Polymer Processing for All-Optical Device Fabrication

Mark G. Kuzyk
Department of Physics, Washington State University, Pullman, WA 99164-2814

March 21, 2000

GRANT # F496209610188

FINAL REPORT TO AFOSR

REPORT PERIOD: 01 May 96 - 31 August 99

We have achieved our research goal to study the effect of polymer processing and composition on fabricability and performance of all-optical switching devices and optical amplifier devices. In the process, we have developed a deeper understanding of the linear and nonlinear properties of materials and how they affect device performance.

There are 6 major efforts in the this program. Present experiments in progress include:

- interferometric measurements of the intensity dependent refractive index in single-mode polymer optical fibers
- loss, scattering, fluorescence and two photon absorption measurements based on a new transverse excitation technique that was invented in our laboratory
- refractive index profiling measurement techniques
- third-order susceptibility studies aimed at understanding the nonlinearity mechanisms in dye-doped polymers
- Dual-core single-mode fiber development
- Fibers with electrodes

The interferometric intensity dependent refractive index studies of both bulk and fibers has turned up many interesting results. First, the Sagnac configuration is actually an optical switch, in which we have seen switching efficiencies approaching 100%. Secondly, we have found many nuances in interferometric measurements that show how unreliable they are in bulk measurements (which is the kind of measurement that many researchers use to characterize materials) and how good they are in fiber waveguides. The conclusion is that
material evaluation studies for making devices should only be performed in fiber waveguide geometries.

The loss, scattering, fluorescence and two photon absorption measurements are based on a new transverse excitation technique where a light source illuminates the fiber from the side. Side illumination results in fluorescence, that propagates down the fiber. As such, it results in a broad spectrum of light that propagates down the fiber, yet insures that most of the laser line does not travel down the fiber. By scanning a detector perpendicular to the fiber along its length, a measure of the scattered spectrum as a function of distance yields the dispersion of the loss in the fiber over a broad color range in the near IR. Intensity dependent measurements, on the other hand, can be used to study isomerization, bleaching, and two-photon absorption.

Note that we have applied the Side-illumination technique, along with a new theory of inhomogeneous broadening, to understanding both the linear and nonlinear spectra of organic molecules. These studies show that many of the past measurements by our group and many others may not be accurate.

We have also completed a series of pump-probe measurements of the ultrafast response of organic molecules to understand whether spectroscopies (such as electroabsorption) can be extrapolated to the ultrafast regime. We have found that both measurements can be predicted by a single unifying theory using inhomogeneous broadening of a multi-level system.

We have either developed or implemented several techniques for measuring the refractive index profile in a preform and fiber. They include the refractive bending method (developed at WSU), the near field refractive technique, and the wiggly beam technique (developed at WSU). The refractive bending technique has the advantage that it can measure the refractive index profile of a preform slice without the need for mathematical assumptions. The wiggly beam technique, on the other hand, is based on a Fresnel factor determination from a reflected beam. Because the beam is swept across the sample surface as a sine function of time, a lock-in amplifier is used to get the reflectance - thereby yielding a much higher sensitivity. The main advantage is that even light absorbing samples can be measured.

The dual-core project has successfully demonstrated a nonlinear coupler, so this objective is complete. We are therefore now focusing efforts to better understand nonlinear-optical mechanisms. These studies will be of utmost importance for the design of commercial devices. Note that we continue processing studies to improve fibers.

PERSONNEL SUPPORTED:

Principal Investigator:
- Mark Kuzyk

Post Doc:
- Youngsoo Baek
- Chris Kwiatkowski

Graduate Students:
- Brian Canfield
PAPERS AND PRESENTATIONS

Ten refereed papers on AFOSR-supported work appeared in a refereed journal during the report period:

Books

Presentations

R. J. Kruhlak and M. G. Kuzyk "Determining the nature of Excited States Using and Inhomogeneous-Broadening Analysis of Third-Order Processes," ICONO'5, Davos, Switzerland (2000).

DEGREES

Dennis Garvey, Ph.D. 1999
Thomas Wofford, M.S. 2000
Robert Kruhlak, Ph.D. 2000

TRANSITIONS

a. M. G. Kuzyk / Washington State University, b. Refractive index characterization of preforms, c. Transition to Boston Optical Fiber, Victor Ilyanshenko, 508-836-2700, d. Used to improve materials processing to make better graded index polymer optical fibers.

In addition to our ongoing collaborations, we have been collaborating with Prof. Singer at Case Western and Dr. Trupp (using fibers for shock physics experiments) at Los Alamos.
TITLE AND SUBTITLE
Polymer Processing for All-Optical Device Fabrication

ABSTRACT
We have achieved our research goal to study the effect of polymer processing and composition on fabricability and performance of all-optical switching devices and optical amplifier devices. In the process, we have developed a deeper understanding of the linear and nonlinear properties of materials and how they affect device performance. The 6 major efforts completed in this program include: 1) interferometric measurements of the intensity dependent refractive index in single-mode polymer optical fibers that demonstrates switching, 2) loss, scattering, fluorescence and two photon absorption measurements based on a new transverse excitation technique that was invented in our lab, 3) refractive index profiling measurement techniques developed in our lab to characterize preforms and fibers, 4) third-order susceptibility studies aimed at understanding the nonlinearity mechanisms in dye-doped polymers, 5) demonstration of dual-core single-mode fiber with nonlinear coupling (switching), and 6) demonstration of fibers with electrodes.

SUBJECT TERMS
- Polymer optical fibers
- Optical switching
- Electrooptics