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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2159 

ON THE PARTICULAR INTEGRALS OF THE PRANDTL-BUSEMANN 

ITERATION EQUATIONS FOR THE FLOW 

OF A COMPRESSIBLE FLUID 

By Carl Kaplan 

SUMMARY 

The particular integrals of the second-order and third-order Prandtl- 
Busemann iteration equations for the flow of a compressible fluid are 
obtained by means of the method in which the complex conjugate variables 5 
and z are utilized as the independent variables of the analysis.  The 
assumption is made that the Prandtl-Glauert solution of the linearized or 
first-order iteration equation for the two-dimensional flow of a com- 
pressible fluid is known. The forms of the particular integrals, derived 
for subsonic flow, are readily adapted to supersonic flows with only a 
change in siyi'of one of the parameters of the problem. 

INTRODUCTION 

For the past several years iteration methods have been increasingly 
applied to the solution of compressible-flow problems. The most useful 
one from the point of view of aeronautical applications and the one 
discussed in this paper is based on small perturbations with respect to 
the undisturbed flow. The Prandtl-Glauert and Ackeret solutions in two- 
dimensional subsonic and supersonic flow, respectively, obtained by 
means of the linearization of the fundamental nonlinear differential 
equation for compressible flow, are presumed to be known and are taken 
as the initial steps in this iteration process. Higher-order solutions 
are then obtained by retaining appropriate powers and products of the 
perturbation quantities. This method of iteration has been variously 
labeled the Ackeret iteration process and the Prandtl-Busemann small 
perturbation method when limited to two-dimensional subsonic flow. The 
procedure has been extended in recent years to both two-dimensional and 
axisymmetrical supersonic-flow problems. 

In a recent publication (reference l), Van Dyke succeeded in 
obtaining by trial the particular integral of the nonhomogeneous second- 
order iteration equation for the velocity potential in supersonic flow. 
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The general solution is then easily obtained by adding solutions of the 
homogeneous equation with proper regard to the boundary conditions at 
the surface of the solid and at infinity. 

The purpose of the present paper is to show a procedure by means 
of which the particular integrals of the higher-than-first-order iteration 
equations can be derived in a systematic manner. The explicit expression 
obtained for the particular integrals of the second-and third-order 
iteration equations are believed to yield essentially the solution of 
the problem of high subsonic flow past an arbitrary two-dimensional 
profile, since it is never a difficult problem to supply the solutions 
of the homogeneous equation necessary for the fulfillment of the boundary 
conditions.  It is noteworthy that the particular integrals, derived for 
subsonic flow, can be adapted to supersonic flow with simply a change 
in sign of one of the parameters. 

FUNDAMENTAL EQUATIONS 

The fundamental nonlinear differential equation governing the flow 
of a compressible fluid is 

fc2 .  u2>! + (c2 . ^ . uv(| + I) . 0 (1) 

where 

X, Y rectangular Cartesian coordinates in flow plane 

u, v fluid velocity components along X- and Y-axis, respectively 

c local speed of sound 

The condition for irrotational motion is that 

öu _ öv 
3? ~ 3X 

and leads to a velocity potential $ defined by 

u = H£ 
ax 

V= oT 

(2) 
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If the body is held fixed in a uniform stream of velocity U, the 
relation between the local speed of sound c and the speed of the 

fluid Vu + v  is given for adiabatic processes by 

where 

c^ sound speed in undisturbed fluid 

7 ratio of specific heats at constant pressure and constant volume 

M^ Mach number of undisturbed stream (U/cra) 

With the introduction of a characteristic length 7 as unit of 
length and the undisturbed stream velocity U as unit of velocity, the 
quantities X, Y, u, v, and $ for the remainder of the analysis 
denote, respectively, the nondimensional quantities X/Z, Y/Z, U/U, 

v/U, and $/U7, while c and c«, retain their original meanings. By 
means of equation (2), equations (l) and (3) then become, respectively, 

*XX + l-^ - M^vjOyy - 2M0O
20X

$Y$XY = °     (*0 

and 

4 = l + 2Li^oo2[-1_ (u2 + y2) 
c L 
00 

(5) 

where the subscripts X and Y denote partial differentiations with 
respect to the designated variables. 

In order to obtain the iteration equations based on small perturbations 
of the undisturbed stream, the assumption is made that the velocity 
potential $ can be expanded in the form 
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For the purpose of defining and controlling the iteration procedure, 
the function $ ,  and its derivatives are then regarded as small 

n+1 
compared with the preceding approximation $n and its derivatives. 

From equations (2) and (6), 

u $X = X + $1X + $2X + * 3X 

and 

v = Oy = <J>2V + *2Y + $3Y + 

When these expressions for u, v are introduced into equation (k), 
together with the expression for c2/^2 given by equation (5), and 
the powers and products of «t^ and their derivatives are grouped 
according to the assumptions of the small perturbation method, the 
following iteration equations for the first three approximations $]_, 
<br>_,  and $2 result: 

M. /  1XX +  <*>- 1YY = 0 (7) 

l- *k2)flfcxx +   ^YY = V^p + 1)$1X$1XX  +  (7  " D*1X*1YY + 2$1Y*1XY 
(8) 

(i - *>) O^ + ^'^iii*^+ *2xy (7 + l)^x +  (7 -  D*1YY 

|^1Y2 (7  + 1)*PXX + (7 - i)oixx + (7 + 1)*IYYJ +.*IX 

(7  - 1)*2YY]   
+ 2(*1X$1Y°1XY + *2Y°1XY +  *lY*2Xr)j 

(9) 

For slender bodies, the first few steps of this iteration process may be 
expected to yield an accurate result with the exception of a small region 
in the neighborhood of a stagnation point. Even at stagnation points 
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the iteration method has been shown to represent correctly the effect of 
compressibility (reference 2). The accuracy of the calculations 
obviously depends upon the number of terms determined, each additional 
term reducing the region of inaccuracy in the neighborhood of a stagnation 
point. 

The iteration equations (7), (8), and (9) may be put into more 
familiar forms by the introduction of a new set of independent variables 
and y, where 

x 

x = X 

y = Y \]l  - RJ 
(10) 

y 

Thus, for Moo < 1, equation (7) is transformed into a Laplace equation, 
whereas equations (8) and (9) are transformed into Poisson equations 
with the right-hand sides composed of, respectively, double products and 
triple products of previously determined perturbation quantities.  It 
is further assumed that the solution of equation (7) is available.  This 
initial step in the approximation to the exact nonlinear solution is 
usually easily obtained, äs it represents the Prandtl-Glauert approximation 
(reference 3, appendix B). The purpose of the present paper is then to 
derive explicit expressions for the particular solutions of the second- 
and third-order iteration equations (8) and (9). 

CALCULATION OF THE PARTICULAR INTEGRAL OF THE SECOND-ORDER 

ITERATION EQUATION 

By introducing the independent variables x and y defined by 
equation (10), the second-order iteration equation (8) becomes 

*2xx + «2yy. = 2Mco2 (l + ^x^lxx + $ly°lxy (11) 

where 

a  ~ 7  + 1 M°° 
2   «2 

ßd = 1 - Mr 
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and where use has been made of Laplace's equation 

$ixx + <I)lyy = ° 

The procedure for obtaining the particular integrals of the higher- 
order iteration equations is based on the use of the complex conjugate 
variables z and z as independent variables. Thus, 

z = x + iy 

z = x - iy 

and the equivalence of operators 

a- 
SI 

a _ Ah " 5z) 

a2 

ox2 

Ö2 

öz2 
+ 2Ä + 

ozaz 

i_ n 

*2 

0/ 2 +2 o^z~ ' v-2 az 

Then equation (7) for $-j_ becomes 

ozdz 
= 0 (12) 

The most general real solution of this equation is 

1  2 
w1(z) + wi(i) (13) 
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or 

4- = R.P.w1(z) = R.P.w^z) 

where W]_(z) is an arbitrary analytic function of z,    W]_(z) is its 
conjugate complex, and where the symbol R.P.  stands for "real part of". 
The imaginary part of w^(z) is a function ty-^ say, related to ^ 
by means of the Cauchy-Riemann equations and hence also satisfies Laplace's 
equation. The function i|/]_ does not represent the stream function of 

the actual compressible flow and does not appear in the final expressions 
of the particular integrals. The following relations will be found use- 
ful and are easily verified: 

*1 = |(wl + ^1) 

°lx = |KZ + *lz> 

' $ly = |(wlz - *lz) 

°lxy = |(wlzz " *lzz") 

*lxx = 2^wlzz + *lzz) 

Then 

2*Lx*Lxx' = R.P.(wiz + wizJwizz 

2*Ly*Lxy = ~  R-p-(wlz ~ wiz)wlzz 

and equation (11) for the second approximation $2 becomes 

1„ 2 >2zz = T^M/ R.P.[ffwl2wlzz + (2 + a)wx-wlzz 

|(wlz2)z +  (2 + tf)(wlzviz) rM 2 R.P. 
4 00 
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If $2 is defined to be the real part of a nonanalytic function ^  (z,z), 

then 

-      LA 2 
w2zz = l^oo |(wlzjz 

+  (2 + <0(vizffii (1*0 

This equation can be integrated immediately by inspection and yields 
the general solution 

*2 =^C |zwlz2 + (2 + ff)w1wlz + F(z) (15) 

where, because only the real part $2 °f w2 is of interest, only one 

arbitrary analytic function F(z) need be included.  The function F(z) 
satisfies Laplace's equation and is so chosen as to satisfy the required 
boundary conditions at the surface of the body and at infinity. The 
part of the expression on the right-hand side of equation (15)> excluding 
the arbitrary function F(z), is the particular integral of equation (ik) 
and may be expressed in real form in the following manner: 

Suppo se 

F(z) = - |zwlz
2 + (2 + a)wlWlz + f(z) (16) 

where    f(z)     is again an arbitrary analytic function of    z. 

Then with the aid of the relation 

wl = k(l- ~ 4;W + i*l) z ~ 2^ "  X^JW1 *Uc  "  i$ly 

where use has been made of the Cauchy-Riemann conditions 

*lx = *ly 

>ly = " +lx 
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the expression for $2> obtained from equation (15), becomes 

<£ 2 = 1M2 ^     ij. 00 
- 2ffyflx0ly + 2(2 + ff)*^^ + R.P.f(z) (IT) 

The expression on the right-hand side of this equation, excluding 
R.P. f(z), namely, 

= VL 1 + gW _ Iflj« 
T* iy lx (18) 

corresponds precisely to the particular integral obtained by Van Dyke 
(reference 1) for two-dimensional supersonic flow with a    replaced 
by -a,  where for supersonic flow the definition of a    is 

7 + 1 
2 

M„ 

MM
2 - 1 

It is rather noteworthy that the particular integral of the second-order 
iteration equation (8) can be obtained for both subsonic and supersonic 
flows by simply interchanging the sign of the parameter a. 

CALCULATION OF THE PARTICULAR INTEGRAL OF THE THIRD-ORDER 

ITERATION EQUATION 

In this section, the particular integral of equation (9) involving 
only $^, • $2, and their derivatives is derived. For this purpose, 

the variables x,y and the parameter a    are - introduced. Equation (9) 
then takes the following form: 

$3xx + $3yy = ^co iO- + G)($lxx$2x + $lx*2xx) + 2ß2(! + a)   - 1 'lx'l/lxy 

(1 + o) 2ß2(l + a)   - fkxx^lx2 + |(tfß2  " D$lxx*ly2 + 

°lxy°2y +  $ly$2xy (19) 
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Use is again made of the complex- conjugate variables z and z as 
independent variables. Thus, 

$2 = R.P.w2(z,z) 

$2x = R.P.(w2z + w2z) 

°2y =R'P-i(w2z " w2z) 

02xx 
= R-p-(w2zz + 2w2zE + w2iz) 

°2xy = R-P.i(*2zz - v2--) 

^lxx^lx2 = R-p-|(wlz + ^li)2wizz 

^lxx^ly2 = -R-p-^(wlz " ^lz^lzz 

$lxx$2x + *lx*2xx = R'P-|(W1ZZ 
+ *lSz)(w2z + w2z) + 

R.P.-(wlz + wlz-)(w2zz + 2w2zi + w2zz) 

0lxy$2y = -R'P-2(wlzz " *lzz)(w2z " v2z") 

$ly$2xy = - R-p-|(wiz " *lz^w2zz " W2zz^ 

*lx*ly*:bcy = -R-p-KWlz2 " "lz^lzz 
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Then equation (19)> with <J>o = R.P.wo(z,z), can be written as follows: 

w3zz = t(l -ß2)a(w2zwlzz + w2zzwlz + w2z*lzz + w2zz*lz) + 

T-(1 - ß2)(2 + o)(w_ w,— + w- w._ + w0-w_,  + w^—wn ) + h /s /v 2z lzz   2zz lz   2z lzz   2zz lzy \ 

^(1 - ß2)cr[ß2(l + 2a) - (1 - 2o) wlz wlzz + 

K(l  -  ß2) ß2(4 + 50 + 202) + o(3 + 2d) 1^ 
wlz wlzz + 

|(1 - ß2)[ß2(2 + 5o + 2a2) + (-2 + a  + 2o2)]wlzw1-wlzz 

Introducing the expressions for w2(z,z) and its derivatives with 
respect to z and z from equation (15) yields for w^ - the following 

w3zz = K(l " ß2)2a2^wlz2wlzz)Z 
+ ö^(l " ß2)2a(2 + 0)(^l)z(wlzvlzz)z + 

^(1 - ß2)2o(wlzFz)z + Jg(l - ß2)o[ß2(2 + o)  + (4 + 3o)] w15(wlz
2); IS 

4(1 - ß2)2o(2 + o)(wlz
2)z(iwlz)z + 

52N2 1^(1  -  ß<^(2 + o)2wlzz(w1w12)z + 

1 . 
16-d 

9& 

ß2)2(2 + o)(wlzFz)zz + i(l  -  ß2)2(2 + o)2(w1
2)-wlzzz + 32 

ß2)o2(5 + 3ß2)(vlz3)z + 

~(1 - ß2)[ß2(8 + lOo + 3o2) + o(6 + 5o)]w122wlz
2 (20) 
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In the derivation of this expression for Wozz-, free use was made 

of the fact that insofar as the real part $3 of W3 is concerned, 
terms of the nature g(z)E(z) and g(z)h(z) are equivalent. It is 
important to note that this type of operation leaves unaltered the real 
part $0 of Wo. Since $0 is the quantity sought for in the calcu- 

lations, changes in the imaginary part of wo are of no consequence 

in the final results. 

Equation (20) can be integrated immediately by inspection and yields 
the following result: 

w3 = i(l - ß2)2a2z2wlz
2wlzz + _^(l - ß2)2azVlzFz + 

^(1 - ß2)2a(2 + CT)ZWIW1ZW1ZZ + 

^(1 - ß2)ff[ß2(2 + a)  + (k + 30) 

^(1 - ß2)2a(2 + <0zwl5wlz
2 + ^(1  - ß2)2(2 + cr)2w1w1gwlz  + 

^(1 - ß2)2(2 + a)(FW;L- + Fzwx)  + ^(1 - ß2)2(2 + cr)2w1
2wlzz + 

^(1 - ß2)a2(3ß2 + 5)Swiz3 + ±d . ß2)[ß2(8 + 10a + 3a2) + 

a(6  + 5ajlw12 (wlz
2 dz (21) 

"lvlz2 + 

Equation (21) is the particular integral of equation (20).  The 
most general solution is obtained by adding an arbitrary analytic 
function G(z), satisfying the homogeneous or Laplace equation GZz = 0. 
An arbitrary function of z, customarily included in the general solution, 
need not be considered here because only the real part $0 of Wo is 

of interest^ In fact, the omitted arbitrary function is the complex 
conjugate G(z). 
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In order to obtain the desired form of $3 ( the real part of W3) 

from equation (21), F(z)  is replaced by its expression given in 
equation (l6), and the real part of f(z) in equation (17) is replaced 
by 

R.P.f(z)  = —2$2 + 2ay$lx0ly - 2(2 + a)^lx 
M 

00 

The final form of the particular integral of the third-order iteration 
equation (9) then becomes 

$3 = - |(1 - ß2)ay($lx$2y + $ly$2x) + |(1 - ß2)(2 + o)($^2  + Q^)  H 

|(i - ß^V^Uix2 . ,iy2) . i(1 . p^^lxVLcy + 

jjg(l - ß2)a[(6 + 5a) + 3(-2 + a)ß2]yd>ly3 + W 

^(1 - ß2)a (10 - a)  - (10 + 7a)ß2]y<$lx
2$ly + 1^ 

1(1  - ß2)2a(2 + a)y^($lx$lxy +  ft^)  + 

1^(1 - ß2) [(-16 - 10a + a2)  + (16 + 22a + 7a2)ß2 
*L*b 

^(1 - ß2)a[~(6 + 5a) + 3(2 + a)ß'2 
16^ *L*L3 

|(1 - ß2)2(2 + a)2$1
2
$lxx +   1(1 - ß2) 0(6 + 5a) + 

(8 + 10a + 3a2)ß' 'lx ($1X2    -   ^ly2)^   +   ^Ix^ly   dy (22) 
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The corresponding expression for $^ for supersonic flow is 

+ 1   Moo2 
obtained by simply replacing a    by -a    with a -  —5  and 

ß2 by -ß2 with p^ = M ^ . l. The physical plane variables X and Y 

are easily inserted into both equations (l8) and (22) by means of the 
transformation equations (lO), 

X 

ßY 

It is pointed out that the forms of the two particular integrals, 
equations (l8) and (22), derived in this paper are identical for both 
subsonic and supersonic flow.  The apparent differences are caused by 
a change in sign of the parameter ß2. Thus,  ß2 and a    are 
positive for both subsonic and supersonic flow.  Actually, of course, 
the functions represented by $.,,  $2, $?,   . . . are different for 

the two types of flow. For subsonic flow, these functions are derived 
from analytic and nonanalytic functions of z and z; whereas for 
supersonic flow, they involve the real "characteristics" variables x ± ßy. 

Note that the last term of the expression on the right-hand side 
of equation (22) contains the indefinite integral 

1 = / I (*lx2 "• V2)^ + 2$^" dy lx ly (23) 

It is obvious from the corresponding complex integral in equation (21) 
that the integrand of equation (23) is an exact differential.  This fact 
can also be easily verified with the help of Laplace's equation, 

Thus, 

$Lxx + *lyy = ° 

U^2 - v) - IKV) <*> 
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Equation (2^) represents the necessary and sufficient condition that the 
integrand of equation (23) be an exact differential. Further, according 
to the theory of exact differential equations, the integral I may be 
expressed as follows: -, 

I = / M dx + / U - j-     M dxjdy . (25) 

where 

M=$lx
2-0ly

2 

N = 20lx0ly 

and where by  / M dx is meant the result of integrating M dx with y 

considered constant.  The expression within the parentheses, namely 

N - §-/ M dx 

is a function of y only. This statement can be verified as follows: 
Thus, 

and because y is considered constant in the process of integrating M dx, 
it is clear that 

^- / M dx = M 

Hence the right-hand side of equation (26) is -v— - ^-, which vanishes 

because of the condition for the existence of an exact differential. 
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Note that in general it is simpler to perform the complex 

r    ? integration  / w-i z dz rather than transform to a real integral and 

then perform the integration. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., May 29, 1950 
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