
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
Decmber 1997 

3. REPORT TYPE AND DATES COVERED 
End of Year   

4. TITLE AND SUBTITLE 
A Hierarchical Neural Network Based Data Processing System for Ground-Penetrating Radar, 
An End of Year report for Project CU/1049/6: Application of Neural Networks Coupled with 
Genetic Algorithms to Optimize Soil Cleanup Operations in Cold Climates 

6. AUTHOR(S) 
John M. Sullivan 

5. FUNDING NUMBERS 

N/A 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Remote Sensing/GIS Division 
US Army Cold Regions Research and 

Engineering Laboratory 
Hanover, NH 03755 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

SERDP 
901 North Stuart St. Suite 303 
Arlington, VA 22203 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

N/A 

11. SUPPLEMENTARY NOTES 
This work was funded in part by SERDP Project 1049/6 and by CRREL SFRC Number DACA89-97-K0001. This document integrates 
all work performed to date on this project (CU/1049/6). The United States Government has a royalty-free license throughout the world 
in all copyrightable material contained herein. All other rights are reserved by the copyright owner. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release: distribution is unlimited. 

12b. DISTRIBUTION 
CODE 
A 

13. ABSTRACT (Maximum 200 Words) 
Ground-Penetrating Radar (GPR) is a powerful modern tool to examine the structure and properties of the media below the ground 

surface within a depth of 30 meters. This study is very important for the environmental problems related to the transport of 
contaminants in ground waters. Successful GPR profiling of the subsurface media yielding the correct information about the 
distribution of permafrost, water table, and bedrock depths is the key factor in ground water flow modeling. 

This work attempts to develop a hierarchical processing system capable of handling GPR data characterized by high degree of 
uncertainty, natural physical ambiguity, and, sometimes, missing or incorrect entries. The hierarchical nature of the algorithm allows to 
split the task of media profiling into several consecutive stages, each of the following has less degree of uncertainty than the previous 
one. Neural Networks modules are designed to accomplish the two main processing goals of recognizing the "subsurface pattern" 
followed by the identification of the depths of the subsurface layers like permafrost, groundwater table, and bedrock. Pre-processing 
procedure has the objective to transform raw GPR data into a small feature vecor containing the most representative and discriminative 
features of the signal. The feature vector coupled with other relevant GPR information forms the input for the Neural Network 
processing units.  
14. SUBJECT TERMS 
ground-penetrating radar 
GPR 
neural networks 

remote sensing 
SERDP 
SERDP Collection 

15. NUMBER OF PAGES 
90 

16. PRICE CODE   N/A 

17. SECURITY CLASSIFICATION 
OF REPORT 

unclass. 

NSN 7540-01-280-5500 

18. SECURITY 
CLASSIFICATION 

OF THIS PAGE 
unclass. 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

unclass. 

20. LIMITATION OF 
ABSTRACT 
UL 

DTIC QUALITY INSPECTED 4 1QQQfiS?1       1 / / 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



SERDP Report 

A Hierarchical Neural Network Based Data Processing System 

for Ground-Penetrating Radar 

An End of Year report for Project CU/1049/6: 

Application of Neural Networks Coupled with Genetic Algorithms 
to Optimize Soil Cleanup Operations in Cold Climates 

Submitted to: 

Dr. Femi Ayorinde 
SERDP Program Manager for Cleanup 

901 North Stuart Street, Suite 303 
Arlington, VA 22203 

'■■- 'r- \ 

by 

Dr. John M. Sullivan, Jr. 

Remote Sensing/GIS Division 
US Army Cold Regions Research and Engineering Laboratory 

Hanover, NH 03755 

December 1997 



ABSTRACT 

Ground-Penetrating Radar (GPR) is a powerful modern tool to examine the 

structure and properties of the media below the ground surface within a depth of 30 

meters. This study is very important for the environmental problems related to the 

transport of contaminants in ground waters. Successful GPR profiling of the subsurface 

media yielding the correct information about the distribution of permafrost, water table, 

and bedrock depths is the key factor in ground water flow modeling. 

This work attempts to develop a hierarchical processing system capable of 

handling GPR data characterized by high degree of uncertainty, natural physical ambiguity, 

and, sometimes, missing or incorrect entries. The hierarchical nature of the algorithm 

allows to split the task of media profiling into several consecutive stages, each of the 

following has less degree of uncertainty than the previous one. 

Neural Networks modules are designed to accomplish the two main processing 

goals of recognizing the "subsurface pattern" followed by the identification of the depths 

of the subsurface layers like permafrost, ground water table, and bedrock. Pre-processing 

procedure has the objective to transform raw GPR data into a small feature vector 

containing the most representative and discriminative features of the signal. The feature 

vector coupled with other relevant GPR information forms the input for the Neural 

Network processing units. 

The separate system components are implemented in software and tested with 

artificial as well as real GPR data. The entire processing system is trained with synthetic 

inputs and tested with real measured data. The algorithm demonstrates correct, accurate, 

and tolerant to noise/error performance. This establishes the feasibility of the system 

application to true-to-life problems. The developed software proved to be fast enough to 

consider the possibility of real-time implementation for field operation in conjunction with 

the industrial GPR equipment. 



ACKNOWLEDGMENTS 

This work was funded in part by SERDP (Strategic Environmental Research and 

Development Program) Project 1049/6 cleanup thrust area and by CRREL (U.S. Army 

Cold Regions Research and Engineering Laboratory) SFRC Number DACA89-97-K0001. 

This December 1997 document integrates all work performed to date on this 

project (CU/1049/6). This work has been presented as a Master Thesis (with credit and 

acknowledgements to SERDP) by D. Repin under the Academic direction of the project 

PI, Dr. John M. Sullivan, Jr. 

in 



TABLE OF CONTENTS 

1. INTRODUCTION 1 

1.1 GPR TECHNIQUE 1 

1.2 APPLICATION OF THE GPR 2 
1.3 PREVIOUS RESEARCH EFFORTS :... 3 
1.4 HIERARCHICAL NEURAL NETWORK BASED APPROACH 6 
1.5 OUTLINE 7 

2. REAL AND SIMULATED GPR DATA  
9 

2.1 SOIL PROPERTIES AND LAYERS NOMENCLATURE 9 
2.2 EXPERIMENTAL GPR AND RELATED DATA 10 

2.2.1 GPR hardware system 10 
2.2.2 A-scans, radar lines, borehole data 10 
2.2.3 Major difficulties with data processing 15 

2.3 SIMULATED FDTD DATA 16 
2.3.1 Scattering and loss 17 

2.4 MATCHING EXPERIMENTAL AND SIMULATED DATA 18 

3. NEURAL NETWORKS FOR CLASSD7ICATION AND APPROXIMATION 
PROBLEMS 20 

3.1 MULTILAYER PERCEPTRON (MLP) 20 
3.2 BACKPROPAGATION LEARNING ALGORITHM 22 
3.3 SCALED CONJUGATE GRADIENT METHOD 24 

4. PRE-PROCESSING FOR FEATURE EXTRACTION 27 

4.1 CORRELATION BASED PRE-PROCESSING FOR CHECKING DATA CONSISTENCY 27 
4.2 DIMENSION REDUCTION AND DISCRIMINATIVE FEATURES EXTRACTION 28 
4.3 FOURIER TRANSFORM 29 
4.4 WAVELET TRANSFORM 31 
4.5 ADAPTIVE TRANSFORM 33 

4.5.1 Correlation-based method (Algorithm 1) 34 
4.5.2 Optimization-based method (Algorithm 2) 35 
4.5.3 Benefits of the AT 36 

4.6 ADAPTIVE TRANSFORM FOR SYNTHETIC AND REAL DATA 37 
4.61 Performance for simulated data • 37 
4.6.2 Performance for real data 39 

4.7 FEATURE VECTOR FROM ADAPTIVE TRANSFORM 41 
4.8 COMPENSATION FOR VARIABLE GAIN IN REAL SYSTEM...:..... :: 42 

IV 



5. HIERARCHICAL GPR DATA PROCESSING SYSTEM 43 

5.1 FLOWCHART 43 
5.2 TRACING INTERFACES DEPTHS TECHNIQUE 45 

5.3 SUBSURFACE PATTERN IDENTIFICATION 47 
5.3.1 Classification and encoding of the subsurface patterns 48 
5.3.2 Generation of the training set 49 
5.3.3 Neural Network 1 architecture and parameters 49 
5.3.4 Neural Network 1 training and performance 50 
5.3.5 Pattern identification results 51 
5.3.6 Testing with real data 52 
5.3.7Pattern-basedfeedback • 54 

5.4 DETERMINING DEPTHS OF THE SUBSURFACE LAYERS 55 
5.4.1 Generation of the training sets 55 
5.4.2 Neural Network 2 architecture and parameters 56 
5.4.3 Neural Network 2 performance 57 
5.4.4 Depths determining results 59 
5.4.5 Testing with real data 60 
5.4.6 Depth-based feedback 61 

5.5 ACCURACY, NOISE TOLERANCE 61 

6. CONCLUSIONS 63 

6.1 SUMMARY 63 
6.2 FURTHER WORK 64 

PREFERENCES 65 

APPENDIX A. SIMULATION RESULTS FOR SYNTHETIC GPR LINES 67 

A.1 TRAINING SET 
A.2 SYNTHETIC GPR LINE BASED ON CR93-11 67 
A.3 SYNTHETIC GPR LINE BASED ON CR94-61R 70 

APPENDIX B. SUBSURFACE PATTERNS CLASSIFICATION 74 

B.l PATTERN 1 74 
B.2PATTERN2 75 
B.3 PATTERN 3 76 
B.4 PATTERN 4 77 
B.5 PATTERN 5..... ..... 78 
B.6 PATTERN 6 : 79 
B.7 PATTERN 7 80 

APPENDIX C. SIMULATION RESULTS FOR REAL GPR LINE 81 



LIST OF FIGURES 

Figure 1-1. Typical GPR A-scan 1 
Figure 1-2. Field measurements with the GPR hardware dragged behind a vehicle 2 
Figure 1-3. Possible configuration of subsurface layers [1] 4 
Figure 1-4. Manual identification of subsurface features (top), 

the same part of the GPR line without any marks (bottom) 5 
Figure 1-5. Block diagram of the data processing architecture 6 
Figure 2-1. GPR line file header content 11 
Figure 2-2. Draft area map and the GMS mesh superposition  12 
Figure 2-3. A-scan (1000 ns, 1024 sampling points) 13 
Figure 2-4. A-scan (600 ns, 512 sampling points) 14 
Figure 2-5. "Bad" A-scan (amplitude "chopping" example) 15 
Figure 2-6. Simulated plane-wave electromagnetic pulse in 3D 16 
Figure 2-7. Real and simulated scans on the time scale 18 
Figure 2-8. Depth-time diagram for real and simulated scans 19 
Figure 3-1. MLP network 21 
Figure 4-1. Cross-correlation and its derivative relative values vs. scan number 28 
Figure 4-2. Fourier Transform (left) for four A-scans (right) 30 
Figure 4-3. Simulated A-scans and their Fourier spectra 30 
Figure 4-4. Different types of WT basis: Haar, Daubeshies 4, Daubeshies 16 31 
Figure 4-5. Restoration of ana-scan with fewer WT coefficients 32 
Figure 4-6. Original (above) and noisy (below) synthetic scan 37 
Figure 4-7. Adaptive Transform weights and shifts 38 
Figure 4-8. Real Initial Pulse 39 
Figure 4-9. Original (gray) and restored from AT (black) scans 

fromCR94-61r 40 
Figure 4-10. Original (right) and restored from AT (left) scan 

fromCR93-ll 40 
Figure 5-1. Complete algorithm flowchart 44 
Figure 5-2. Regression models performance 47 
Figure 5-3. Neural Network 1 architecture 49 
Figure 5-4. Convergence of the Neural Network 1 51 
Figure 5-5. Neural Network 1 pattern recognition accuracy 52 
Figure 5-6. A-scan 1614 from GPR line CR93-11 53 
Figure 5-7. A-scan 2700 from GPR line CR93-11...       53 
Figure 5-8. A-scan 8810 from GPR line CR93-11 54 
Figure 5-9. Layers depths identification setup 55 

Figure 5-10. Neural Network 2 architecture 56 
Figure 5-11. NN2 performance for different number of hidden neurons 58 

VI 



Figure 5-12. NN2 convergence 58 
Figure 5-13. Layers depths identification results with NN2 59 
Figure A-l. Geometry and dielectric constants for synthetic 

CR93-llGPRline 68 

Figure A-2. Pattern identification results for CR93-11 GPRline 68 
Figure A-3. Depth predictions for Pattern 1 69 
Figure A-4. Depth predictions for Pattern 2 69 
Figure A-5. Depth predictions for Pattern 3 70 
Figure A-6. Geometry and dielectric constants for synthetic 

CR94-61r GPRline 71 

Figure A-7. Pattern identification results for CR94-61r GPR line  71. 
Figure A-8. Depth predictions for Pattern 5 72 
Figure A-9. Depth predictions for Pattern 6 72 
Figure A-10. Depth predictions for Pattern 7 73 

Figure B-1. Typical A-scan from GPR line CR93 -11 of subsurface pattern 1 74 
Figure B-2. Typical A-scan from GPR line CR93-11 of subsurface pattern 2 75 
Figure B-3. Typical A-scan from GPR line CR93-11 of subsurface pattern 3 76 
Figure B-4. Typical A-scan from GPR line CR94-61r of subsurface pattern 5 78 
Figure B-5. Typical A-scan from GPR line CR94-61r of subsurface pattern 6 79 
Figure B-6. Typical A-scan from GPR line CR94-61r of subsurface pattern 7 80 
Figure C-l. Pattern and depths identification results for the real GPR radar line CR93-11.81 
Figure C-2. An attempt to connect the adjacent points to produce layer interfaces 82 

vu 



LIST OF TABLES 

TABLE 2.1. SOIL DIELECTRIC PERMITTIVITY 9 
TABLE 2.2. BORING INFORMATION (INCLUDING WT), SCAN 1520 13 
TABLE 2.3. LLTHOLOGY INFORMATION, SCAN 1520 13 

TABLE 2.4. PERMAFROST INFORMATION, SCAN 1520 13 
TABLE 2.5. BORING INFORMATION (INCLUDING WT), SCAN 5196 14 
TABLE 2.6. LITHOLOGY INFORMATION, SCAN 5196 14 
TABLE 2.7. PERMAFROST INFORMATION, SCAN 5196 15 
TABLE 5.1. EXAMPLE OF THE. SUBSURFACE PATTERN 48 
TABLE 5.2.1-OF-C PATTERNS ENCODING 48 
TABLE5.3.NN1 RECOGNITION RESULTS FOR REAL DATA 53 
TABLE 5.4. TESTING RESULTS FORNN2 FOR REAL DATA 60 
TABLE 5.5. SUBSURFACE PATTERN RECOGNITION SENSITIVITY TO THE CHANGE OF THE 

DIELECTRIC PERMITTIVITY VALUE 62 
TABLE B.L. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 1 74 
TABLE B.2. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 2 75 
TABLE B.3. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 3 76 
TABLE B.4. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 4 77 
TABLE B.5. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 5 78 
TABLE B.6. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 6 79 
TABLE B.7. LAYERS CONFIGURATION FOR SUBSURFACE PATTERN 7 80 

Vlll 



1.      INTRODUCTION 

1.1     GPR technique 

Ground Penetrating Radar (GPR) is an electromagnetic remote sensing technique 

which uses radio waves, typically in the 10 to 2500 MHz frequency range, to locate and 

map different features and structures below the ground surface (bgs). In general, a GPR 

system transmits a short electromagnetic pulse into the ground - the pulse is reflected, 

refracted or scattered by the targets that exhibit some difference in electrical properties 

(dielectric permittivity, conductivity, and magnetic permeability) and is then recorded by 

the receiving antennas. The greater is the difference in the dielectric permeability, the 

larger is the amplitude of the reflection pulse. 

High radar frequencies are needed to achieve a good spatial resolution, but 

penetration depth of the electric field is inversely proportional to the frequency. Hence the 

choice of frequency range is a trade-off between resolution and penetration depth. 

Penetration depth also depends on the nature of the soil, which has different attenuation 

properties. For example, desert sand has an attenuation of about 1 dB/m for a 1 GHz 

frequency, clay has an attenuation of 100 dB/m 

at the same frequency. 

The reflected wave is sampled and 

digitized by an A/D converter to form a vector. 

Typically 512 or 1024 points are taken through 

the region of interest. The recorded signal in 

the time domain is called an A-scan and it may 

look similar to that shown in the Figure 1-1. 

In many GPR applications the A-scans are 

recorded consecutively along some spatial 

direction usually called radar or transect line. 

Typical GPR system records 5 to 10 scans per meter. A variety of software 

packages exist for visualization and data processing (see Section 1.3 for more details). 

0.0        100.0      200.0      300.0      400.0      500.0      600.0 

Tim«, m 

Figure 1-1. Typical GPR A-scan. 



Typical GPR soundings are performed by dragging a GPR hardware package including 

transmitting and receiving antennas behind a vehicle - Figure 1-2. 
EBHRJWE 

Figure 1-2. Field measurements with the GPR hardware dragged behind a vehicle. 

1.2     Application of the GPR 

GPR technique includes various scientific, industrial, environmental and military 

applications, among those are: 

• Stratigraphic     layers      profiling        •    Safety   inspections   at   nuclear   power 

(water table detection, etc.); plants; 

• Ice thickness measurements; •    Anti-personnel mines detection. 

• Buried objects detection; 

• Archaeological investigations; 

• Road investigations; 

• Fracture detection in hard rock; 

• Liquid contamination detection; 



This work concentrates on a particular application - non-invasive site 

characterization of stratigraphic layer depths in the vicinity of Fairbanks, Alaska, USA. 

One of the most important features of this region is the presence of the permanently frozen 

materials (permafrost), which have distinct dielectric properties. The GPR data were 

collected to identify horizontal and vertical distributions of permafrost zones, water table 

and bedrock. GPR was chosen to accomplish this task since [1]: the scales of depths and 

lateral variations of permafrost are too small to resolve with seismic methods, and too 

large for efficient mapping with electromagnetic inductance methods. Frozen soils (mostly 

sands and gravels) are a low loss propagation media for electromagnetic waves at radio 

frequencies. Therefore, saturated sediments form a continuous and highly reflective 

surface with frozen ground. In this situation GPR is one of the best tools to study the 

vertical distribution of the different subsurface materials. 

The ability to characterize the subsurface media is very important for the 

environmental problems related to transporting of contaminants with ground water. 

Successful GPR profiling plays a critical role in the site description. 

1.3     Previous research efforts 

Significant research efforts in the field of GPR were made by CRREL (US Army 

Cold Regions Research and Engineering Laboratory). They performed Multi-bandwidth 

reflection profiling of discontinuous permafrost via GPR during 1993-94. The GPR 

antennas bandwidths centered near 50, 100 and 300 MHz. An area spanning 8 km2 had 

over 100 km of GPR profiles recorded [1]. 

The subsurface layers configurations for the area is shown schematically in Figure 

1-3. Variations in the permafrost structure may have natural (presence of the river) or 

artificial (roads or other human activities) origins, and those variations may be significant 

over a relatively short lateral scale. On the other hand variations of the water table and the 

bedrock absolute depth are relatively small. Along with the above mentioned major 

subsurface components variations in types of soils and moisture content introduce 

additional difficulties into appropriate data processing. 



Top Surface 

Figure 1-3. Possible configuration of subsurface layers [1]. 

The commercial software package RADAN™ by Geophysical Survey Systems, 

Inc. was used to view the collected GPR data. The reflection time for one layer of an 

electromagnetic pulse from the interface of materials with the different dielectric 

properties can be expressed as: 

l4sd 
're/7  ~~ ' 

(1.1) 

where c is the light speed, d is the layer thickness, and e is the corresponding dielectric 

constant. 

Previously GPR line data processing used RADAN™ software to visualize sets of 

adjacent A-scans coupled with a human expert evaluation based on previous knowledge 

and generalization from the available geophysical data (Figure 1-4). This analysis was 

augmented with the information of the subsurface structure from a number of boreholes. 

Those boreholes were drilled throughout the area, and types and properties of materials as 

well as corresponding layers depths were recorded. 
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Figure 1-4. A schematic manual identification of subsurface features (top), 
the same part of the GPR line without any marks (bottom). 



The previously mentioned method is highly subjective. It lacks any form of 

automation and the layer interfaces identified by the expert still lack depth information. 

The time scale of the GPR signal does not scale linearly with depth. That is why a new 

approach has been developed for automatic stratigraphic layer identification and depths 

prediction. 

1.4     Hierarchical neural network based approach 

The proposed processing architecture has the following advantageous features: 

• main task is split into several consecutive stages decreasing the degree of uncertainty 

within each step; 

• data adaptive techniques are applied to the GPR signal transforming it into a highly 

informative and easily interpretable feature vector; 

• neural network modules used provide high error and noise tolerance. 

A block diagram of the approach is shown in Figure 1-5. The major processing 

units of the data processing system are neural networks (NN). One NN (NN1) is designed 

to perform best on a classification problem. The second NN (NN2) provides good 

approximation ability for depth analysis within the classified problem. Both neural 

networks belong to the class of two-layer feedforward networks. Both neural networks 

are of the Multi-Layer Perceptron (MLP) type trained with Backpropagation or Scaled 

Conjugate Gradient algorithms. 

GPR 
DATA 

-► 
PRE- 

PROCESSING ■*• 

NEURAL 
NETWORK 1 

-► 

r 
SUBSURFACE 

PATTERN 
k.                        -- 

/ 

SUBSURFACE 
T AVT7DC 

a^ 

NEURAL 

DEPTHS J 
NET\* /OI IK2 

Figure 1-5. Block diagram of the data processing architecture. 

Another important part of this architecture is the pre-processing stage - it has four 

separate blocks responsible for proper data handling and feature extraction to provide the 



neural networks with relevant input information. 

In general the system operation may be described as: the pre-processing unit 

performs checking of the data consistency; the second stage decomposes the initial A-scan 

with our Adaptive Transform (AT) technique into a set of data adaptive basis functions; 

the third section incorporates information about the previous A-scans with the linear 

regression method into the current processing step. Then a feature vector formed from the 

coefficients of the AT decomposition and some other prior available information is fed 

into the Neural Network 1 (NN1) to recognize the "subsurface pattern" for the current A- 

scan. This subsurface pattern reflects one of the possible subsurface layers configuration 

(similar to Figure 4-3). During the next step part of the transformed input for the NN1 and 

already available information about the subsurface pattern is used as input for Neural 

Network 2 (NN2), which produces the set of the startigraphic layers depths. 

A feedback routine is used to account for possible incorrect recognition of the 

pattern or other "alarm" signals produced during system operation. This feedback feature 

adds flexibility to the entire set-up that already has as high noise/error tolerant processing 

units as neural networks. 

1.5     Outline 

The introduction briefly described the basics of the GPR technique, prospectives of 

its application to the stratigraphic layers profiling, some of the previous research efforts, 

and the general approach, which is used in this work to address the problem under 

consideration. 

Chapter 2 of this work gives an overview of the available experimental (real) GPR 

and supplementary (boreholes) information along with the brief description of the Finite 

Difference Time Domain numerical simulations for the Plane Wave formulation. These 

data are used in all stages of the system development: pre-processing, training and results 

verification. 

Chapter 3 provides a theoretical background for the Multilayer Perceptron neural 

network models The chapter covers basic principles, variations of training algorithms, 

operating modes and details of the implementation. 
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Chapter 4 discusses the pre-procesting »tage. Implication* for ohaoaiag the 

particular pre-prc^sang algorithm, tike dimension reduction and discrimimmve feature 

„„action are reflected. It also considers several possible alternativ« (Fourier Transion», 

Wavelet Worm) to the Adaptive Transform and the logieal ehai« of the ooneept 

improvement. ,. , 
Chapter 5 presents deteib of the hierarchical GPR data proeessing systems, winch 

incorporates methods and techniques described in Chapters 3 and 4. The .ssues of 

parameters choice ar* optimiztfion, accuracy and reliability of the entire system are 

discussed. Result, of theteats for different kind* of data are evaluated. 

ehrten. 6 sumnwizes the current stage result, and describe, possible further 

wo*. App»dix A provide, additional information about simulated GPR lines and testa 

performed. AppendixB gives a detailed classification of the subsurface patterns and then" 

description as they were used for simulations along with example, of the typical A-scans. 
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2. 
REAL AND SIMULATED GPR DATA 

2.      REAU AND SIMULATED GPR DATA 

2 1     Soil properties and layers nomenclature 

The term «Ground Penetrating Radar" implies the use of radar signals directed 

below the ground surface. This section summarizes factual as well as some 

substantiated knowledge about the electrical properties for several types of soils an 

soil structure, The properties mat characterize the propagation of the electromagnet* 

waves in an Isotropie medium are the dielectric permittivity <s} and the electnc 

conductivity {c}. The first one is responsible for the wave propagation time, the second 

one-for the loss factor. 
According to vrious references [1-3] both values are very sensiuve to the so.l 

„^ content. For example, e for dry soil cen be in . range of 4 - 8, but vwfh . 

moistore content of 30% e en be as high as 40. Tie soil conductivity affcc* mostly Ute 

EM pul« svaneacem* and has a small effect on the reflections offthe layers boundanes. 

Discussion of its properties is posted to Section 2.3.2. Dieleclric pcrmttfivUy val»s 

for the most types of soils (dry, saturated, flogen, unfrozen) are presented in the Table 

2.1. 
4 

Table 2.1. Sou dielectric permittivity. 

SOIL TYPE 

Permanently frozen materials  

Unfrozen saturated sediments  

PERMTTTVITY VALUE 

4.4 - 5.6 

12.0-45.0 

Dry soil 

Weathered bedrock 

Bedrock: granite, sandstone 

4.0 - 8.0 

>11.0 

7.0 - 9.0,10.0 

Sand: drv. 15'/. moisture, 25% moisture content      |       ~3.0, -9.0, «25.0 
IH11U. VUJ, *■*'- *»"" > -- I 

in GPR applications the following classifications are used (see Figure 1-4), «her. 

••SOUS» in thia work refer to Jds and grave* which consti»« much of the subsurftc 

media in Fairbanks, AK: 



REAL AND SIMULA TED GPR DA TA 

Active Layer - first layer of soil under the surface with some organics present; 

Water Table (WT) - the top boundary of the ground water; 

Permafrost - permanently frozen soils; 

Suprapermafrost Aquifer - saturated soils above permafrost; 

Subpermafrost Aquifer - saturated soils below permafrost; 

Talik - unfrozen zone within permafrost; 

Thaw - zone, where permafrost is absent mostly due to the artificial reasons; 

Weathered Bedrock - zone, where bedrock is not solid and is mixed with soil; 

Bedrock - the continental platform. 

2.2     Experimental GPR and related data 

2.2A   GPR hardware system 

Ground-Penetrating Radar by Geophysical Survey Systems, Inc. SIR Model 4800 

was primarily used during the field measurements. Available collection rate ranged from 

10 to 50 scans/second. Two antennas were used for transmitting and receiving the signal. 

The transmitter antenna radiated a broadband wavelet pulse with a duration ranging from 

about 1.5 to 2.5 cycles. An identical, but separate, antenna was used as a receiver, 

because echoes could return from near surface events before the transmitter antenna had 

stopped radiating. A fiber optic connection was used to trigger the transmission. 

Measurements with wavelet bandwidths centered near 50, 100, and 300 MHz were used 

employing a custom made antenna and industrial antennas GSSI Model 3207, GSSI 

Model 3102, respectively. Antennas were dragged approximately 10 meters behind a 

vehicle moving at a speed about 1 meter/second. 

2.2.2 A-scans, radar lines, borehole data 

A-scans or simply scans are the natural output of the GPR system. A set of a few 

hundred or thousands adjacent A-scans collected with a frequency of 5-10 scans per 

meter is called a radar line (GPR line). Data were stored in binary files, which contained 

some additional information about the GPR system configuration and parameters at the 
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time of the measurements - the header (see Figure 2-1). A fixed number of 512 

(sometimes 1024) sampling points were used in the field experiments. Duration of the 

scan could vary from 500 to 1000 ns but remained the same for a single radar line. 

Amplitude of the reflections was sampled as an 8 or 16-bit signal. 

EdiV Fife Header 

FILE NAME JCR94-96 

Channetfs)          |l~" 

Samp/Scan 512    zl 

Bits/Sample 

Scans/Second 

Scans/Metei 

Meter/Mark 

r-8-<*:IG 

|48.047 

10. 

0.1 

Created AUG. 19 1994.13:45:44 

Channel Information --• ■-   -    —   - 

Modified AIM. 19 1994 00:54:32 

ChartneJ |  fT" Antenna 13207 100MHZ 

Range Gain (dB) -4.0 0.0 41.0 
43.0 43.0 43.0 
43.0 

Vert MR LP N =2 F-140 MHz 
Vert MR HP N =2 F =25 MHz 
Horz IIR Stack TC =3 
Static Stacking N=2 
Horz Norm:  Scant/Mark = 100 
VertTriangLP F =80 MHz 

Position (nS)    -50. 

bd 

Range (nS)     J700. 

Top (mj ]0. 

Depth (m) 0. 

Ft. Wainwright. Alaska 
3207 pair hi power and fiber optics 

OK Cancel Save As 3D Options Help 

Figure 2-1. GPR line file header content. 

Information about more than 50 boreholes which were made for different 

purposes (research, monitoring) was available. Most of those boreholes had 

corresponding GPR information. Depths of the boreholes varied from 60 to 170 ft, 

drilling was usually terminated at bedrock or up to 45 ft below permafrost in unfrozen 

sediments. 

Figure 2.2 shows boreholes corresponding to various GPR lines. The 

Groundwater Modeling Software 2.0 (GMS) was used to process the area map with the 

GPR lines (white image in the upper part) and the finite element mesh of the same area. 

After transforming the image in a way that the river contour of the map coincides with 

the river elements in the mesh the state plane coordinates become available to locate the 

beginning and the end of the radar line (x, y). Then a simple routine automatically scans 

11 
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through the entire set of the boreholes checking their coordinates and picking those that 

are close to the radar line of interest. 

Figure 2-2. Draft area map and the GMS mesh superposition. 

Two figures below show the examples of the A-scans from radar line CR94-61r. 

The space locations of those scans correspond to the boreholes so that the conclusions 

about the nature of the reflection pulses can be made. 

The scan in Figure 2-3 (total time - 1000 ns) has two clear groups of reflections, 

according to the available borehole data (Tables 2.2 - 2.4) the first one is likely to be 

associated with the top of permafrost at the depth of 4 ft bgs, another reflection is 

probably due to the subpermafrost aquifer or intrapermafrost inclusions. 

12 
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Figure 2-3. A-scan 1520 (1000 ns, 1024 sampling points). 

Table 2.2. Boring information (including WT), scan 1520. 

Well 
Identifier 

AP-6551 

X state 
plane 

246401.385 

Y state plane 

3969487.000 

Surface 
elevation, ft 

443.50 

Depth of 
the hole, ft 

38.0 

Weather 
cond. 

Pt. Cld,45F 

Depth to 
WT 

N/A 

Date 

9/15/94 

Table 2.3. Lithology information, scan 1520. 

Well Identifier Layer index (from 
top of hole) 

depth to 
layer top (ft) 

depth to layer 
bottom (ft) 

Primary 
Lithology 

Lithology modifier 

AP-6551 005 20.00 38.00 SAND SILTY 

AP-6551 004 15.50 20.00 SAND POORLY GRADED 

AP-6551 003 7.50 15.50 SAND SILTY 

AP-6551 002 0.50 7.50 SILT 

AP-6551 001 0.00 0.50 PEAT 

Table 2.4. Permafrost information, scan 1520. 

Well Identifier 

AP-6551 

AP-6551 

Layer 
number (in 
sequence) 

001 

002 

Depth below ground 
surface to top of 

layer (feet) 

0.00 

4.00 

Depth below 
ground surface 

to bottom of 
layer (feet) 

4.00 

38.00 

Zone Identifier 

UNFROZEN 

FROZEN 

13 
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The A-scan in Figure 2-4 has overlapping reflections due to the presence of 

several zones with and without permafrost and the ground water table: transitions from 

frozen to unfrozen and especially to saturated zone cause strong reflection patterns. 

Borehole information related to this scan location is presented in Tables 2.5-2.7. 

Figure 2-4. A-scan 5196 (600 ns, 512 sampling points). 

Table 2.5. Boring information (including WT), scan 5196. 

Well 
Identifier 

X state 
plane 

Y state plane Surface 
elevation, ft 

Depth of 
the hole, ft 

Weather 
cond. 

Depth to 
WT 

Date 

AP-6223 244727.672 3969556.25 441.30 93.00 Cloudy,25 
F 

8.0 11/8/93 

Table 2.6. Lithology information, scan 5196. 

Well Identifier Layer index (from 
top of hole) 

depth to 
layer top (ft) 

depth to layer 
bottom (ft) 

Primary 
Lithology 

Lithology modifier 

AP-6223 010 77.50 93.00 SAND POORLY GRADED 

AP-6223 009 60.00 77.50 SAND SILTY 

AP-6223 008 40.50 60.00 GRAVEL POORLY GRADED 

AP-6223 007 32.50 40.50 GRAVEL SILTY 

AP-6223 006 25.50 32.50 GRAVEL POORLY GRADED 

AP-6223 005 21.00 25.50 SAND POORLY GRADED 

AP-6223 004 16.00 21.00 GRAVEL POORLY GRADED 

AP-6223 003 11.00 16.00 SAND POORLY GRADED 

AP-6223 002 3.00 11.00 GRAVEL POORLY GRADED 

AP-6223 001 0.00 3.00 SILT 

14 
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Table 2.7. Permafrost information, scan 5196. 

Well Identifier Layer 
number (in 
sequence) 

Depth below ground 
surface to top of 

layer (feet) 

Depth below 
ground surface 

to bottom of 
layer (feet) 

Zone Identifier 

AP-6223 001 0.00 1.00 FROZEN 

AP-6223 002 1.00 38.50 UNFROZEN 

AP-6223 003 38.50 86.00 FROZEN 

AP-6223 004 86.00 93.00 UNFROZEN 

2.2.3  Major difficulties with data processing 

A fundamental problem for the GPR data processing lies in the reflection time 

versus e-depth relation (Equation 1.1): for a fixed reflection time there exists an almost 

infinite (limited only by the physical constraints) number of the combinations of layer 

depth and corresponding dielectric permittivity values. Our processing system strives to 

resolve this ambiguity, but fails at times due to poorly collected data, improperly set gain 

control or other unknown conditions (see Figure 2-5). 

Figure 2-5. Uncertain A-scan due to improper gain settings 

(amplitude "chopping" example). 

Frequently, an 8-bit representation of the signal was not sufficient for certain 

cases.  Some of these problems could be resolved:  for example, with some prior 
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knowledge the "chopped" signal may be rescaled and using the carrier frequency value 

chopped spikes can be restored. But the concept of the automatic layers profiling system 

implies no human control of the signal before it goes into the processing system. 

2.3     Simulated FDTD data 

For better understanding of the underlying physics associated with the 

electromagnetic pulse propagation through the ground, a Finite Difference Time Domain 

(FDTD) simulator was developed [19]. Several physical models were examined: plane 

wave (see Figure 2.6), line source, and finite aperture source configurations. Satisfactory 

agreement of simulated and real data was achieved for the plane-wave formulation. 

PotUonf 0    0 PwÜkmJ 

Figure 2-6. Simulated plane-wave electromagnetic pulse in 3D. 

2.3.1   Scattering and loss 

Assuming the plane-wave formulation represented the signal behavior in the 

subsurface medium, there was a concern to account for some physical concepts such as 

scattering and loss in the numerical model. 

Scattering may be responsible for two possible ways of distorting the signal with 

respect to the uniform lossless medium model: a change of the dielectric constant due to 

the presence of the scattering particles and an energy dissipation due to the scattering 
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process [9]. Loss may be considered as an absorption effect in the medium incorporating 

the imaginary part of the dielectric constant. 

A change of the dielectric constant may be expressed as: eeffective = £-a(s,n0,r), 

where s is dielectric constant without scattering, n0 is the concentration of the spherical 

scattering particles of radius r. The change value for the case of s = 20.0 is about 10% for 

sand/gravel soil. This effect was not implemented directly into the numerical model. 

Rather, the measured rvalues already accounted for scattering and other factors [1] was 

used. 

17 
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2.4     Matching experimental and simulated data 

One of the chief reasons to use the simulated data, during the different stages of 

the entire processing system development, is the lack of the 100% reliable experimental 

GPR data. Even the presence of the borehole information leaves some degree of 

ambiguity while trying to assign certain s values to the different subsurface layers. 

Simulated data allow one to figure out the origin of every single reflection: i.e. for the 

overlapping reflections it is much easier to verify the decomposition technique - 

amplitudes of the separate reflections are known in advance. 

Another critical reason for choosing the synthetic data is the possibility of 

generating a training set for the neural network: this issue is discussed in details in 

Section 5.3. The ability to match real GPR scans gives the ground for the assumption that 

a correctly chosen simulated training set provides an accurate representation of the 

"entire space" of the possible GPR A-scans allowing to adequately process real GPR 

data. 

"I—1—I—I    I    I—I—TT—I—I—I—I—I—I—I-T    I     I    I    I     1    "I 

Time, ns 

Figure 2-7. Real and simulated scans on the time scale. 
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Figure 2-7 shows a real scan from the CR94-61r line and the simulated 

counterpart. Relatively good agreement is observed taking into account some difference 

between the propagating EM pulse shape in the field measurements, and the synthetic 

initial pulse in FDTD model. The time-depth diagram for the same pair of scans is shown 

in Figure 2-8. 

DEPTH-TIME DIAGRAM FOR SIMULATION AND REAL DATA 

AHi 
0.0 

4.0 

8=15.0 

4 8       s = 26.0 

5.7 8=18.0 

s=13.5 

0.0 

DEPTH, m 

SIMULATION 
DATA 

REAL 
(EXPERTMANTAL) 
DATA TIME, ns 

Figure 2-8. Depth-time diagram for real and simulated scans. 
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3. NEURAL NETWORKS FOR CLASSIFICATION AND 

APPROXIMATION PROBLEMS 

Supervised neural networks find many applications in two general problem 

formulation: decision-based and approximation/optimization-based [6]. The decision- 

based problems as a final result aim at a certain organization of categories or 

classification of the patterns into some distinct groups. Categories are usually labeled as 

binary values and the training procedure is based on the correct classification for each 

training pattern, synaptic weights and biases of the network are adjusted to accomplish 

this task. 

The approximation-based problem has the objective to map the input space onto 

the output using a finite set of data points and then to be able to get an output value for 

any datum from the input space as close to the correct value as possible. For this 

formulation outputs are usually analog and their exact values are important. Network 

parameters are modified during the training to minimize some energy function that 

depends on the difference of the actual and the desired network output. 

Both formulations do not have significant differences in their algorithms and 

implementation, but certain details are changed to achieve the best performance for each 

task. In this work the first formulation is used for subsurface pattern identification, the 

second one for identification of the startigraphic layers depths. 

3.1     MultiLayer Perceptron (MLP) 

Multilayer perceptron is probably one the most well-known neural networks, that 

are trained with the supervised algorithms. It belongs to the class of feedforward layered 

neural networks - it has an input layer, output layer and one or several internal or hidden 

layers. Connections in this type of network exist only between the neurons of different 

layers and each neuron is connected to all the neurons in the previous and in the 

following layers. There are no lateral (within one layer) connections or feedback. The 

input signal propagates through the network in a forward direction on a layer-by-layer 

basis. 
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NEURAL NETWORKS FOR CLASSIFICATION AND APPROXIMATION 

MLPs found their application in 

different technological and other areas. 

Each processing unit (neuron) of the 

MLP network can be described with an 

activation or transfer function, the 

essential feature of that function is non- 

linearity and for many applications it 

may similar to the Equations 3.1 or 3.2: 

Figure 3-1. MLP network. 

/(«,) = 1+exp {-«,}' 

/(«,) = *, 
u, 

«/ \ + C2 

(3.1) 

(3.2) 

where ch c2 are constants and u, is the output of the neuron before applying the non- 

linearity: 

W,=I>V*/+l9<, (3.3) <4 
7=1 

where x, is the network input or the output of the previous layer, w and 9 are the weights 

and the bias corresponding to this neuron respectively. Input propagation through the 

network is a forward run, finally it produces a set of outputs - activation signals of the 

output layer units. During the forward run all the weight and biases values remain fixed. 

During the backward run weights and biases are adjusted according to the error- 

correction learning rule. The error is defined as a sum of squared differences of the 

activation values of output neurons and the target output values provided by the training 

set The error propagates backward through the network and the weights and biases are 

adjusted to reduce the cumulative error. This algorithm is a "Backpropagation of error" 

learning algorithm. 
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— i^^TSni^StanSr«* one hidden lay« I. considered: 
to a« two tots *»t proves the suffix of this option. II. firs«is a theorem 

W A.N. Kolmogoiov [H] W states tot a two-layer (actually toe. h^dto-ou**) 

«^ h able to perform mapping ftom . aAitmr, input space »»*> toarbtmuv 

„„*„, «» to only defcil to. is missing is to number of neun™ . the tadden layer, 

W te exist a configumüon which allow to perform . desired coneet mappn*. 

tote argument in support of the «sumption above is to. a consider, major o to 

„„, MLP applications are accomplished with only on« hidden layer and aeceptable 

results are reported in many cases. 

3.2    Backpropagation learning algorithm 

As far the derivation of the Backpropagation algorithm is presented in most of the 

neural network hooks [5], [6] only the hrief summary is given here and the discussion« 

focused on the details of implementation, modifications of the algorithm and the modes 

of operation. . . 
Let (x, yi) he a single pattern in the training set, M is the number of trammg 

patterns. For a single neuron which output («) and activation ftrtfl» functions *e 

defined as Equations 3.3<*d 3.2 (3.2 is Wd instead of 3.1 to allow the activation to be m 

the range [-1.0,1.0]). For the input layer <,,«»■*», for the output layer ^D-^I» 

the total number of layers, iVr number of neurons in a lay er. 

The objective is to modify weights Wtfand biases * to minimize the error energy 

E=^tt\yim)-^\L)f (3-4) 
2 „   t 

During the backward run weight values (and biases also, but later on only the 

expression for weights are presented) are updated: 

<>(/)-<(0+A<(0 (3*5) 

where the superscript indexes denote the discrete time step or the iteration and 
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dE 
Aw"(0 = -n-^r^ = tf-rCOA«,"0 (OX"('-i), (3.6) 

where 8 is the error signal, 77 is the learning rate term, and/' is the derivative of the 

activation function with respect to a single weight. 

The keys to Backpropagation algorithm are the recursive formulas: 

«f"> = ^(?",)(/ + l)/'(«j",)(/ + l))wJr,)(/ + l) (3.8) 

»f+1) (0 = <} (0 + V$m) (Of 'tfm) (OX0 (/ - 1) + «Awf+1) (/) (3.9) 

Using this formulas error signal may be calculated recursively for any neuron and 

its weights and biases may be updated accordingly. The only modification for the 

standard Backpropagation is the momentum term - aAwlml) (/). Using the momentum 

term implies adaptation of the learning step size with respect to the weight change on the 

previous iteration: so flat spots on the energy surface are traversed faster, and the step 

decreases for the rough spots. 

The Backpropagation algorithm described above refers to the on-line mode when 

the weights are updated after presenting each single pattern. Batch mode has the 

difference that the weight are updated once in an epoch (a full presentation of all training 

patterns). For this mode all weights and biases changes are summed over one epoch. 

In this work on-line mode of the Backpropagation algorithm was implemented 

(sometimes it is also called "vanilla backpropagation" [18]). But the supervised learning 

of the feedforward networks is not limited to the discussed methods. As far as the task is 

to minimize the error energy function, and the techniques above use only first order 

Gradient Descent method. So the task may be formulated as an unconstrained nonlinear 

function optimization problem [5]. The natural step forward is to use a second order or 

other modern procedures (like Conjugate Gradient) to accomplish the task of finding the 
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acceptable minimum on the error surface. This extension was made in the next section, 

where the Scaled Conjugate Gradient algorithm is discussed. 

3.3     Scaled Conjugate Gradient method 

Scaled Conjugate Gradient (SCG) algorithm for fast BP training was developed 

by M. Möller [7] in 1991 and is one of the most efficient in its class. 

SCG belongs to the class of Conjugate Gradient methods and has the major 

advantage in the speed of convergence and the lack of the parameters to be defined by the 

user before the training procedure. Most of the algorithms require at least the initial 

learning rate value, momentum term, etc. SCG behaves in a similar way as the ordinary 

CG [4],[5], but has a built-in feature that allow to determine a step size (learning rate for 

the particular iteration) in an automatic manner at a relatively low computational cost. 

This technique is applicable to the batch mode of the BackPropagation algorithm. 

The SCG is applied to the generalized weight vector consisting of all the weights 

and biases of the network (in this work we consider only a two-layer network): 

w = {..,w)j,..,o
1

j,..,w]k,..,el,..), 

where w denote the weights values, 8 denote biases and superscript indexes refer to the 

layer number, subscript ones to the number of element in the layers, total number of 

components in this vector is N. 

Network energy function is defined as the sum of error squares (Equation 3.4) and 

(     ?dE       ?dEp      ?dEp     yLdEp   ^ 
the derivative £W = ^Z^,.Z^3-S^J^Z^3-- 

where P is the total number of patterns in the training set and p refers to the Ep for the 

particular pattern. The main feature of the SCG is the approximation of the second order 

information: 

sk=E"(wk)-pk* , 

where pk is the conjugate direction, which is the key to compute the step size ak for the 

each component of the weight vector updating -  wM =wk+ akpk. Another critical 
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feature of this algorithm is making the Hessian matrix to be always positive definite by 

adjusting the scalar parameter Ak in the expression below: 

_     E'(wk+akpk)-E'(wk) 
s  _ + Akpk. 

The SCG implementation may be summarized as the following: 

1. Parameters initialization: 0 < a < 10"4, 0 < h < 10"6, ei = 10"8, e2 = 10"10 - these 

numbers are mostly determined by the precision of the machine, /I, = 0, and the 

initial weight vector w, is chosen (random values are assigned to the weights and 

biases). Gradient direction px-r= -E'{\vx) is calculated, variable SUCCESS set to 

be equal "TRUE". 

2. Second order information is calculated, 

sk = (E'(wk + akpk)- E'(wk)) I ak; 

sk = Pl\; 

3. 4 is scaled as Sk = Sk + (\ - ^[p*| . 

4. If Sk < 0 then the Hessian matrix is made to be a positive definite: 

£=2(4t-$/|ftf); 

8k=-8k+\\pk\ ; 

5. Step size is calculated: 

ak^ßkISk- 

6. Then the comparison parameter A is calculated: 

A, = 2Sk[E(wk) - E(wk + akpk)\ I pi. 

7. If At > 0, then the error can be reduced: 
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7m = -E'(vMy, 
1^0, SUCCESS-TRUE; 

If the total number ofUerations so far has reached*-the algorithm is restarted: 

An-'*«» 
else: 

If A £ 0.75 then the scale parameter is reduced At = 4 K • 

If AA<0: 

SUCCESS = FALSE. 

8. If A < 0.25 then the scale parameter is increased: 

^=^+(<5t(l-Ai)/fef). 
9. If the steepest descent direction r^0, then k = M and go to the step 2, 

otherwise the algorithm is terminated and the desired generalized weight vector *„ 

• is the final output Ano^mer termination criterion which proved to be valuable to avoid 

floating-point exceptions is introduced in [S] and implemented in this work: 

2 -\E(wM) - E(wki <, ^(|£(wt+,)|+\E(wk)\+s>) 

The SCO was not benchmarks against the regular Backpropagation in this work 

due to the lack of really large scale problems. For the details on comparison with the 

different techniques one may refer to [7]. 
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4. PRE-PROCESSING FOR FEATURE EXTRACTION 

For the many signal/data processing architectures a proper choice of the pre- 

processing technique is one of the most significant factors, which determines the 

performance of the entire system [4]. Several pre-processing procedures address the 

following goals. 

• to eliminate inconsistent data from regular consideration; 

• to eliminate the redundant information thus reducing the dimension of the problem; 

• to enhance the most discriminative features of the different data categories; 

• to scale or transform the data to allow the main processing system to operate in the 

most favorable regime. 

From now on the discussion addresses the default GPR setup: a 600 ns A-scan 

recorded with a center frequency of 100 MHz, and the term "soil" refers mostly to sands 

and gravels, unless stated otherwise. 

4.1   Correlation based pre-processing for checking data 

consistency 

The goal of this technique is to determine inconsistent A-scans in order to 

exclude them from regular processing. Inconsistency means that the current A-scan 

does not fit the "trend" or appears to be out of the scan sequence. To accomplish this 

goal a cross-correlation operation is performed for every two adjacent scans and the 

dT/ 
/dr » 0 - then an alarm space derivative of the correlation value is calculated. If 

signal is sent and the current scan is marked as suspect (r is the cross-correlation value, 

r is the distance along the radar line). 

This operation is performed in the Fourier domain to achieve shift invariance. 

Small changes in the scan starting point, which could be the result of some bump on the 

road where the antenna is being dragged, may cause significant differences in T values 
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in the time domain, while the Fourier spectra of the adjacent scans remain almost the 

same. 

Nil 

Here T = ^JFiFi+l, where F is the magnitude of the corresponding Fourier 

coefficient, TV" is the number of sampling points in the scan. Figure 4-1 shows T and 

dr. 
'dr values for a sample A-scan sequence. 

 1 I 1 1 | 

Cross-correlation 
Derivative of cross-correlation 

100 

Figure 4-1. Cross-correlation and its derivative relative values vs. scan number. 

4.2   Dimension reduction and discriminative features 

extraction 

The main preprocessing stage of the data passed through the consistency 

checking routine addresses the following issues: 

• reducing the dimension of the problem - a typical A-scan is represented with 512 - 

1024 sampling points - too many for using as inputs for the neural; 

• preserving the chronological order of reflection pulses contained in the A-scan; 

       28   



4. PRE-PROCESSING FOR FEA TÜRE EXTRACTION 

• enhancing those features in the signal that reveal the most discriminative 

characteristics of the data which allow one to distinguish between different subsurface 

patterns; 

• incorporating available prior knowledge about possible feature combinations 

imposing certain physical constraints (s values, layering order). 

The dimensional issue is very important in terms of the size of the data set for 

training the neural network: higher dimension produces larger neural network. When 

the input vector dimension reaches the value of N = 40 - 60, it becomes extremely 

difficult either to generate sufficient amount of synthetic data. The dependency may be 

expressed as follows: the required number of training patterns T should be much larger 

(5-10 times) than (NM + MO) - the "total number of weights in the network" [20]. 

Here M is the number of neurons in the hidden layer, and O is the number of output 

neurons. For this particular problem Mis often chosen to be about 10. That is why N of 

about 50 produces Ton the order of 103 -104 making the approach infeasible in terms of 

generation of the required number of training examples 

4.3  Fourier Transform 

Application of a Discrete Fourier Transform (DFT) to an A-scan takes 

advantage of the shift invariance property of the FT component magnitudes (discarding 

the phase) and thus representing the scan by a feature vector consisting of the 

magnitude values in the frequency domain alone. The general difficulty is that this 

procedure does not produce a unique mapping of the scan into the frequency domain, 

and two different scans may turn out to have very similar Fourier spectra. 

Fourier spectra (256-point FT) of four real GPR A-scans are shown in Figure 4- 

2 (left) and one may see the apparent distinct features of each spectrum. However, 

feature vectors constructed from the FT magnitudes did not provide an accurate pattern 

recognition (the data were tested with the algorithm described in the Section 5.3). 
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Figure 4-2. Fourier Transform (left) for four A-scans (right). 

The most serious argument against the Fourier transform based approach is the 

similarity of the Fourier spectra for the simulated A-scans with different reflection 

patterns as seen in Figure 4-3. 

i 11 i i 111111111 i i 11111111111 ii I ii 11111111 ii 1111111111 i ii1 

,  simulated scan 1 
  simulated scan 2 
  FT of the scan 1 
  FT of the scan 2 

ßk __s      \  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I 

40.0 140.0        240.0        340.0        440.0        540.0 

Figure 4-3. Simulated A-scans and their Fourier spectra. 
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4.4   Wavelet Transform 

Wavelet transform (WT) [12] based preprocessing finds extensive application in 

different pattern recognition tasks [10] and some models of wavelet neural networks 

were proposed and tested [11]. WT has several advantageous features over the Fourier 

transform in a sense that WT represents the signal preserving the local neighborhood 

relations. WT is more flexible in terms of choosing the wavelet basis functions (Figure 

4-4) for better data representation. 

Figure 4-4. Different types of WT basis: Haar, Daubeshies 4, Daubeshies 16. 

A conventional Wavelet Transform is a decomposition of a signal into a set of 

orthogonal basis functions performed in a certain order. 

N 

^(o=E^(o (4.1) 
;'=1 

where A(t) is the A-scan in the time domain, w is the weight of the WT decomposition, 

(p is the corresponding basis function, and k may be considered as a discretization level. 

The shift and dilation values are usually fixed and on every next step of decomposition 

are twice as small as on the previous one. Typical A-scan WT decomposition and 

consequent restoration as a function of the number of WT coefficients is shown in 

Figure 4-5. 
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Original A-scan' 
Restored from WT with 1 48 coeff. 
Restored from WT with   65 coeff. 
Restored from WT with 39 coeff. 

200 

Paint number (time) 

400 

Figure 4-5. Restoration of an a-scan with fewer WT coefficients. 

In principle the feature vector for the neural network input may be constructed 

from the WT components with the largest magnitudes, but the difficulty in this case lies 

in the inability to predict where (among 512 coefficients) those large magnitudes can 

appear for an arbitrary scan. That is why the idea of sampling certain groups of 

coefficients came into play. This technique was implemented and groups of the above 

mentioned WT coefficients were sampled for different radar lines. Moreover, one could 

observe the difference between the final distributions of the sampled values of those 

groups, which were appropriate to be used to distinguish one pattern from another. 

Unfortunately, after processing a data set of feature vectors constructed as described 

above no acceptable pattern recognition results were obtained. 

The most probable reason was that the approach had a serious disadvantage due 

to the fixed values of shifts and dilations of this transform - different number and 

locations of the WT coefficients could occur for the slightly shifted in time refection 

pattern. Thus, for some situations WT could produce relatively large amount of 
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redundant data increasing the dimension of the feature vector and ceasing to pick the 

most discriminatory features of the GPR data. 

The next logical step in improving the transform performance was to allow 

arbitrary shifts and dilations, but this lead to the loss of basis functions orthogonality 

and prevented the application of the regular WT technique for the signal decomposition 

procedure. One alternative was the Adaptive Wavelet Transform [10] that gave more 

freedom to shift and dilation values. But the idea of using as much prior information 

about the data as possible lead one to reject the wavelet basis and instead choose the 

best for this specific problem transform basis, which turned out to be the initial pulse 

used in GPR data collection. 

All those issues were major reasons for developing a technique similar to WT 

for data adaptive signal decomposition called an Adaptive Transform. 

Recall that the discussion addresses the default GPR setup: a 600 ns A-scan 

recorded with a center frequency of 100 MHz, and the term "soil" refers mostly to sands 

and gravels, unless stated otherwise. 

4.5  Adaptive Transform 

Adaptive transform (AT) decomposes the A-scan F(t) into a set of initial pulses: 

G(o=zfw/,(-!-A)+«',2/,(-L-£L)+...+«','/,(^)N 
1=1 V s1 s2 Sj    j 

(4.2) 

where K is the total number of functions in the decomposition, wf are the weight values, 

lift) - initial pulse (IP), c, are the shifts, and s,- are the dilation values. Different values 

for s are due to the dispersion effect and every next is greater than the previous one (sy = 

1.0). According to numerical experiments for realistic GPR scan times (500 - 1000 ns) 

and the actual subsurface media the dispersion is not greater than 1.2. Thus, as few as 

three or four different dilation values may be used for the decomposition (i.e. s = 1.0, 

1.1, 1.2). For the case when we do not account for dispersion (see section 2.3 for the 

discussion about the applicability of the non-dispersive model) we end up with a 
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simplified decomposition since s =   1.0 and a weight vector with the total number of 

components equal to the number of sampling points in the signal - K. 

<Kt)=T."ML:r) (4 3) 
1=1 s 

The residual \F(t)-G(t)\ doesn't have to be close to zero (some of the details or 

noise may be disregarded due to the insignificant influence). There is no need to 

reconstruct the scan back from the AT. Only the transform coefficients (w, c, s) are used 

for the data processing. Basis functions of the AT are not orthogonal, that is why 

decomposition cannot be done in a way similar to Fourier or Wavelet Transform, but it 

can be performed with the help of the following algorithms. 

4.5.1 Correlation-based method (Algorithm 1) 

Algorithm I: 

1. find the location /, of the largest correlation or anticorrelation of the IP and the A- 

scan: 

POINTS in  IP ,.   .. 

c=    z" ij(tkyF(tky> (4-4> 
k     j 

2. determine the sign and the weight value for a single basis function at this location: 

3. subtract weighted IP at tj from the original A-scan Fi(t) = F(t) - Wj I/t); 

4. go to step 1 for Fj(t); 

Algorithm I in its pure form is ideal for data with relatively low noise level and 

a low degree of possible overlapping of the reflection pulses. The first problem refers to 

Equation (4.4) - high noise may result in the largest correlation value to be shifted from 

the actual position, where it should occur, or in the change of the sign for the correlation 

value. Due to the single carrier frequency, the high positive correlation in the presence 

of noise may be misrecognized as a 1/2 period shifted negative correlation (in a similar 

sense as the sin(x) may be considered to be a shifted -sin(x)). The second issue 

introduces some error into the weight value determined by Equation (4.5) - overlapping 
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may cause certain changes in the integral value in the numerator: the larger is the degree 

of overlapping, the less accurate the weight value. 

These two problems impose constraints onto the applicability of this algorithm 

for synthetic as well as real data. Noise issue is absent in the synthetic data, but the 

Noise Ratio (NR) for real data may vary from a few percent at the beginning of the scan 

to 100-200% at the last half of it. The most of the reliable GPR information is contained 

in the first half of the scan (reflections from the top of permafrost and water table), and 

upon thorough investigation of the underlying physics of the EM wave propagation 

through the soils some conclusions on the noise nature and its statistical distribution can 

be made and some elaborate filtering techniques may be applied. Overlapping problems 

impose limitations onto the minimum spacing between the subsurface layers that the 

algorithm can resolve with high accuracy. The estimation for this minimum distance for 

the least possible s value of about 5 for the permafrost is about 1.3 meters for the IP on 

the order of 30 ns for a 100 MHz frequency. The constraints and limitations, that were 

discussed above, do not invalidate the AT concept study and the entire system 

performance evaluation, since even without the effective filtering technique the neural 

network processing part has a remarkably high noise and error tolerance (see Chapter 

5). Moreover, the alternative method to determine the weight values (though at a higher 

computational cost), which is discussed in the next section, does not seem to be superior 

to the correlation-based method at least according to the experiments performed. 

4.5.2 Optimization-based method (Algorithm 2) 

Algorithm 2 is based on a common optimization problem: we can define an error 

function for the F(t) - the actual scan and G(t) - the reconstructed signal from the AT 

coefficients: 

E = ll{G(ti)-F(ti))2 (46) 
1=1 

over the K sampling points of the signal. Then, using one of the modern optimization 

techniques for E in Equation (4.6) as a cost function to be minimized over the set of 
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variable parameters {wi,..,wK}, we can obtain a more accurate decomposition of the 

scan signal. Logical choice for the optimization technique is a Conjugate Gradient (CG) 

method [13]. For faster convergence a decomposition generated with Algorithm 1 may 

be used as an "initial guess". The major drawback of this algorithm, even with optimal 

implementation in terms of CPU time, is inability to use this method for possible real- 

time processing system. 

The numerical experiments with elaborate CG software developed by Sergey 

Perepelitsa [22] showed, that even for a significant degree of overlapping (more than 

half of the reflection pulse), the decomposition obtained from Algorithm 1 cannot be 

improved in terms of adjusting the weight values with the fixed shifts more than by a 

fraction of one percent. This can be most likely explained by the fact that AT basis 

function has a length of 30 - 65 sample points (the entire signal is 512 sample points), 

and changing of one weight coefficient affects the restored scan not only in the region 

of the CG current improvement, but also in the adjacent region. Thus, very likely, this 

problem requires some stochastic optimization methods, but those methods are not 

considered in this work due to extremely high computational complexity, so that real- 

time implementation becomes infeasible. 

4.5.3 Benefits of the AT 

This approach has the benefit of very low dimensional signal representation due 

to the necessity of having only one h(t) to represent a single reflection and the property 

of keeping almost all the possible information about the reflection profile: w is the 

magnitude and inversion/no inversion information of the reflection coefficient, c is the 

location in time, s is the relative dispersion. The proposed technique proved to be 

accurate for the simulated plane-wave formulation data even with thin layers (that 

produced overlapping reflection pulses within the limits discussed in the Section 4.5.2) 

and for the simulation data with artificially introduced uniform random noise up to 10% 

of the average over nonzero components of the initial A-scan (see Figure 4-6). The only 
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assumption for the AT  application  is the prior knowledge  of the  initial  pulse 

propagating through the subsurface medium. 

■ ■ 11111111111 1111111111111111111111111111 

i j 1111111111111111111111111 1111 -41 
25.0 125.0 225.0 325.0 
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425.0 

Figure 4-6. Original (above) and noisy (below) synthetic scans. 

Important issue is that the initial pulse may be represented not necessarily as an 

analytical function but may as well be a numerically represented impulse. This makes 

the AT approach applicable either for synthetic or for real GPR data as far as in the 

latter case the IP may be determined through identifying especially clear reflection 

pulse and scaling it to the appropriate amplitude (see Section 4.6.2). 

4.6  Adaptive Transform for synthetic and real data 

4.6.1 Performance for simulated data 

The Adaptive Transform technique was successfully applied to synthetic data: 

Figure 4-7 shows relative magnitudes w of the weights in the corresponding locations. 

This demonstrated the capability of the technique to distinguish not only individual 

reflected pulses but also superimposed ones - wj and W3 are the two reflections from a 

very close interfaces (1.5 meters thick layer with s = 5.0). The initial pulse of the form 
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IP(t)=-cos(0}/3)cos(cot) 

was used in the FDTD simulator and in the AT. 
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W3 - Original scan 

♦ Location and weights of AT 
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(4.7) 
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Figure 4-7. Adaptive Transform weights and shifts. 

The AT performance results for synthetic scans are neither very interesting nor 

important because any synthetic scan can be constructed analytically from the reflected 

initial pulses. With the known geometry and known dielectric constants the scan can be 

represented as a superposition of reflections from the corresponding layers. Really 

important results that prove the applicability of the Adaptive Transform are for the 

decomposition of the real GPR A-scans, which are discussed in the nest section. 
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4.6.2 Performance for real data 

In order to approximate the Initial Pulse a relatively clean reflection from the 

radar line CR94-61r was 

extracted. Mathematica 3.0 

package was used to approximate 

the IP by the trigonometric 

fitting routine - up to 20 terms 

were used to get an accurate 

representation. Figure 4-8 shows 

a plot of this reflection. The 

scaled version could be 

considered as a real Initial Pulse 

used in GPR measurements. Also 

Figure 4-8. Real Initial Pulse. 

this representation of the real IP is suitable for embedding into the FDTD simulation 

model. 

Application of the Adaptive Transform to real GPR data was verified using the 

scans from radar lines CR93-11 and CR94-61r. Different initial pulses were extracted 

from relatively clean reflections due to the fact that the lines have different duration of 

the scans (600 and 1000 ns) and different number of sampling points (512 and 1024). 

Adaptive decomposition was performed with the correlation based algorithm 

and the scans were restored from the AT shift and weight coefficients to check the 

accuracy of the technique. For both cases fewer than 10 Adaptive Transform basis 

functions were used. Figures 4-9 and 4-10 shows the original and the restored scans. A 

good agreement is observed, major reflections are fairly accurate. Another remarkable 

property of the Adaptive Transform is demonstrated: noise in the signal is almost 

completely ignored. 
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20.0 

Figure 4-9. Original (gray) and restored from AT (black) scans from CR94-61r. 
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Figure 4-10. Original (left) and restored from AT (right) scan from CR93-11. 

40 



4. PRE-PROCESSING FOR FEA TÜRE EXTRACTION 

4.7  Feature vector from Adaptive Transform 

A low dimensional feature vector was constructed from the AT coefficients and 

used as an input for the neural network processing units. Due to the different 

formulations (classification and approximation) of NN1 and NN2, different features of 

the set of AT coefficients were chosen for data representation. 

For the classification oriented neural network the first 10 largest in magnitude 

weights Wj in chronological order were chosen, then the same weights were arranged in 

descending order of their magnitude and appended to the chronological set. Shift values 

were not used directly, only the order of the particular weight appearance had 

importance. 

The implications for such a choice of the feature vector are the following: 1) the 

layers of the single subsurface pattern may be located at different depths, 2) particular 

time of the reflection is not useful, but the chronological order of the weights and their 

values that contain the information about the sign of the reflection (whether it is 

inverted or not) is useful and 3) its strength certainly characterize some subsurface 

layers configuration. The same weights in the order of magnitude provide some 

additional information that may become necessary when, for example, a wrong, but not 

very large coefficient is identified by the AT. In this case the chronological order of 

weights is disturbed, but the magnitude order remains the same allowing to perform 

correct pattern recognition. 

The approximation oriented NN2 does not require the weight values for the 

input since the subsurface pattern is already identified and the number and order of 

layers is known. Now, the exact shift values contain the essential information about the 

location of the particular reflections and 10 of them that correspond to the first 10 

weights exceeding a certain threshold value are used to construct the feature vector. 

The construction of the feature vector from Adaptive Transform coefficients is 

not unique. However, the training sets generated using the above techniques applied to 

NN1 and NN2, demonstrated very good performance (see Sections 5.3 and 5.4). 
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4.8   Compensation for variable gain in real system 

Another issue, which may be considered as a pre-processing stage is the 

appropriate normalization of the A-scans. One of the ways to normalize the scan, which 

is to divide all the values by the maximum amplitude value among all the reflections, 

was not successful. In this case the strongest reflections for each of the two different A- 

scans will have the same unit value. Another way, which also does not work well, is the 

normalization by the average over all points of the scan value - this approach fails due 

to the different total energy of reflections for different scans. 

Our most successful technique to normalize the A-scan by dividing all the 

components by the maximum amplitude of the initial pulse radiated by the GPR 

antenna. In this case all reflections will be scaled appropriately - smaller antenna pulses 

produce smaller reflections, and the relative magnitudes are preserved. Unfortunately, 

the information about the initial antenna pulse amplitude was not available at the time 

this work was done. That is why the problem of implementation of the correct 

normalization technique remains open. 
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5.      HIERARCHICAL GPR DATA PROCESSING SYSTEM 

The governing idea of the hierarchical architecture is to split the task of 

startigraphic layers profiling into consecutive stages, where each subsequent stage has 

less degree of uncertainty than the previous one. The degree of uncertainty is interpreted 

in two ways, it becomes larger: 

• if the number of the different possible outputs for an arbitrary input; 

• if the dimension of the output signal of a current processing stage becomes larger, it 

makes more difficult to visualize and interpret the results; 

The second issue is almost as important as the first one, especially during the 

development and testing period: the ability of the fast and revealing intermediate result 

evaluation allows to make the necessary changes in the system in case of bad datum or 

another system confusion. 

The entire GPR signal processing is divided into four pre-processing and two 

processing stages. Neural network units are chosen to be the main processing blocks due 

to the following remarkable properties: 

• fast operation in the "run" mode after the training procedure has been completed. 

That permits consideration of real-time implementation; 

• high noise/error tolerance [16] which accounts for handling of partially missing or 

incorrect data. 

Data flow and the responsibilities of the particular processing units as well as the 

operation of the entire system are discussed in this chapter. 

5.1     Flowchart 

Figure 5-1 shows the detailed data flow diagram and interactions between the 

separate components. Raw GPR data are used by two pre-processing parts. Pre- 

processing 0 (see Section 4.1) checks the data consistency and excludes inadequate scans 

from the regular processing. Pre-processing 1 incorporates some information about the 

previously processed scans and is described in Section 5.2. 
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Figure 5-1. Complete algorithm flowchart. 

Pre-processing 2, a critical component, decomposes the A-scans into the small 

feature vector which containe essential and highly discriminative information about the 

data (Section 4.5). The first main processing unit Neural Network 1 (NN1) is used to 

recognize the subsurface pattern of the current scan (Section 5.3). Pre-processing 3 
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(section 5.4.1) extracts some other useful feature from the adaptively decomposed GPR 

scan and transforms the result to fit the Neural Network 2 (NN2), which by combining 

this information and the knowledge of the current subsurface pattern determines the 

depths of the stratigraphic layers (Section 5.4). A separate NN2 module is required for 

each subsurface pattern. 

Several interpolation techniques can be used to determine the layer depths for the 

inconsistent data. If the number of "bad" scans is significant - an investigation of the soil, 

hardware or control software adjustment is warranted. 

Feedback possibilities in this processing algorithm are shown with dashed lines. 

The one which goes from the Layer Depths to the Pre-processing 1 provides the history 

of the depths values to be able to predict ones for the current datum. The other two from 

Subsurface Pattern and the Layer Depths to the Pre-processing 1 allow to rerun the entire 

algorithm for the particular scan if it appears to be recognized incorrectly or its 

parameters determined inaccurately. Then the necessary modifications are made in the 

process of adaptive decomposition and the new feature vector is generated. Possible 

implementation of those techniques are discussed in the Sections 5.3.7 and 5.4.5 of this 

Chapter. 

5.2     Tracing interfaces depths technique 

This technique (pre-processing 1 on the block diagram) is based on the physical 

properties of the subsurface media in the region of interest - the actual geographic area. 

Those properties imply relatively flat water table boundary (that is quite natural for any 

water surface) and relatively flat top of the permafrost - based on the actual observations. 

On the one hand, the approach provides a statistical curve fitting technique to predict the 

location of the particular interface for the current A-scan, based on the information about 

several previous scans. On the other hand, the tracing procedure is used for creating of 

the top-down "depth-based" feedback (Section 5.4.5). If the particular interface depth, 

identified with NN2 unit, for the current scan differs significantly from the corresponding 

depth for the same interface determined by the statistical technique - an alarm signal is 

sent to the Adaptive Transform stage to pay more attention to the particular time interval 
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that has caused the mismatch and the necessary adjustments for some of the feature 

vector components are to be made. The implications of this approach are similar to the 

topology based or context based techniques in Optical Character Recognition (OCR) 

applied to handwriting or poorly typed printed texts: severely distorted single character 

can hardly be recognized by the OCR system, but some of its resolved features coupled 

with the information about neighboring characters (like continuos topology for 

handwriting or reasonable context that produces a word with a common meaning) may 

end up with correct final recognition. 

In this system the technique of tracing the interfaces depths was implemented by 

means of linear regression models [15]. Relatively flat interfaces (like water table) 

require only linear term (model 1 - equations 5.1 - 5.3), and the interfaces that exhibit 

actually large variations (bottom permafrost boundary) may be predicted with the model 

with the x2 term present (model 2 - equations 5.4-5.7). 

d(x) = y = a + b-x (5.1) 

n                    f  n n \ 

,   _ J=l ^ 1=1 1=1 ' 
°- - (5.2) 

2>?-5>. 
a-y-b-x (5.3) 

where the bar over the terms means simple averaging, and n is the number of points used 

for fitting the interface depth d(x), and x is the normalized distance along the radar line. 

d(x) = y = a + bl-x + b2-x
2 (5.4) 

n 
3 

;=1 ;=1 _/=l ;=1 
f   n V (5-5) 

^3 

;=1 /=1 ^ i=l 
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b2 = 

" " ___, " 

Z^Z^-Z^/Z*? 
(   n \2 

7=1 7=1 7=1 

a = y-bx-x-b2 

(5.6) 

(5.7) 

The number of points 

(nodes) to be used for fitting 

and the spacing between them 

is user defined. Four nodes are 

generally used and the total 

distance between them does not 

exceed 4 meters. Figure 5-2 

illustrates the prediction of the 

interface depths with model 1 

and model 2, respectively. 
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Figure 5-2. Regression models performance 

6.0 

5.3     Subsurface pattern identification 

This section covers the process of subsurface pattern identification starting with 

the rules for classification of the GPR data into categories, encoding, followed by the 

description of the Neural Network 1 architecture, parameter choice, process of generating 

a training set from the Adaptive Transform data, and training itself. 

5.3.1   Classification and encoding of the subsurface patterns 

For the experiments with synthetic data seven subsurface patterns were defined 

and subsequently used for the training sets: the example of the pattern is presented in 

Table 5.1, a complete set of subsurface patterns is provided in Appendix B. Information 

about the season is highly important when assigning the appropriate 8 values to the 

different layers. Layers, that may be frozen in spring, may be thawed in autumn, 
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changing significantly the reflection pattern at the beginning of the scan as well as the 

reflection times for the deeper layers. 

Table 5.1. Example of the subsurface pattern. 

Pattern Number Season Layers Dielectric 
constant 

1 Autumn Active layer (organics) 14-25 

Silt or sand (dry) <20 

Sand or gravels (saturated) 20-45 

Permafrost 4.4-5.6 

There is only one rule for classification of the possible combinations of the 

stratigraphic layers into subsurface patterns - each new combination of the existing layers 

or appearance of any additional layer generally leads to a new pattern. 

Patterns are encoded using a 1-OF-C (binary encoding for each category) [20] 

encoding method. Number of outputs of the Neural Network 1 is equal to the number of 

patterns used for this particular simulation: 

Table 5.2.1-OF-C patterns encoding. 

Output 1 Output 2 Output 3 

Pattern 1 1.0 0.0 0.0 

Pattern 2 0.0 1.0 0.0 

Pattern 3 0.0 0.0 1.0 

5.3.2  Generation of the training set 

The training set was automatically generated from the Adaptive Transform 

coefficients: shift and weight values. Information about the patterns structure (number of 

patterns, number of inputs and outputs) was stored in the training set as well as the 

patterns itself (please note, that here the term "pattern" does not mean the "subsurface 

pattern", it only means a single training example - one feature vector, that corresponds to 

a single GPR A-scan). A simple technique was used to construct the input (and 

nevertheless proved to be accurate enough for correct processing): 10 AT weight values 
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in chronological order followed by the same 10 weights in the descending order with 

respect to their magnitudes. Implications for this particular choice for the feature vector 

construction were discussed in Section 4.6. This feature vector choice might not be the 

optimal one, but it was the best at the time this work was done. 

5.3.3  Neural Network 1 architecture and parameters 

The block diagram of the Neural Network 1 operation is shown in the Figure 5-3. 

ADAPTIVE TRANSFORM WEIGHTS 
INTIME ORDER {w[tJ,...,w[tiJ} 

ADAPTIVE TRANSFORM WEIGHTS 
IN MAGNITUDE ORDER {wlv..,w10} 

3-10 HIDDEN 
NEURONS 

Figure 5-3. Neural Network 1 architecture. 

The architecture used was an ordinary feedforward layered neural network - a 

Multilayer Perceptron with a single hidden layer. Number of neurons in the input and the 

output layers correspond to the number of inputs and outputs for a single pattern in the 

training set. One part, which is a user responsibility, is to set the appropriate number of 

neurons in the hidden layer - there are no absolute rules [20], but certain guidelines 

address the problem of overfitting [20], [21]. Overfitting occurs when the network is 

"overtrained" - it can not exhibit a good generalization property due to the fact that it has 

learned all the training patterns in great details and is not able to perform well on the data 

it has not seen before (not from the training set). One of the methods that helps avoid 
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overfitting is to choose the total number of weights (by setting the appropriate number of 

hidden neurons) in the network to be several times less than the total number of training 

patterns. 

Two different algorithms were used for training of the network: on-line 

Backpropagation and Scaled Conjugate Gradient (SCG) methods covered in the Chapter 

3. Their performance in terms of computational time and resources was not significantly 

different due to the small size of the problem. Since SCG is more complicated and at 

present implementation is less suitable for results evaluation and visualization and mostly 

intended to solve large scale problems, the discussion on performance, noise and error 

issues is limited to the more conventional Backpropagation method. 

Another essential feature of the neural network implementation is data 

normalization [5]. Several normalization methods are applicable to the MLP networks: 

column normalization (each input variable normalized separately), full normalization (all 

variables normalized by the same factor, i.e. the largest input value among all the 

variables). In this implementation full normalization was employed due to the fact that 

absolute values of the inputs (AT weights) were of the same order. Column normalization 

may be helpful for data with a significant variables difference in magnitude. 

5.3.4  Neural Network 1 training and performance 

The training was performed on a training set generated from the synthetic GPR 

line based on the first (west) 600 meters of the real radar line CR93-11. Four different 

subsurface patterns were defined (patterns 1, 2, 3, and 4 in Appendix A). Training set 

with 450 patterns corresponding to the same number of the artificial A-scans was used. 

The network total operation time (including training) for a DEC ALPHA (175 

MHz) machine was 10 seconds for the network architecture with 10 hidden neurons, and 

7 seconds for 3 hidden neurons. The convergence plot is presented in Figure 5-4. Both 

networks each the desired error level, but the one with 10 hidden neurons did so in fewer 

number of iterations. 
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Figure 5-4. Convergence of NN1,10 hidden neurons (left), 3 hidden neurons (right). 

5.3.5  Pattern identification results 

A synthetic test set was used to validate the network accuracy and generalization. 

Thirty artificial scan examples representing all four subsurface configurations, that were 

not presented to the network as part of the training set were tested - every single input 

vector was recognized correctly. Network activation values (black) vs. actual desired 

outputs (gray) are shown in Figure 5-5. Network output was slightly smaller than the 

actual value it should be, only because of the fact that normalized output values (0.5) and 

(-0.5) were the maximum and minimum values the network had learned and, due to its 

properties, it couldn't extrapolate beyond the range of the values, that were presented 

during the training. 
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Figure 5-5. Neural Network 1 pattern recognition accuracy. 

5.3.6 Testing with real data 

Three different A-scans from the GPR line CR93-11 were used to verify the entire 

processing algorithm performance for the ultimate problem, it was designed for - 

recognition of real data by the neural network trained with synthetic data. Unfortunately, 

even with the borehole information available it was not always possible to determine the 

full information about all the details of the subsurface media profile corresponding to the 

particular A-scan. That is why the evaluation of the NN1 accuracy for the real data 

recognition was made based not on a 100% correct information, thus, it has a slightly 

fuzzy meaning. Table 5.3 gives the example of the tests result for 3 A-scans: scans 1614 

and 2700 very likely represent the subsurface configurations defined as Pattern 1 and 

Pattern 2 respectively, scan 8810 is extracted from the East part of the CR93-11 and, 

probably, does not correspond to any of subsurface patterns used for this simulations. 

The left part of the Table 5.3 shows the activation values of the output neurons as 

a respond to the feature vector generated with the Adaptive Transform from the actual 

GPR A-scan. The right part contains the ideal (normalized) responses for the four 

subsurface patterns used for NN1 training. The comparison results in correct recognition 
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for the scans 1614 and 2700, which very likely correspond to the actual configuration of 

the stratigraphic layers similar to the patterns 1 and 2, respectively. Scan 8810 was not 

classified into any category, and this does not contradict with the assumptions made. 

Table 5.3. NN1 recognition results for real data. 

Scan number 1614 2700 8810 Pattern 1 Pattern 2 Pattern 3 Pattern 4 

Activation of neuron 1 0.922 -0.734 -0.938 1.0 -1.0 -1.0 -1.0 

Activation of neuron 2 -0.880 0.875 -0.726 -1.0 1.0 -1.0 -1.0 

Activation of neuron 3 -0.917 -0.801 0.628 -1.0 -1.0 1.0 -1.0 

Activation of neuron 4 -0.911 -0.932 0.828 -1.0 -1.0 -1.0 1.0 

Figure 5-6. A-scan 1614 from GPR line CR93-11. 

Figure 5-7. A-scan 2700 from GPR line CR93-11. 
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Figure 5-8. A-scan 8810 from GPR line CR93-11. 

5.3.7   Pattern-based feedback 

Actual GPR line may be composed of the scans that belong to different 

subsurface patterns, but, in general, the properties of the vertical soil and soil structure 

(like permafrost) distribution do not undergo significant changes over the distance of 

meters or tens of meters. Thus, with the collection rate of 5-10 scans per meter, the 

adjacent scans very likely represent the same subsurface pattern, and occurrence of the 

other pattern is most probably due to the incorrect pattern recognition. 

When the different subsurface pattern occurs the proposed feedback generates an 

alarm signal and sends it to the Adaptive Transform pre-processing stage. AT addresses 

the correlation part (Section 4.5.1) and checks for the high correlation values, that did not 

take part in the scan decomposition because they were suppressed by the other slightly 

higher correlations nearby. This could be caused by noise or other factors. On the next 

step a different correlation is chosen suppressing the formerly dominating one and the 

decomposition is performed again, followed by the new attempt of subsurface pattern 

recognition by NN1. 

This method has not been implemented in software partly because of the lack of 

availability of some essential GPR hardware related information preventing the 

development and implementation of the fully automatic data processing systems. Please 

refer to Chapter 6 for further work discussion. 
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5.4     Determining depths of the subsurface layers 

This section discusses the second part of the main processing architecture, 

developed for the identification of the depths of the particular layers for the known 

subsurface pattern. The general idea of this approach is expressed in the Figure 5-9. 
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SUBSURFACE PATTERN INFORMATION 
WITH ADAPTIVE TRANSFORM SHIFTS 
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Figure 5-9. Layers depths identification setup. 

5.4.1   Generation of the training sets 

The training set for Neural Network 2 was automatically generated from the 

Adaptive Transform coefficients. Another technique was used for the assembling of a 

single training pattern due to the different from NN1 purpose of this processing stage - 

the approximation of certain continuous parameters. 

First, ten AT shift values which corresponded to the weights with the magnitude 

exceeding some threshold were chosen and arranged in chronological order. Then, for 
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each of the 10 variables the average value was calculated. At the next step each variable 

was replaced by the difference of its original value and the corresponding average. The 

same operation was performed for the depth values used as an output for the Neural 

Network 2. 

This procedure allowed the incorporation of the essential information about data 

peculiarities into the input/output variables, as a consequence of the increased range of 

change in values: substitution of deviations for the actual values. Finally, this technique 

for generating the feature vectors for the training set improved significantly the accuracy 

of the depth identification. 

5.4.2   Neural Network 2 architecture and parameters 

Architecture of the Neural Network 2 is basically the same as of the Neural 

Network 1 - a Multilayer Perceptron with one hidden layer. The difference is in the 

number of neurons in the layers - as far as the information about the subsurface pattern is 

already known, the number of possible parameter distributions (depth values) is smaller, 

than for the data set containing different subsurface patterns, that is why fewer inputs 

may be used for correct network operation. 

DEPTH OF THE TOP OF 
THE PERMAFROST 

DEPTH OF THE WATER TABLE 

DEPTH OF THE BEDROCK 

SHIFTS DEVIATIONS 
IN TIME ORDER: 

{(f,-f>(0:u,(',o-A 

2 - 6 HIDDEN 
NEURONS 

Figure 5-10. Neural Network 2 architecture. 

The problem formulation for this processing part is "approximation". The 

continuous parameters are used as the target outputs for the error correction during the 

network training instead of binary categories for NN1. But this difference does not affect 
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the training procedure with the exception of the stopping criterion. The possible 

overfitting was more critical for NN2 than for NN1 and, besides the appropriate 

architecture choice, the "early stopping" method [20] is employed. This was 

accomplished simply by making the stopping training tolerance higher than, for example, 

the set value for NN1. 

5.4.3   Neural Network 2 performance 

The network was trained with the data set generated from the same CR93-11 

synthetic GPR line, but only the patterns that belong to the subsurface pattern 2 were 

chosen to be included into the training set. A total of 100 patterns were used, 92 of them 

for training purposes, 8 for verification of the network performance. 

Networks with different number of hidden neurons were tested and the 

performance in terms of final accuracy was measured (Figure 5-11). The results verify 

the statements about the appropriate choice of the number of hidden neurons - too many 

neurons in the hidden layer lead to overfitting and worsen the performance on the testing 

set, the network generalization and consequently interpolation property becomes poor - 

the results are less accurate. CPU time (DEC ALPHA 175 MHz, seconds) does not reveal 

a lot of information because larger networks have more weights participating in 

computation but it may converge faster due to the ability to store more information. 
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Figure 5-11. NN2 performance for different number of hidden neurons. 
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Figure 5-12. NN2 convergence. 
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5.4.4  Depths determining results 

Accurate results for the depths of 3 layers for synthetic GPR line CR93-11 

subsurface pattern 2 were generated as an output of NN2. The average error was about 

4% for the transformed and normalized data. Due to the discussed above technique for 

the training set generation and the built-in network data normalization, the error was the 

same regardless of the absolute depth of the layer. The maximum absolute error for this 

simulation of about 0.5 meters was produced as a result to approach the boundary of the 

range of the possible network output values. 
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Figure 5-13. Layer depths identification results with NN2. 

The results are presented in Figure 5-13, plotted values do not reflect the exact 

distribution of the layers because in real life depths are measured from the ground surface 

- in this simulation model they were measured from the imaginary zero level. But the 
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resulting values may be transformed into stratigraphic information incorporating the data 

about the surface elevation. 

5.4.5 Testing with real data 

Data from the same GPR line (CR93-11), as in the Section 5.3.6 were used to 

verify the applicability of NN2 module trained with synthetic data to real test cases. NN2 

was trained to determine the depths of the subsurface layers for the scans that belong to 

subsurface pattern 2, that is why only the scan 2700 was used. Results are summarized in 

Table 5.4 below. 

Table 5.4. Testing results for NN2 for real data. 

Scan number 2700 Depth, 
predicted by NN2, m 

Depth from 
Borehole data, m 

Layer type 

Activation of neuron 1 0.231 2.25 2.40 Water table 

Activation of neuron 2 0.468 4.08 4.50 Permafrost 

Activation of neuron 3 0.699 19.88 25.50 Bedrock 

The accuracy may be considered good taking into account the fact, that borehole 

data are not 100% reliable, and the scan location on the GPR line might not be very close 

to the hole drilled. Nevertheless, assuming the correctness of the experimental borehole 

information for this case, the following conclusions can be made. Unlike the situation 

when the synthetic data used as the test examples, for the real test examples the error 

increases with depth. There are at least two reasons: the first one accounts for the longer 

traveling distance of the electromagnetic wave reflected from the distant interface 

resulting into more scatterers on its way, hence more noise is accumulated in the second 

half of the A-scan. The second reason is concerned with the possible change of the e 

value - the longer is the distance, the more effect it may produce on the reflection time 

versus layer depth relation. 

No extensive testing was performed mostly due to the lack of the reliable and 

accurate in all three dimensions experimental geophysical information, which may be 
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Table 5.5. Subsurface pattern recognition sensitivity to the change 

of the dielectric permittivity value. 

Number of mediums varied Difference from the original s value when recognition 

becomes incorrect, % 

1 30-40 

2 20-25 
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6. CONCLUSIONS 

6.1 Summary 

As a result of this research the following separate Ground-Penetrating Radar 

(GPR) data processing system components have been developed and implemented in 

software. 

• Adaptive Transform (AT) signal decomposition technique, which allows the handling 

of uncertain and noisy raw GPR data by extracting representative and discriminative 

features; 

• Three additional pre-processing methods, which provide the possibility of eliminating 

inconsistent data, utilizing the information about previously processed data, and 

filtering the AT feature vector in an effective way; 

• Two neural networks modules that perform major processing functions based on either 

Backpropagation or Scaled Conjugate Gradient training algorithm. 

Performance of the each component is tested with synthetic as well as real GPR 

data and has demonstrated acceptable operation with respect to accuracy and error/noise 

tolerance. 

The hierarchical GPR data processing system is constructed from the above 

mentioned components. Consecutive operation of the developed algorithm stages allows 

to decrease the degree of data uncertainty for each of the following processing step. 

The entire system, constructed and trained with synthetic data, is tested with real 

GPR information. Successful results and robustness of the algorithm have established the 

feasibility of applying the approach to actual GPR related scientific and technological 

problems. This research can now become the basis for further development and 

improvement. 
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6.2 Further work 

Although the feasibility of applying the proposed system is established, certain 

improvements and additions should be made. The first group of improvements relates to 

both synthetic and real GPR data. The current model for synthetic data generation may be 

extended, by including more physical factors when simulating soil and soil structure 

electrical properties. Factors such as wave attenuation, dispersion, and scattering are the 

primary goals in this study. Taking into account these aspects, more understanding of the 

underlying physical processes could be achieved. This may yield a better understanding of 

the behavior of electromagnetic waves in subsurface media revealing the cause of 

uncertainties in GPR data related phenomena. Certain improvements in the GPR data 

collection technology in terms of antenna gain control and availability of additional useful 

information will lead to overcome such difficulties as inability to correctly normalize the 

data and define the proper basis functions for the AT. 

The second group of improvements is algorithm related. The following ideas were 

considered, but were not implemented due to the lack of time. 

• extension of the AT into a multiresolution algorithm permitting the handling of wave 

dispersion; 

• development of a more efficient way for constructing the feature vector from AT 

coefficients; 

• testing Radial  Basis  Functions  neural  network  paradigm  as  an  approximation 

processing tool; 

• implementation  of a  pattern-based   and   depth-based  feedback  along  with  the 

optimization technique to compensate for possible errors on any processing stage. 

The concept of a fully automatic GPR data processing system is a promising 

engineering area considering the growing demand in environmental, industrial and other 

applications. Development of a working system, which can operate in conjunction with 

existing GPR equipment, will certainly be of benefit to our industrial society. 
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APPENDIX A. SIMULA TION RESULTS FOR SYNTHETIC GPR LINES 

Appendix A       SIMULATION RESULTS FOR 
SYNTHETIC GPR LINES 

A.1 Training set 

A synthetic training set (main training set) consisted of approximately 3300 

artificial scans representing seven possible subsurface patterns was generated. Depths of 

the layers were varied within the limits exceeding possible depth variations for the 

synthetic lines based on the real geometry analyzed with GPR technique. The subsets of 

the training set corresponded to patterns 1, 2, 3, 5, 6, and 7 were used for training of the 

NN2 models for each of those patterns, number of examples in each subset varied from 

300 to 600. 

A.2 Synthetic GPR line based on CR93-11 

The approximate state coordinates of the starting and the end points of the line are 

{(243137.0, 3968939.0),(247863.0, 3970911.0)}. Line direction is from west to east. The 

first 600 meters of the line were approximated with the synthetic geometry. Then artificial 

A-scans were decomposed into the set of Adaptive Transform shift and weight 

coefficients. The geometry, the dielectric permittivity values, and the subsurface patterns 

distribution (red capital "P" with numbers) are shown in Figure A-l. 

Neural Network 1 trained with the main training set was used to identify 

subsurface patterns and corresponding layer depths for CR93-11 based synthetic line. 

Pattern identification results are sown in Figure A-2, depth predictions for patterns 1, 2 

and 3 (using corresponding NN2 modules) - in Figures A-3, A4, and A-5. 
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Figure Appendix A -1. Geometry and dielectric constants for synthetic CR93-11 

GPR line. 
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Figure Appendix A -2. Pattern identification results for CR93-11 GPR line. 
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Figure Appendix A -3. Depth predictions for Pattern 1. 
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Figure Appendix A -5. Depth predictions for Pattern 3. 

A.3 Synthetic GPR line based on CR94-61r 

The approximate state coordinates of the starting and the end points of the line are 

{(246291.0, 3968477.0),(246266.0, 3970243.0)}. Line direction is from south to north. 

The geometry and the dielectric permittivity values are shown in Figure A-6, first 900 

meters of the line were used. 

Neural Network 1 trained with the main training set was used to identify 

subsurface patterns and corresponding layer depths for CR94-61r based synthetic line. 

Pattern identification results are sown in Figure A-7, depth predictions for patterns 5, 6 

and 7 (using corresponding NN2 modules) - in Figures A-8, A9, and A-10. 
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Figure Appendix A -6. Geometry and dielectric constants for synthetic CR94-61r 

GPR line. 
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Figure Appendix A -7. Pattern identification results for CR94-61r GPR line. 
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Figure Appendix A -8. Depth predictions for Pattern 5. 

—a 
400 

0.0 F 

-5.0 

Q. 

O 

-10.0 

-15.0 k 

 1 ' r 

UNSATURATED SOIL 

T 

PERMAFROST 

Predicted 
Reel 

mini ■» t 
SATURATED SOIL 

PERMAFROST 

THAW 

PERMAFROST 
I J_ 

50 100 

Test scon number 

150 

Figure Appendix A -9. Depth predictions for Pattern 6. 
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Appendix B.   SUBSURFACE PATTERNS CLASSIFICATION 

B.1 Pattern 1 

Table Appendix B.   .1. Layers configuration for subsurface pattern 1. 

Pattern Number Season Layers Dielectric constant 

1 Autumn Active layer (organics) 14.0-25.0 

Silt or sand (dry) <20.0 

Sand or gravels (saturated) 20.0 - 45.0 

Permafrost 4.4-5.6 

,L -j\M i pi 

Scan 2583 

Figure Appendix B.   -1. Typical A-scan from GPR line CR93-11 of subsurface 

pattern 1. 
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B.2 Pattern 2 

Table Appendix B.   .2. Layers configuration for subsurface pattern 2. 

Pattern Number Season Layers Dielectric constant 

2 Autumn Active layer (organics) 14-25 

Silt or sand (dry) <20.0 

Sand or gravels (saturated) 20.0 - 45.0 

Permafrost 4.4-5.6 

Weathered Bedrock > 11.0 

Figure Appendix B.   -2. Typical A-scan from GPR line CR93-11 of subsurface 

pattern 2. 
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B.3 Pattern 3 

Table Appendix B.   .3. Layers configuration for subsurface pattern 3. 

Pattern Number Season Layers Dielectric constant 

3 Autumn Active layer (organics) 14.0-25.0 

Silt or sand (dry) <20.0 

Sand or gravels (saturated) 20.0-45.0 

Permafrost 4.4-5.6 

Cryopeg or Intrapermafrost 
diffractions (fine-grained sediments) 

>10.0 

Figure Appendix B.   -3. Typical A-scan from GPR line CR93-11 of subsurface 

pattern 3. 
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B.4 Pattern 4 

Table Appendix B.   .4. Layers configuration for subsurface pattern 4. 

Pattern Number Season Layers Dielectric constant 

4 Autumn Active layer (organics) 14.0-25.0 

Silt or sand (dry) <20.0 

Sand or gravels (saturated) 20.0 - 45.0 

Unknown layers Unknown 
properties 

No typical A-scan is available, the pattern was used to avoid the possible network 

confusion. Simulated scans in this area do not match the experimental GPR data, the main 

reason for introducing this pattern is to somehow label the data, that do not belong to any 

category currently used. 
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B.5 Pattern 5 

Table Appendix B.   .5. Layers configuration for subsurface pattern 5. 

Pattern Number Season Layers Dielectric constant 

5 Spring Active layer (organics) 14-25 

Permafrost 4.4-5.6 

Unfrozen sand or gravels (saturated) 20-45 

Permafrost 4.4-5.6 

Figure Appendix B.   -4. Typical A-scan from GPR line CR94-61r of subsurface 

pattern 5. 
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B.6 Pattern 6 

Table Appendix B.   .6. Layers configuration for subsurface pattern 6. 

Pattern Number Season Layers Dielectric constant 

6 Spring Active layer (organics) 14-25 

Permafrost 4.4-5.6 

Unfrozen sand or gravels (saturated) 20-45 

Permafrost 4.4-5.6 

Cryopeg or Intrapermafrost 
diffractions (fine-grained sediments) 

>10.0 

Figure Appendix B.   -5. Typical A-scan from GPR line CR94-61r of subsurface 

pattern 6. 
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B.7 Pattern 7 

Table Appendix B.   .7. Layers configuration for subsurface pattern 7. 

Pattern Number Season Layers Dielectric constant 

7 Spring Active layer (organics) 14-25 

Permafrost 4.4-5.6 

Unfrozen sand or gravels (saturated) 20-45 

Permafrost 4.4-5.6 

Weathered bedrock > 11.0 

Figure Appendix B.   -6. Typical A-scan from GPR line CR94-61r of subsurface 

pattern 7. 
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Appendix C SIMULATION RESULTS FOR 
REAL GPR LINE 

Neural Network 1 trained with the main training set (Appendix A) and six Neural 

Network 2 modules corresponding to patterns 1, 2, 3, 5, 6, 7 were used to estimate the 

patterns and depths for the real GPR line CR93-11. The results are shown in Figure C-l. 

Numbers above y = 0 denote the subsurface pattern number, below y = 0 - correspond to 

the interface depth values. 
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Figure Appendix C -1. Pattern and depths identification results for the real GPR 

radar line CR93-11. 

The data in the above figure are somewhat confusing due to the pattern change 

observed in the upper part of the figure. If one attempts to connect several of the points to 

sketch out the layer depths, the following picture would be produced - see Figure C-2. 

Note, that not all the points were connected due to uncertainty of the results as 

explained in the main text of this report. 
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Figure Appendix C -2. An attempt to connect the adjacent points to produce layer 

interfaces. 
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