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2. Objectives 
This project is concerned with the development of finite element procedures for 
effectively performing metal forming simulations in an automated analysis envi- 
ronment. Due to their ability to efficiently provide results to the required levels of 
accuracy, the desired formulation should support hp-adaptive analysis techniques. 
These requirements present a technical challenge due to the inability of standard 
finite element formulations to satisfy the Babuska-Brezzi conditions for general 
combinations of displacement (velocity) and pressure interpolations needed for hp- 
adaptivity in the presence of incompressibility constraints. To address this problem 
we have investigated stabilized finite element formulations for this class of prob- 
lem. The second area considered was the development of a geometry-based simu- 
lation framework capable of supporting automated hp-adaptive technologies using 
such element formulations on problems. 

3. Stabilized Finite Element Formulation 
Typical metal forming processes involve large, nearly incompressible, deforma- 
tions. In order to handle the incompressibility, mixed formulations, where the dis- 
placements and pressures are interpolated separately, have proved to be effective. 
However, it has been shown that these mixed formulations are not, in general, sta- 
ble unless they satisfy a certain stability criterion, the so-called Babuska-Brezzi 
condition. This criterion puts restrictions on the relationship between the displace- 

• ment. and pressure finite element interpolation functions. This restriction limits 
computational efficiency since the order of interpolation is defined by this stability 
condition rather than by numerical accuracy, and thus makes p-adaptivity all but 
impossible. Because metal forming processes are generally three-dimensional in 
nature and involve very large deformations, adaptivity is critical to obtaining accu- 
rate results efficiently. A combination of h- and p- adaptivity is most desirable for 
gaining optimal efficiency. In this work, a stabilized finite element formulation for 
large deformation processes which eliminates the need to satisfy the Babuska- 
Brezzi condition is presented. The formulation is based on the stabilized formula- 
tions developed for linear problems by Hughes et al. Examples involving large 
deformation, three-dimensional, hyperelasticity with linear interpolations for both 
the displacement and pressure are presented to demonstrate the algorithm. The 

' results show that the method can work for large deformation, nonlinear, three- 
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dimensional problems, and is therefore a promising technique for effectively mod- 
eling metal forming processes. 
Given a continuum body * we introduce the deformation cp:P -» *   and use the 
notation 5   = 9 (P) c9T for the reference configuration and 5 = (p(P) c Jt 
for the current configuration. A point in the reference configuration X is mapped 
into a point x = q>(X) = X + u(X) in the current configuration where u denotes 
the      displacement     field.     We      define      the      deformation     gradient 
F = Vcp(X) = 1 + V« and use the notation C = F F for the right Cauchy- 
Green tensor. The symbols V[-] and Div[-] denote the gradient and divergence, 
respectively of a quantity [•] with respect to the coordinates X e B0. Assuming 
the volumetric deformation is purely elastic, we can write p = KU'(J) , where p is 
the mean stress, K is the bulk modulus, and U is the volumetric part of the stored 
energy depending only on the Jacobian J of the deformation Gradient F. The sec- 
ond Piola-Kirchhoff stress S can be decomposed into S = JpC   +S where the 
first term is the volumetric part and S is the remainder. In the following we present 
a stabilized mixed displacement-pressure formulation in material quantities 
defined in the reference configuration. The-boundary value problem for equilib- 
rium in the absence'of body forces is given as: Find a displacement field u such 

that' 
-Div[F5] = 0  in B0 

[FS]n0 = g0 on ToN  . (1) 

u = ü0   on ToD 

n is the exterior unit normal on T0, the boundary of B0, and g0 is a prescribed 
traction load on part of the boundary ToN. We consider prescribed dinchlet bound- 
ary conditions U0 on ToD. ToD and ToN describe the complete boundary of B 
The stabilized mixed finite element formulation can now be derived from the 
strong form Eqn. <T) by multiplying with the perturbed weighting function 
u + (a/t2)/(2^)F(~^vJi, and integrating over the domain 

J Div[F5] • £dV + X ^ I DivtFS] • F"r^dy = ° C2) 

B0 e = l B'0      T 

where the perturbation term {ah2)/(2fi)F~ V$ is applied element wise, a is a 
stabilization parameter, h is a mesh size parameter, and jx is shear stiffness. The 
first term in Eqn. (2) is integrated by parts as usual. We will focus our attention on 
the derivation of the stabilization term. Using the additive decomposition of the 
second Piola-Kirchhoff stress we obtain 

Div[FS] =Div[p7FC_1]+Div[F5] (3) 

= 7F"rVp + Div[FS] 

The second step in the formulation was achieved by applying the Piola Identity 
Div[7F"r] = 0. Introducing Eqn. (3) into Eqn. (2) and introducing the pressure 



p = KirU(u)) as an independent variable, the stabilized mixed weak formula- 
tion of Eqn. (1) is then: Find (u, p) e V x Q such that for all  (a, p) e V x Q 

JS:[FrVA]dV + J Jp<rl:[Frv3]dV = 1^(2) 

(4) 

'=1   * 

_ £ ^L J Div[FS] • (F_TVp)dV = 0 

In the case when only linear shape functions are used, the divergence term in Eqn 
(4) vanishes. We consider a hyperelastic material model with an additive stored 
energy function W = K[7(J) + W(C) so that 

We choose a Neo-Hookean material model where U(J) = 1/2- (J-l)    and 
W(C) = l/2:^[J"2/3trC-3] 
More complete details on the formulation and numerical results showing the supe- 
riority of the formulation are presented in references [18,19]. 

4. Geometry-Based Object-Oriented Simulation Framework 
To date consideration of oriented programming in simulation software has focused 
on flexible structures with code reuse, application of symbolic computing, operat- 
ing in parallel, linking with design processes and supporting interacting multiphys- 
ics° simulations. Building on these efforts and the needs of adaptive simulation 
technologies we have constructed a geometry-based simulation frameworks that 
supports parallel adaptive simulation capabilities. This system, referred to as Trel- 

lis is based on [2,4]: 
• A set of geometry-based structures which can support; (i) the direct linkage 

with company CAD information, (ii) all forms of adaptivity without introducing 
geometric approximation errors [8], and (in) the high level integration of multi- 
scale, multi-physics analysis methodologies. 

• A careful decomposition of the geometry, physics, mathematical model, discret- 
ization and numerical methods into interacting classes. These structures support 
a variety of equation discretization methods. Both .finite element [18,19] and 
partition of unity methods have been implemented [20]. 

• Adaptive control of each step of the simulation process from the selection of the 
mathematical model, through the model and domain discretization, to the selec- 
tion of application of the numerical methods to solving the discrete system. 

Conceptually Trellis is built on the view of an analysis as a transformation between 
three levels of description. The highest level description is that of the physical 
problem which is posed in terms of physical objects interacting with their environ- 



ment. Since the goal of the analysis is to obtain reliable estimates of the response 
of the system the second level is a mathematical problem description that intro- 
duces some level of idealization, which also needs to be controlled to yield the 
desired accuracy. The third level is the numerical discretization constructed from a 
mathematical problem that involves another set of idealizations which also need to 

be controlled. 
The structures used to support the problem definition, the discretizations of the 
model and their interactions are central to Trellis. The two structures of the geo- 
metric model and attributes are used to house the problem definition. The analysis 
discretizations are housed in the mesh structure. The final structure is the field 
structure which houses numerical solution results. 

The geometric model representation is a non-manifold boundary representation 
based. The representation used for a mesh is similar to that used for a geometric 
model [3]: a hierarchy of regions, faces, edges and vertices. In addition, each mesh 
entity maintains a relation, called classification, to the model entity that it was cre- 
ated to partially represent. Understanding how the mesh relates to the geometric 
model is critical for both mesh adaptivity and understanding how the solution 
relates back to the original problem description. The topological representation can 
also be used to great advantage in performing adaptive p-version analyses as poly- 
nomial orders can be directly assigned to the various entities [8,22]. 

A problem with many "classic" numerical analysis codes is that the solution of an 
analysis is given in terms of the values at a set of discrete points. Trellis eliminates 
this problem by introducing a construct known as a field which describes the varia- 
tion of a tensor over one or more entities in a geometric model. The spatial varia- 
tion of the field is defined in terms of interpolations defined over a discrete 
representation of the geometric model entities, which can be a mesh. 

The Trellis analysis process is a series of transformations of the problem from the 
original mathematical problem description through to sets of algebraic equations 
approximately representing the problem. The mathematical problem description 
level is described by a ContinuousSystem class, which contains the geometric 
model and the attributes which apply to that model, specified by a particular case 
node in the attribute graph. An instance of a ContinuousSystem is then transformed 
to an instance of the class DiscreteSystem which represents the discretized version 
of the model and attributes and the weak form of the partial differential equation 
(PÖE). The particular analysis class that, is used depends on the selected weak 
form of the PDE to be solved. 
The DiscreteSystem class represents the problem in terms of contributions from a 
set of objects that live on the discrete representation of the model. These objects 
are called SystemContributors. There are three types of SystemContributors: Stiff- 
nessContributors contribute coupling terms between degrees of freedom of the sys- 
tem, ForceContributors contribute terms to the right hand side vector, and 
Constraints set specific values or constraints to given degrees of freedom. These 
objects are created by the Analysis object and correspond to an interpretation of 
attributes consistent with the weak form that the Analysis implements. 



The Analysis class creates all of the SystemContributors and adds them to an 
instance of a DiscreteSystem. The DiscreteSystem is transformed into an Algebra- 
icSystem, an Assembler object. Multiple linear solvers can be used to solve the 
AbebraicSystem. The most extensive capability included is the Portable, Extensi- 
ble°Toolkit for Scientific Computation (PETSc) from Argonne National Labora- 
tory These procedures have the dual advantage of working effectively m an object- 
oriented analysis framework and providing an efficient set of linear algebra rou- 

tines. 
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