sensor combinations for the 
SHADWELL and laboratory data sets, the linear correlation coefficient was computed between 
each variable and the correct classification of each pattern (1 = fire, 2 = not a fire).  Table 6 
lists the variables that had correlation coefficients greater than 0.5 (absolute value) for each 
training set. 
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Table 4. PNNCV Classification Performance for SHADWELL Field Test Data 

Alarm 
Level 

Win 
Size 

Sensors Missed 
Events 

Number Correct 
Fire Nuis Bkgd 

11% 8 APHOTO-B, ASION-B, 
ASION-A, AODM-B, 
ARION-B, PHOTO-A, 
ODM-A 

MV14, MV15, 
MV20, MV23, 
MV24 

12/17 7/7 63/63 

0.82% 4 ASION-B, PHOTO-A, 
AH2S, ARH-A, ACO50-A, 
ARH-B, APHOTO-B 

MV6, MV9, 
MV14, MV16, 
MV22, MV25 

16/17 2/7 63/63 

0.82% 8 ARION-B, APHOTO-A, 
RION-A, ARH-A, ARION- 
A, 02-A, ACO50-A 

MV14, MV15, 
MV16, MV20, 
MV22 

14/17 5/7 63/63 

0.82 
SLOPES 
ONLY 

4/8 ASION-B(IO), ASION- 
B(25), APHOTO-B(IO), 
AHC1(25), Aomega(25), 
AH2S(25), ACO50(25) 

MV1.MV4, 
MV8, MV14, 
MV15, MV20, 
MV22, MV23, 
MV27 

9/17 6/7 63/63 

Table 5. Detection Performance for Commercial Systems at the SHADWELL Field Tests 

Sensors Setting Number Correct 

Fire Nuis Bkgd 

PHOTO-A 11% 8/17 5/7 5/5 
1.63% 14/17 2/7 5/5 
0.82% 16/17 1/7 5/5 

PHOTO-B 11% 8/17 6/7 5/5 
1.63% 13/17 2/7 5/5 
0.82% 17/17 1/7 5/5 

SION-A 4.2% 13/17 4/7 5/5 
1.63% 13/17 3/7 5/5 
0.82% 14/17 3/7 5/5 

SION-B 4.2% 14/17 4/7 5/5 
1.63% 14/17 4/7 5/5 
0.82% 14/17 3/7 5/5 

Table 6. Ranked List of Linear Correlation Coefficients 

Alarm Level Ranked List of Sensors 
11% SION-B, SION-A, PHOTO-A, PHOTO-A, PHOTO-B, RION-B, 

RION-A, SION-B, 02-A, PHOTO-B, CO50-A, SION-A, RION-B 
0.82% - 8 PHOTO-A, PHOTO-A, SION-B, SION-B, C02-B 
0.82%-4 (same as above plus RION-B) 
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Compared to the laboratory data in reference (d), the optimal sensor combinations for 
SHADWELL are much more heavily weighted toward the smoke detectors. This might be an 
artifact of having a larger amount of background data available for training. The gas sensors 
tend to have larger fluctuations, which increase the chances for false alarms on the 
background. The ionization and photoelectric sensors have stable baselines and lend 
themselves to excellent background rejection. The results in Table 5 clearly show that the 
smoke detectors have poor nuisance source rejection capabilities. When the sensitivity setting 
is low (11%) the Photoelectric detectors missed fires in order to get good nuisance rejection. 
At the most sensitive settings, most fires are detected, but at the price of poor nuisance 
immunity.  However, even at the most sensitive settings no false alarms were detected in the 
background experiments. 

The list of correlation coefficients and the variables chosen by VARSELPR suggests similar 
sensors to those chosen during the laboratory analysis (reference (d)). Smoke detectors 
continue to be important and the gas sensors that consistently find themselves being useful or 
having a high correlation with the correct classification include C02, 02, CO50, RH, and H2S) 
and to a lesser extent (ETHYL and HC1). 

Inter-Set Prediction 

In these experiments, the laboratory data set was used as the training set and the 
SHADWELL data described above were used as the prediction set.  The magnitude is an 
average of data points (5 or 10 total) and the slope is calculated over 10-25 points.  The 
optimal number is unknown, so several different combinations were used in these studies. The 
various methods and selection codes are given below: 

Selection Codes 1 — magnitude(5) 
2 = magnitude(lO) 
3 = magnitude(5) + slope(lO) 
4 = magnitude(lO) + slope(lO) 
5 = magnitude(5) + slope(15) 
6 = magnitude(lO) + slope(15) 
7 = magnitude(5) + slope(25) 
8 = magnitude(lO) + slope(25) 

Initial experiments involved sensor combinations that were useful for intra-set prediction. 
Next, a new program was written, VARSELPR3, to perform VARSELPR using an external 
validation set to compute the sum of squared error. The prediction set (SHADWELL) 
classification performance is used as the criterion for selecting which sensors from the 
laboratory data (the training set) are most useful. While this method certainly biases the final 
model since the prediction data are used for PNN optimization, it does provide a rough 
estimate of what type of classification is possible with further data collection and algorithm 
enhancement. 
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Table 7 lists the results from inter-set prediction. The second column lists the parameters 
(alarm level and selection code) used for constructing the training and prediction sets. Column 
3 gives the sensors used. The fourth column lists the PNNCV results using the training set 
(laboratory data). Columns 5 through 8 lists the prediction results using the laboratory data as 
the training set and the SHADWELL data as the prediction set. Columns 4 and 5 present the 
percent correct classifications for the intra-set cross validation of the laboratory data and the 
prediction of the SHADWELL data, respectively. Columns 6 to 8 show the number of events 
correctly classified per the total number of those events.   The final column gives a set of 
comments pertaining to that experiment. In the comments section, a description of how that 
set of sensors was chosen and which board (A or B) was used to construct the SHADWELL 
prediction set. The best prediction found using an unbiased strategy are trials 5 and 6, while 
trial 10 is the best sensor combination found using a biased procedure. 

The first two experiments used the best sensor combination (at the 0.82 alarm time and 
selection code #8) from our previous report. This combination uses several sensor 
magnitudes. As expected, this combination performs poorly in prediction due to differences in 
the background levels between laboratory and SHADWELL. This is a calibration transfer 
issue.  The second set of experiments (rows 3-6 in Table 7) takes optimized sensor 
combination from our previous experiments, but uses slopes rather than magnitudes.  This set 
performs much better and gives adequate performance compared to the commercial system at 
that sensitivity setting.  The next set of experiments (rows 7-10) used the sensor combination 
chosen by VARSELPR3 using the prediction set to guide the choice of sensors.  The final set of 
experiments (rows 11 and 12) used sensor combination chosen by VARSELPR3 using both the 
prediction and CV error (sum of squared errors) as the criterion. This method seeks to find 
the sensor combination that performs well on both the laboratory and SHADWELL data sets. 
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Table 7. Inter-Set Prediction Results 

Trial Level/ 
Win. 

Sensors % Correct Number Correct Comments 

PNNCV 
Lab 
data 

Prcd. 
Shad 

Fire Nuis Bkgd 

1 0.82 
8 

CO», RH, PHOTO, 02) 

ACO„ APHOTO 
92.08 79.31 12/17 2/7 55/63 Best Combo from 

HAI; board A 
2 0.82 

8 
CO50, RH, PHOTO, 02, 
AC02, APHOTO 

92.08 27.6 17/17 2/7 5/63 Best Combo from 
HAI; board B; 
high false alarm 
rate due to 
differences in 02 

magnitude 
3 0.82 

8 
APHOTO, AC02, ACO50, 
AETHYL, AHC1 

87.08 86.21 9/17 4/7 62/63 Slopes of best 
sensors from HAI; 
board A 

4 0.82 
8 

APHOTO, AC02, ACO50, 
AETHYL, AHC1 

87.08 85.05 10/17 2/7 62/63 Slopes of best 
sensors from HAI; 
board B 

5 0.82 
8 

PHOTO, AC02, A02, 
ACO50, ARH, APHOTO 

90.83 88.51 10/17 4/7 63/63 Slopes of best 
sensors from HAI: 
board A 

6 0.82 
8 

PHOTO, AC02, A02, 
ACO50, ARH, APHOTO 

90.83 90.80 13/17 3/7 63/63 Slopes of best 
sensors from HAI: 
board B 

7 0.82 
8 

APHOTO, SION, A02, 
ASION, PHOTO, ARH 

85.42 90.80 13/17 3/7 63/63 VARSELPR3, 
PRED only; board 
A 

8 0.82 
8 

AETHYL, SION, 
PHOTO, APHOTO, A02, 
AH, 

86.67 93.10 14/17 4/7 63/63 VARSELPR3, 
PRED only; board 
B 

9 0.82 
4 

APHOTO, ETHYL, C02, 
AHC1, ANO 

82.08 89.66 10/17 5/7 63/63 VARSELPR3; 
PRED only; board 
A 

10 0.82 
4 

ASION, APHOTO, 
PHOTO, RION, C02, 
cosn 

92.5 96.55 14/17 7/7 63/63 VARSELPR3; 
PRED only; board 
B 

11 0.82 
8 

APHOTO, AC02, 
PHOTO, HC1, RH, 
RION 

94.17 87.36 8/17 5/7 63/63 VARSELPR3, 
Both PNNCV and 
PRED board A 

12 0.82 
8 

26 22 10 44 15 24 
ACOJO, PHOTO, NO, 
APHOTO, RH, AC02 

93.33 87.36 10/17 4/7 63/63 VARSELPR3, 
Both PNNCV and 
PRED board B 

The results shown in Table 7 suggest that a combination of sensors can be used to predict 
both the laboratory and the SHADWELL data. The combination shown in trials 5 and 6 is 
selected in an unbiased manner and does well with both the laboratory PNNCV and the 
SHADWELL prediction. The best PNNCV results obtained for the laboratory data (reference 
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(d)) are around 92% (at the 0.82% level) and the combination of PHOTO, AC02, A02, ACO50, 

ARH, APHOTO gets over 90% of the patterns from the laboratory experiments correct. The 
best prediction results come, as expected, from the biased experiments trials 7-12. This 
represents the best that can possibly be done with laboratory data as the training set. Table 8 
shows the results using VARSELPR3 at the 1.63% obs/m alarm level.  Little improvement is 
observed and the results are worse than the commercial systems at this alarm level. Ideally, 
the same sets of sensors would be chosen with the biased and unbiased methods.  Ultimately 
the best sensor/algorithm combination will perform equally well on the laboratory and 
SHAD WELL data sets. These results suggest that we are close to achieving this goal. 
However, the optimal sensor combinations were much different between Board A and B, 
which is disturbing. 

Table 8. Inter-Set Prediction Results at 1.63% Alarm Level 

Trial 
# 

Level/ 
Win. 

Sensors % Correct Number Correct Comments 
PNNCV 

Lab 
Pred. 
Shad 

Fire Nuis Bkgd 

1 1.63 
4 

APHOTO, NO, ARION, 
ASION, CO, 

86.67 90.80 11/17 5/7 63/63 VARSELPR3; 
PRED only; 
Board B 

2 1.63 
8 

AETHYL, PHOTO, 
RION, A02, AOMEG, 
APHOTO 

91.25 89.66 13/17 3/7 62/63 VARSLEPR3; 
PRED only; 
Board B 

3 1.63 
4 

ACO50, PHOTO, CO,, 
HCL, RH, AC02, 
APHOTO 

94.58 87.36 11/17 3/7 62/63 VARSELPR3; 
Both PNNCV and 
PRED; Board B 

4 1.63 
8 

ACO50, PHOTO, CO,, 
HCL, RH, ACO,, 
APHOTO 

94.17 89.66 11/17 4/7 63/63 VARSELPR3; 
Both PNNCV and 
PRED; Board B 

5 1.63 
4 

ACO50, PHOTO, CO,, 
APHOTO, ANO, HC1 

93.33 89.66 12/17 3/7 63/63 VARSELPR3; 
Both PNNCV and 
PRED*; Board B 

6 1.63 
8 

ACO50, PHOTO, CO,, 
HC1, RH, APHOTO 

92.92 86.21 11/17 2/7 63/63 VARSELPR3; 
Both PNNCV and 
PRED*; Board B 
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Background Subtraction and Conversion to Engineering Units 

A common sensor preprocessing scheme involves background subtractions and conversion 
to engineering units.  In this context, conversion to engineering units only pertains to the 
smoke detectors, as the raw data for the gas sensors were already in engineering units. 
Calibration models were used to convert the smoke detector readings to units of percent 
obscuration per meter. These calibration models are based on the calculation of I0, which is 
essentially the average background reading. For both the gas sensors and the smoke detectors, 
the first 30 seconds of each test was used to determine the baseline reading.  Data collected 30 
seconds prior to source initiation were used to compute the background pattern for the 
laboratory training set. 

The same types of experiments were performed on the background subtracted data sets as 
was done for the raw data sets.   VARSELPR3 was used to determine the optimal sensor 
combination for various window sizes and alarm levels. The results from these experiments 
are shown in Table 9. The best results are highlighted in bold text for each alarm level. The 
classification results are not much different from those in Tables 7 and 8.  In addition to the 
0.82 and 1.63% obs/m alarm levels, the 11 % alarm level was investigated and very good PNN 
training and prediction performance was observed.  There is a drop-off in fire detection and 
false alarm rate at the lower alarm levels. 

The results are somewhat surprising since the background subtracted results are no better 
than the results from the raw data. Done properly, background subtraction effectively solves 
the sensor standardization issue since differences between the ambient background gas levels 
between different sites are subtracted out.  Any remaining deviations from baseline can be 
attributed to the initiation of the fire or nuisance source or just the naturally occurring 
variations in the sensor output (either due to sensor instability or changes in the natural 
environment).  Another interesting observation is that slope information is less critical for 
background subtracted data than it is for raw data.  For raw data, the slopes were a critical 
ingredient toward successful sensor standardization (i.e., changes in sensor readings were 
consistent across sites even if the magnitude was not) and provided a convenient means of 
using the PNN to predict the SHADWELL test data. In these two studies, identical sensor 
combinations are not tested.  However, the same methodology was used in each study to select 
the sensor combinations. The differences in the type of sensors selected suggest slope and 
background subtraction are equivalent. The next section investigates this issue again. 
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Table 9. Inter-Set Prediction Results from 
Background Subtraction/Conversion to Engineering Units 

Level 
/Win. 

Sensors % Correct Number Correct Comments 
PNNCV 

Lab 
Pred. 
Shad 

Fire Nuis Bkgd 

0.82 
4 

CO, AETHY, 02, 
PHOTO, ETHY, NO 

92.5 89.65 13/17 3/7 62/63 VARSELPR3, 
Both PNNCV & 
PRED board A 

0.82 
4 

ODM, RH, APHOTO, 
AC02, H2, C02 

89.17 91.95 10/17 7/7 63/63 VARSELPR3, 
Both PNNCV & 
PRED board B 

0.82 
4 

SION, APHOTO, C02, 
AOMEG, 02 

86.25 89.65 13/17 2/7 63/63 VARSELPR3; 
PRED only; board 
A 

0.82 
4 

SION, AODM, C02, 
APHOTO, ARH 

84.58 91.95 12/17 5/7 63/63 VARSELPR3; 
PRED only; board 
B 

1.63 
4 

CO, 02, ACO, ETHY, 
PHOTO, NO 

92.5 89.65 13/17 3/7 62/63 VARSELPR3, 
Both PNNCV & 
PRED board A 

1.63 
4 

ODM, RH, 02, OMEG, 
AHCL 

93.75 88.5 11/17 3/7 63/63 VARSELPR3, 
Both PNNCV & 
PRED board B 

1.63 
4 

SION, AODM, C02, 
NO,APHOTO 

85.41 90.80 12/17 4/7 63/63 VARSELPR3; 
PRED only; board 
A 

1.63 
4 

SION, ARION, C02, 
ASION, APHOTO, 02 

83.75 94.25 13/17 6/7 63/63 VARSELPR3; 
PRED only; board 
B 

11 
4 

CO, 02, PHOTO, 
SION, ETHY 

95 97.7 15/17 7/7 63/63 VARSELPR3, 
Both PNNCV & 
PRED board A 

11 
4 

ODM, PHOTO, 02, 
ASION, H2S 

96.25 96.55 13/17 7/7 63/63 VARSELPR3, 
Both PNNCV & 
PRED board B 

11 
4 

SION, AETHY, CO, 
ACO, 02, ETHY, 
PHOTO 

95.42 96.55 14/17 111 63/63 VARSELPR3; 
PRED only; board 
A 

11 
4 

RION, SION, ARION, 
02, C02, HCL 

90.83 96.55 15/17 6/7 63/63 VARSELPR3; 
PRED only; board 
B 
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Inter-Set Prediction with Real-Time Playback 

The experiments described above were performed at discrete times for both the training 
and prediction data set. A more relevant method of determining fire detection and nuisance 
source rejection performance involves real-time prediction of the sensor data.  In reference (d), 
real-time PNN performance was assessed using the laboratory data set.  In these experiments, 
real-time PNN performance is investigated by training the PNN on the laboratory data at 
discrete periods of time and processing the SHADWELL test data as though it were being 
collected in real time. These experiments will provide the most robust test, to date, of our 
multi-sensor array methodology since it demonstrates two important concepts: (1) using 
training data taken from site and predicting data collected at another; and (2) real-time 
analysis. The real-time playback experiments will also provide a means for determining 
response time to fires and the ability to reject nuisance sources and sensor changes due to 
changes in the ambient background level. 

Thirty-one different combinations of sensors were chosen for these experiments and are 
listed in Table 10. The various sensor combinations were chosen based on the results from 
our previous work.  The majority of the combinations involved only 5 sensors, however, some 
smaller sized arrays were also studied.  In addition to sensor combination, several other 
variables were studied. The results shown in Tables 7-9 do not point to an obvious conclusion 
regarding the use of background subtracted or raw, so that option was studied as well.  For 
earliest fire detection and highest nuisance source rejection, the optimal training set has not 
been determined.  To study this, each sensor combination and preprocessing scheme was 
studied using PNN training sets constructed at the 11%, 1.63%, and 0.82% obs./m alarm 
levels of the Photoelectric system from the laboratory data.  A fourth training set was 
constructed based on time at which five or more sensors have deviated 10 times the standard 
deviation of the background.  The final consideration was the choice of using sensors from 
board 'A' or 'B'. 

A total of 31 (sensor combinations) x 2 (preprocessing schemes, raw or background) x 4 
training set conditions (deviation from baseline, 11, 1.63, or 0.82) x 2 Board selections ('A' 
or 'B') = 496 experiments were conducted.  For each of these experiments, VARSELPR3 was 
run to optimize the choices of slopes and magnitudes. The rationale behind this step is that 
some sensors have more informative slopes (change in sensor response as a function of time) 
than magnitudes and that the best mix of slopes and magnitudes is dependent upon the choice 
of the preprocessing method and training set composition. The best performing subset can be 
found in Table 11.  The data were sorted according to highest nuisance source rejection 
capability. 
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Table 10. Sensor Combination Studied in Real-Time Playback Experiments 

Combination # Sensors 
1 PHOTO SION CO 0, ETHY 
2 PHOTO SION CO CO, ETHY 
3 PHOTO SION C02 02 CO 
4 PHOTO SION C02 02 ETHY 
5 PHOTO SION RH OMEG CO 
6 PHOTO SION RH OMEG C02 

7 PHOTO SION RH OMEG 0, 
8 PHOTO SION RH OMEG ETHY 
9 PHOTO RH C02 02 CO 
10 SIONRHC0202CO 
11 PHOTO ETHY C02 02 CO 
12 SION ETHY C02 02 CO 
13 RION ETHY C02 02 CO 
14 RION OMEG RH CO CO, 
15 PHOTO SION RH CO 02 

16 PHOTO SION RION C02 CO 
17 PHOTO SION RH CO, CO 
18 PHOTO RION RH CO, CO 
19 PHOTO H2S CO CO, RH 
20 PHOTO SION C02 H2S RH 
21 PHOTO RION RH OMEG ETHY 
22 PHOTO ODM RH OMEG CO 
23 02 CO OMEG RH SION PHOTO 
24 02 CO H2 SION PHOTO 
25 CO NO SION ODM 
26 SION CO 
27 PHOTO CO 
28 PHOTO SION CO 
29 PHOTO SION CO CO, 
30 SION CO C02 

31 PHOTO CO C02 
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Table 11. The Best Performing Sensor Arrays for SHADWELL Prediction 

Combination 
ft 

Alarm Time 
1=0.82% 
2 = 1.63% 
3 = 11% 

4=temporal 

Prepro 
cessing 
l=bkg 

d 
2 = raw 

Board 
A/B 
1=A 
2 = B 

Total 
Number 

of 
BKGD 
Tests 

Correct 
(29) 

Total Number 
of 

Fire/Nuisance 
Tests 

Correct 

(29) 

#of 
Fires 

Correct 

(17) 

#of 
Nuisance 
Sources 
Correct 

(7) 

#of 
BKGD 
Tests 

Correct 

(5) 
20 3 2 2 29 24 15 4 5 
19 2 2 1 29 23 14 4 5 
17 3 2 1 29 22 13 4 5 
25 2 1 2 28 23 14 4 5 
30 1 1 1 28 23 14 4 5 
19 2 2 2 27 23 14 4 5 
20 1 2 1 26 24 15 4 5 
5 3 2 2 29 24 16 3 5 
20 2 2 1 29 24 16 3 5 
6 3 2 1 29 23 15 3 5 
6 3 2 2 29 23 15 3 5 
16 3 2 2 29 23 15 3 5 
17 3 2 2 29 23 15 3 5 
19 1 2 2 29 23 15 3 5 
19 3 1 2 29 23 15 3 5 
19 3 2 29 23 15 3 5 
20 3 2 29 23 15 3 5 
26 3 1 29 23 15 3 5 
26 3 2 29 23 15 3 5 
27 3 2 29 23 15 3 5 
28 1 2 29 23 15 3 5 
28 3 1 29 23 15 3 5 
28 3 1 2 29 23 15 3 5 
29 3 2 2 29 23 15 3 5 
25 3 1 2 29 22 14 3 5 
26 3 1 2 29 22 14 3 5 
26 3 2 2 29 22 14 3 5 
28 3 2 1 29 22 14 3 5 
28 3 2 2 29 22 14 3 5 
30 3 2 2 29 22 14 3 5 

The best performing sensor combinations are highlighted in bold text above and listed 
here. 

5 PHOTO SION RH OMEG CO 
17 PHOTO SION RH C02 CO 
19 PHOTO H2S CO C02 RH 
20 PHOTO SION C02 H2S RH 
25 CONOSIONODM 
30 SIONCOC02 
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Sensor combinations 19 and 20 without background correction appear more than once with 
different board and alarm time selections. The deviation from baseline or temporal method to 
determine the training pattern was not present in any of the top performing combinations. All 
of the combinations include a smoke detector and sensors that have been identified in earlier 
studies as top performers. The overall correct classification results are similar to the intra-set 
PNN-CV described with both raw and processed approaches with 19 out of 24 fire/nuisance 
sources correctly processed. Based on the results above, combinations 19 and 20 would be 
selected. However, both of these combinations use the hydrogen sulfide sensor. The long 
term stability of this sensor is a concern because the calibration gas is unstable and expensive. 
Therefore, combinations 5 and 17 were selected due to the robust sensors in the arrays. The 
misclassified events for each of these arrays are listed in Table 12. 

Table 12. Misclassified Events for Each Candidate Suite 

PHOTO SION RH C02 CO PHOTO SION RH OMEG CO 
Burning Toast Burning Toast 
Cutting Steel Cutting Steel 
Cigarette Smoking Cigarette Smoking 
Smoldering cotton sheet, pillow, wool blanket, and mattress Welding 
Smoldering pillow in a pillow case Smoldering pillow in a pillow case 
TODCO Wallboard exposed to a flame 
Pipe insulation exposed to a flame 

5. CONCLUSIONS 

This report describes an important step towards designing an early warning fire detection 
system.  It investigates the ability of an algorithm trained on laboratory data to predict events 
at another location with different environmental parameters.  Sensor combinations were 
identified that provide similar overall classification results between the intra-set studies and the 
inter-set study. Using the extensive playback investigation examining more than 400 variables, 
two candidate suites were selected for prototype development: 

PHOTO SION RH OMEG CO 
PHOTO SION RH C02 CO 

The decision was difficult because there were several very good different combinations. 
Therefore, five additional sensors were selected to include in the future test, NO, H2S, 
ETHYL, RION, and 02. This will allow maximum flexibility in the future algorithm 
development. Much work remains in optimizing the algorithms for early fire detection for the 
best performance, however, the results continue to be encouraging. 
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The overall classification results of this study are not as good as in the previous work. 
While the multi-criteria detection system consistently performs better than the commercial 
photoelectric detector, the performance is similar to the ionization detector. The nuisance 
source rejection in this study is nearly identical.  Due to the limited data set and lack of 
replicates it is difficult to access why this is the case. As time goes on and more shipboard 
fires/nuisance conditions are measured, the overall performance is expected to result in better 
predictions. However, observations made of the fire/nuisance tests in progress made it clear 
that the definition of nuisance source is a difficult decision. The burning toast experiment was 
extremely smoky and a small fire was produced in the toaster. Inclusion of items like this test 
in the training set will influence the predictions. If one looks at the results from reference (c) 
presented here in Tables 13 and 14, similar nuisance sources are missed.  However, the earlier 
study had multiple replicates of each test and for all but cutting steel and grinding, only one 
replicate test was missed by the multi-criteria detection system. 

In addition, there are differences in the experimental design of the laboratory and 
SHADWELL tests that generated the two data sets used here. The change in experimental 
design demands a new measure of success, and that should be time to alarm.  In the 
fire/nuisance source tests completed in the laboratory, many of the small, incipient fires were 
not detected by the commercial fire detection systems. These systems are typically set at an 
alarm level (11-8% obs/m) because it provides the best nuisance source rejection and will 
detect a fire when it exceeds a given threshold.  In the SHADWELL tests, the fires were 
larger in nature and were sustained long enough to produce an alarm by the commercial fire 
detection systems for most of the tests. Therefore, a direct comparison of correct classification 
as a measure of success is less useful here.  The time to alarm would give more information 
about system performance and is more closely related to the goals of the program to produce 
an early warning fire detection system. The differences in these two data sets need careful 
examination and will be the subject of future tests and reports.  As algorithm development 
proceeds, alternative measures of success will be used in optimizing the methods. 
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Table 13. Misclassified Events Using CO^, MICX, ODM and RION 
at the Photoelectric 0.82% Obs./m Alarm Level 

Test ID Scenario Type 
(Real/Nuisance) 

Source Description 

DCAS029 Real Propane Bunsen burner 
DCAS055* Real Smoldering Pillow, with pillow case 
DCAS043 Real TODCO wall panel 
DCAS077 Nuisance Burning Toast, one slice 
DCAS083 Nuisance Grinding cinder block 
DCAS084 Nuisance Grinding cinder block 
DCAS085 Nuisance Cutting steel with acetylene torch 
DCAS087 Nuisance Cutting steel with acetylene torch 
DCAS088 Nuisance Cutting steel with acetylene torch 
DCAS101 Real Smoldering electrical cable - LSTHOF-9 
DCAS106 Real Smoldering electrical cable - LSTPNW-1-1/2 
DCAS107 Real Smoldering electrical cable - LSTPNW-1-1/2 
DCAS116 Real Propane Meker burner 
DCAS0132 Nuisance Smoking 12 Cigarettes 

* This test is one of four 
responses and a response 
at all because the heating 
tests. 

similar tests. Examination of the sensor responses indicates very small 
pattern unlike the other replicates. In fact, this test was not a replicate 
rod was placed under the pillow rather than on top as with the other 

25 



Table 14. Misclassified Events Using Oz, H2S, RH, ION and PHOTO 
at the Photoelectric 1.63% Obs./m Alarm Level 

Test ID        Scenario Type Source Description 
(Real/Nuisance) 

DCAS029    Real Propane Bunsen Burner 
DCAS055* Real Smoldering Pillow 
DCAS074   Nuisance Grinding Steel 
DCAS088    Nuisance Cutting steel with acetylene torch 
DCAS110   Real Igniting electrical cable with a torch - LSDSGU-14 
DCAS116   Real Propane Meker burner 
* This test is one of four similar. Examination of the sensor responses indicates very smal 
responses and a response pattern unlike the other replicates. In fact, this test was not a replicate 
at all because the heating rod was placed under the pillow rather than on top as with the other 
tests. 
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