REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimates or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1224, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)
2. REPORT DATE
 June 15, 1999
3. REPORT TYPE AND DATES COVERED
 Final Report

4. TITLE AND SUBTITLE
 Parallel Algorithms

5. FUNDING NUMBERS
 DAAH04-95-1-0111

6. AUTHOR(S)
 Sartaj Sahni

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 University of Florida-Gainesville
 Gainesville, FL 32611

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U. S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
 ARO 31159.7-MA

11. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release: distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
 During the course of the contract we developed a model, the master-slave system, to accurately model the scheduling problem that arises when a program running on a host processor initiates many tasks on an attached multiprocessor. Efficient algorithms to obtain optimal schedules were developed for some scenarios and approximation algorithms were developed for other scenarios.

 We also developed efficient algorithms for sorting, selection and packet routing, matrix multiplication, and image processing tasks on parallel computers that employ all optical (e.g., array with reconfigurable optical buses) or optoelectronic interconnect (e.g., optical transpose interconnection system meshes and hypercubes).

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

DTIC QUALITY INSPECTED 4
1 RESEARCH

The objectives of the contract were to develop new algorithms, data structures, and parallel algorithm design methodologies for SIMD and MIMD parallel computers.

During the course of the contract we reviewed the many performance metrics that have been proposed for parallel systems (i.e., program -- architecture combinations). These include the many variants of speedup, efficiency, and isoefficiency. We have found reasons why none of these metrics should be used independent of the run time of the parallel system. The run time remains the dominant metric and the remaining metrics are important only to the extent they favor systems with better run time.

We also laid out the minimum requirements that a model for parallel computers should meet before it can be considered acceptable. While many models have been proposed, none meets all of these requirements. The BSP and LogP models are considered and the importance of the specifics of the interconnect topology in developing good parallel algorithms pointed out. Our findings will be written up shortly and submitted for journal publication.

Effective scheduling of parallel computers is important to obtain good performance. We have developed a model, the master-slave system, to accurately model the scheduling problem that arises when a program running on a host processor initiates many tasks on an attached multiprocessor. The master-slave paradigm also finds application in semiconductor testing, machine scheduling, maintenance management and other industrial settings. In the master-slave model a set of jobs is to be processed by a system of processors. Each job consists of a preprocessing task, a slave task and a postprocessing task that must be executed in this order. The pre- and post-processing tasks are to be processed by a master processor while the slave task is processed by a slave processor. We are presently developing algorithms for this model.

Our work on algorithm development for different architectures focussed on sorting, selection and packet routing on the AROB (Array with Reconfigurable Optical Buses) model as well as on the OTIS (optical transpose interconnection system)-Mesh and OTIS-hypercube models. This work included the study of algorithms for the important bit-permute-complement (BPC) class of permutations and for matrix multiplication.

Towards the end of the contract period we focussed our attention on the OTIS-Mesh model. This parallel-computer model uses a combination of electronic and optical interconnect. Short connections are realized using an electronic mesh topology and long connections are realized using the optical transpose topology. Efficient algorithms to perform many fundamental tasks such as sort, rank, shift, window sum, consecutive sum, adjacent sum, and random access reads and writes were developed last year. Algorithms for these fundamental tasks can be used to develop efficient algorithms for high-level applications such as those that arise in image processing.

We completed work on algorithms for various variations of the matrix multiplication problem (this work was begun in the preceding reporting period). These variations include vector \times vector, vector \times matrix, and matrix \times matrix. Our work is aimed not only towards matrix multiplication when the problem size matches the computer size but also when the matrix size is much larger than the computer size. In addition, we have developed efficient algorithms for image processing applications such as histogramming, histogram modification, image shrinking and expanding, and the Hough transform.

Details of our algorithms can be found in the publications that have resulted from this contract.

2 Ph.D. Students Graduated

The ARO contract supported the following Ph.D. students who have all completed their dissertations.

(1) Venkat Thanvantri
(2) Seonghun Cho
(3) Chih-fang Wang
3 PUBLICATIONS

(2) G. Vairaktarakis and S. Sahni, Dual criteria preemptive open shop problems with minimum finish time. Naval Research Logistics, 42, 1995, 103-121.

