1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE
May 7, 1999

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Cyclostationary Signal Processing in Digital Communication Systems

5. FUNDING NUMBERS
DAAH04-94-G-0252

6. AUTHOR(S)
Zhi Ding

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Electrical Engineering
Auburn University
Auburn, AL 36849-5201

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ARO 38/51.19-EL-DPS

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Our focus in this ARO research project is to investigate and study the application of cyclostationary signal processing in digital communication systems. We consider several important areas of application including channel equalization, co-channel interference rejection, and antenna beamforming. During this report period, we developed a number of new algorithms for the blind identification and equalization of multiple input multiple output systems. These methods are more robust and accurate than many existing methods. Blind separation of signals using both the higher order and second order (cyclostationary) statistics are studied. Several simple methods are proposed. We also developed a finite window decorrelator receiver for asynchronous CDMA systems. This new algorithm is near far resistant even when the processing window is rather short, overcoming the weakness of the conventional decorrelator that relies on large (almost infinite) window size. In another important study, we investigate the applicability of blind equalization algorithms in practical wireless cellular systems such as the GSM. Since the GSM transmission is nonlinear and is in burst mode, blind equalization algorithms must be adopted for this nonlinear modulation and must converge within each frame of data burst. Using a linearization method, we simplified the nonlinear GMSK signal into an equivalent linear QAM signal. A de-rotation scheme further allowed channel diversity be extracted without the need of additional downlink antennae. Successful blind equalization and semi-blind equalization results for GSM are established.

14. SUBJECT TERMS
Digital communications, equalization, CDMA, channel identification

15. NUMBER OF PAGES
5

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

Source: Standard Form 298
Final Progress Report

1. **ARO PROPOSAL NUMBER:** P-33151-EL-DPS.
3. **TITLE OF PROPOSAL:** Cyclostationary Signal Processing in Digital Communication Systems.
4. **GRANT NUMBER:** DAAH04-94-G-0252.
5. **NAME OF INSTITUTION:** Auburn University.
6. **AUTHOR OF REPORT:** Zhi Ding.

7. **LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:** See reference list.

8. **SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT:**

 Zhi Ding, Associate Professor, Department of Electrical Engineering.

 Ye Li, Graduate Research Assistant (GRA) and Ph.D. candidate, Department of Electrical Engineering.

 Paul D. Burns, GRA and M.S. candidate, Department of Electrical Engineering.

 Zhen Mao, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Junqiang Shen, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Kenneth D. Underwood, GRA and M.S. candidate, Department of Electrical Engineering.

 Todd A. Larabel, GRA and M.S. candidate, Department of Electrical Engineering.

 Gary Li, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Tongtong Li, GRA and M.S. (and Ph.D.) candidate, Department of Electrical Engineering.

 Bin Huang, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Jing Liang, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Bing Chen, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Yi Zhou, GRA and Ph.D. candidate, Department of Electrical Engineering.

 Marcus Lankford, GRA and M.S. candidate, Department of Electrical Engineering.

9. **DEGREES AWARDED DURING THIS REPORTING PERIOD:**

 Tongtong Li, Master of Science, June 1998.

Summary of Accomplishment

- Study of adaptive blind equalization algorithms

 Toward our specific task of developing an adaptive and globally convergent blind equalization algorithm based on second order cyclic and higher order statistics, we analyzed and presented the first known proof of global convergence for the Godard algorithm operating on a blind fractionally spaced equalizer (FSE) [1, 2]. We also presented an adaptive algorithm for channel identification and equalization based on second order cyclic statistics [3]. Furthermore, we also generalized our analysis to the whole class of fractionally spaced adaptive blind equalizers [4, 5]. A super-exponential algorithm was also developed for FSE with proven global convergence [6].
• Robust cyclic array signal processing
We investigated the application of cyclic statistics for multi-sensor array processing. By exploiting multiple sources of cyclic statistical information from the received data, we developed new algorithms in [7] to robustify existing cyclic array processing algorithms by optimizing the use of cyclostationary statistics.

• Improved blind channel identification based on partial information
We recognized that in most communication systems, the channel consists of a known and an unknown part. Based on this realization, we developed new algorithms in [8, 9] that directly identify the unknown part of the channel based on the known pulse shape. By exploiting the known information, this new approach reduces the computational complexity and improves the accuracy of channel identification. As seen from the improved performance, this is an effective means to exploit the small spectral support of cyclic spectra [10]. This partial information can also be effectively used in designing blind MMSE filter for a specific signal [11].

• Channel identification and multipath equalization for general multiple input and multiple output (MIMO) systems.
For MIMO systems, we designed an outer-product based robust algorithm for the blind identification of fractionally sampled channels. This algorithm is robust and can largely improve the existing linear prediction based method. It is also easy to implement based on merely the second order statistics of the channel output. We can further accomplish signal separation by exploiting knowledge on the transmitted pulses. For single channel identification, this principle has been presented [12]. For MIMO systems, several newly proposed methods are presented in [13][14][15].

• Efficient and reliable receiver design for CDMA multi-user systems.
In modern digital communications, asynchronous CDMA system is increasingly becoming the efficient modulation scheme for multi-user separation. We present a method [16] that makes initial decisions on bits for both edges of the finite observed window. These initial decisions are then used to make the subsequent decisions of the whole sequence inside the observed window based on the decorrelating method. We call this as Edge Decision Assisted Decorrelator (EDAD), which is shown to be near-far resistant.

We also derived [17] a new projection-based blind adaptive multiuser detector is proposed. The proposed detector is motivated by the linearity of multipath interference. We construct a subspace that is orthogonal to the space spanned by the desired signature vector with different possible delays. If the steering vector is in the orthogonal subspace in each step of the adaptive algorithm, there is no cancellation of the desired signal. Better performance is obtained.

• Column anchored ISI cancellation
We propose a direct blind zero-forcing approach to cancel inter-symbol interference (ISI) in multiple user FIR systems [18, 19]. By selectively anchoring columns of the channel convolution matrix, we present two kinds of column-anchoring zero-forcing equalizers (CAZE). Unlike many known blind identification algorithms, these equalizers do not need an accurate estimate of the channel orders. Exploiting second order statistics (SOS) of the received signals, they can retain a pre-selected block of columns in the channel convolution matrix (the number of columns in a block column equals that of users) and force the remaining columns to zero. They do not rely on and are not sensitive to channel order estimate, as other SOS algorithms do. The algorithm development is very simple and easy to understand. Maximum likelihood equalizer output for single user system is derived. Simulation results show that the CAZE is effective for blind equalization of a single-user linear QAM wireless communication system and even for the GSM mobile communication system.

• Blind signal separation in MIMO systems.
After blind channel identification, signal separation for particular sources is the next important step. An algebraic principle for signal separation was presented in [20] where a multi-stage methodology is presented that utilizes different higher order statistics (HOS) to separate signals of interest. Rather than fixing the order of HOS for a given algorithm, we derive a small but
sufficient set of statistical equations for multi-stage signal separation. As each stage separates signals into finer and finer categories, signal separation within each small category becomes easier to separate using the next level HOS. For non-white signals such as audio messages and speech, we developed a simple and effective matrix pencil algorithm [21] that only requires the use of second order statistics. So long as signals for separation possess different power spectra, their separation can be accomplished by solving a generalized eigen-value equation involving second order statistics.

- Blind and semi-blind equalization for wireless GSM systems.

While most published works have focused on the standard model of QAM systems, few have directly attacked the problem of blind equalization in practical wireless communication systems. GSM is one of the most popular digital cellular systems on the world today. Investigating and understanding the feasibility and performance of blind equalization for GSM would have significant impact in the design of future wireless systems.

In [22][23], we focus on the design of blind equalization receiver for the phase modulated GSM systems without relying on additional antennas. We investigate whether and how the mathematically elegant SOS methods can be applied to the nonlinear modulated GMSK signals. As GMSK signals have almost no excess bandwidth, we are particularly interested in determining whether SOS methods relying on channel diversity can be adapted for the baud-rate sampled channel signal from a lone antenna output. To overcome the first obstacle of nonlinear modulation, we derive an equivalent baseband PAM model for the GMSK signal used in GSM systems. More importantly, to apply SOS methods on single channel output, we use a de-rotation scheme to create two sub-channels for each GMSK signal even though the GMSK signal has almost zero excess bandwidth. To improve the equalization performance, we also developed two semiblind equalization methods [24] that not only rely on the statistical information, but also utilize the available but short midamble training signal in each TDMA burst of the GSM transmission.

References

