HOT-FILAMENT ASSISTED FABRICATION OF CARBON-NANOTUBE ELECTRON EMITTERS

YONHUA TZENG*, CHAO LIU*, AND ZHENG CHEN**
* Alabama Microelectronics Science and Technology Center, Department of Electrical
and Computer Engineering, Auburn University, AL 36849
** Space Power Institute, Auburn University, AL 36849

ABSTRACT

A hot-filament CVD reactor was used for the deposition of carbon nanotubes on
substrates. Hydrocarbon or oxyhydrocarbon mixtures were used as the carbon source.
Hot filaments at temperatures exceeding 2000°C provided a means of dissociating the
vapor or gas feedstock, heating the substrate, and allowing gas species to react in the gas
phase as well as on the surface of the substrate leading to the deposition of desired
carbon coatings. A high vacuum chamber was used to characterize the electron
emission properties of these carbon nanotube coatings using a one-millimeter diameter
tungsten rod with a hemispherical tip as the anode while the carbon nanotube coatings
served as the cathode. The current-voltage characteristics of the carbon nanotube
coatings were measured and used for calculating the electric field at which electron
emission turned on as well as calculating the field enhancement factor of the carbon
nanotubes. Field emission of electrons from carbon nanotubes starting from an electric
field of as low as 1-2 volts per micrometer was achieved.

INTRODUCTION

Micro-engineering in the nano-meter scale using carbon atoms as the building
block has resulted in amazingly excellent characteristics of carbon-based structures that
finds broad applications ranging from microelectronics to cutting tools. One of these
amazing carbon materials is CVD diamond that has been intensively studied in the past
fifteen years or so. More recently, the science and practical applications of carbon
nanotubes became popular because of its equally great commercial and technological
potentials.

Carbon, when properly arranged in a 3-dimensional order, forms the hardest
materials on earth, diamond. In addition to being an attractive gemstone, diamond is
the champion in almost every aspect of materials properties. Its thermal conductivity is
five times better than copper at room temperature making it an excellent material as the
heat spreader for high power density integrated circuits. Its bandgap energy is higher
than SiC and most of compound semiconductors making it desirable for fabricating high
power density electronic devices or sensors and actuators for operation in high-
temperature and radiation hostile environments. Its super hardness and chemical
inertness make it an economic material for cutting tools or simply used as protective
coatings.
Hot-filament assisted fabrication of carbon nanotube electron emitters

Yonhua Tzeng

Auburn University
Department of Electrical Engineering
200 Broun Hall
Auburn, AL 36849

Colin E. Wood
ONR312, Office of Naval Research
Ballston Center Tower One
800 North Quincy St., Arlington, VA 22217-5660

Approved for public release.

[This manuscript was presented in the Materials Research Society Spring 2000 Meeting, Symposium R, held in San Francisco, CA in May 2000]

Hot filaments were applied to convert hydrocarbon and oxyhydrocarbon mixtures into favorable mixtures of species for the nucleation and growth of carbon nanotubes on various substrates that were pre-seeded with catalysts. Carbon Nanotubes with excellent electron emission characteristics have been deposited at a substrate temperature near 800-900C. Field emission of electrons from carbon nanotubes starting from an electric field of as low as 1-2 volts per micrometer was achieved.
By building carbon structures in the nano-meter scale, it is possible to make carbon tubes that are as small as a few nanometers in diameters and are formed by layers of graphite-like carbon structures. When these carbon nano-tubes are coated on a smooth or porous substrate with a conductive surface layer, they emit electrons without needing to be heated to such a high temperature as a hot tungsten filament cathode in a vacuum tube is usually done. It, therefore, becomes a very promising material for the application as a cold cathode for flat panel displays or other electron devices.

A number of methods for chemical vapor deposition of diamond based on different gas mixtures and energy sources for dissociating the gas mixtures have been reported [1]. These techniques include the use of high-temperature electrons in various kinds of plasmas, high-temperature surfaces of hot filaments, and high-temperature gases in combustion flames to dissociate molecular hydrogen, oxygen, halogen, hydrocarbon, and many other carbon containing gases. The substrate is usually maintained at a temperature much lower than that of electrons in a plasma, the hot filaments, or the combustion flame, resulting in a super equilibrium of atomic hydrogen near the diamond-growing surface.

Most of diamond CVD processes involve in the use of one or more compressed gases. The most typical example is the use of 1% methane gas diluted by 99% hydrogen. These gases usually must be precisely controlled using electronic mass flow controllers to ensure an accurate composition in the gas feed. Diamond CVD using a hot filament CVD reactor and a liquid feedstock without any compressed gas was also reported [2].

Chemical vapor deposition of carbon films in the form of carbon nanotubes is not much different from that for the CVD of diamond. The key experimental parameter for the coating of carbon nanotubes instead of diamond or diamond-like carbon films is the presence of suitable catalysts for carbon nanotubes to grow in the gas phase or on the substrate. In this paper, a hot filament CVD reactor that was designed and used for diamond deposition was used for depositing carbon nanotubes on metal substrates for electron emission studies. Oxyhydrocarbon vapor or hydrocarbon gas mixtures were used as the feedstock.

EXPERIMENTAL

Shown in Figure 1 is the schematic diagram for the hot-filament CVD reactor that was used for this study. Hydrocarbon or oxyhydrocarbon mixtures were fed into a vacuum chamber that was evacuated by a mechanical pump. The chamber gas pressure was controlled by a throttle valve and a manometer pressure gauge. A tungsten filament was heated resistively by a 60Hz AC electrical current to a temperature exceeding 2000°C. The hot filament heated the substrate placed above or under it to a preset temperature as well as heated the gas mixtures for proper dissociation and reaction in the gas phase leading to carbon deposition on the substrate surface. Copper, nickel, and Cobalt were used as the catalysts for the carbon coatings to grow into carbon nanotubes instead of forming diamond-like carbon coatings.
The carbon nanotube coated substrates were then loaded into a high vacuum chamber that was pumped down by a turbomolecular pump and an ion pump to a vacuum of about 1×10^{-7} Torr. The carbon nanotube coated substrate served as the cathode while a tungsten rod of one-millimeter diameter with the tip grounded into a hemispherical shape was used as the anode. The distance between the anode and the cathode was adjusted using a linear vacuum feedthrough to move the tungsten rod closer or farther from the carbon nanotube coated substrate. A desktop computer controlled the output of a high-voltage power supply for applying a voltage between the anode and the cathode. The electric field is calculated by dividing the applied voltage by the gap spacing between the anode and the cathode. The electron emission current was
measured by a digital ammeter and recorded by the computer for further plotting and calculation.

RESULTS

The typical electron emission characteristics for carbon nanotubes coated on a nickel substrate are shown in Figure 3 and 4. The carbon nanotube coating was

Figure 3. Field emission electron current vs electric field.

Figure 4. Fowler-Nordheim plot for field emission electron current.
fabricated in 80 minutes at a temperature around 900°C. The gap spacing between the tungsten rod and the nanotube coating for electron emission measurement was 495 micrometers. Figure 3 shows that field emission of electrons started at an electric field equal to about 1.5 volts per micrometer. Electron emission current rose exponentially at electric field higher than the turn-on field of 1.5 volts per micrometer. The slope decreased at higher electric field than 2.5 volts per micrometer and started to become saturated.

The Fowler-Nordheim plot of the data shown in Figure 3 is shown in Figure 4. A well-defined region of negative slope appears prior to the region of emission current saturation. The field enhancement factor was calculated from the negative slope using 5 eV emission barrier for graphite to be 1510.

DISCUSSION

The fabrication processes for CVD diamond and carbon nanotube coatings are similar. Hot filament CVD technique provides a means of very large area coating of diamond films as well as carbon nanotubes. From Figure 3 and 4, it is clear that the emission mechanism is of the Fowler-Nordheim type with electron field emission commencing at a low electric field because of the 1510 times of field enhancement factor [3-4]. The small diameter and very high aspect ratio of the carbon nanotube make it possible for the local electric field at the tip of the carbon nanotube to be more than one thousand times higher than that calculated by dividing the applied voltage by the distance between the anode and the carbon nanotube coating. With optimization of the coating conditions and the proper choice and applications of catalysts, high electron emission current exceeding 1 A per square centimeter at an electric field lower than 1 volt per micrometer is our goal.

CONCLUSIONS

Carbon nanotube with threshold electron emission electric field as low as 1.5 volts per micrometer has been coated using a tungsten hot-filament CVD reactor similar to the one that was used for depositing CVD diamond. The hot-filament CVD technique allows the up scaling of the coating process for depositing carbon nanotubes on a very large-area substrate. Multiple substrate coatings can also be achieved using the hot-filament CVD technique. Field emission results from carbon nanotube coatings showed clearly Fowler-Nordheim behavior.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support from the Office of Naval Research, the NASA, the Alabama Microelectronics Science and Technology Center, and Auburn University Space Power Institute.
REFERENCES

