University of Hawaii

Annual Progress Report

Submitted to the

National Aeronautics and Space Administration

Contract No. NAG5-6561

"Spectroscopic Observations of the Planets"

July 1, 1998 to June 30, 1999

Submitted by

Tobias C. Owen
Principal Investigator
Institute for Astronomy
University of Hawaii

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
During the past two years, the research supported by this grant has focussed on isotopic ratios in comets and in the atmosphere of Titan, and the determination of surface compositions of outer solar system bodies. Titan exhibits a terrestrial value of $^{12}\text{C}/^{13}\text{C}$ but $^{14}\text{N}/^{15}\text{N}$ is highly depleted compared with Earth indicating massive escape of nitrogen from Titan. The H_2O in Comets Hale-Bopp and Hyakutake is enriched in deuterium by about a factor 2 compared with ocean water (SMOW) while D/H in Hale Bopp’s HCN is 14 times the SMOW value. $^{12}\text{C}/^{13}\text{C}$, $^{14}\text{N}/^{15}\text{N}$ and $^{32}\text{S}/^{34}\text{S}$ in Hale-Bopp all have terrestrial values. These results have interesting implications for the origin of comets and for the delivery of volatiles to the inner planets. We discovered evidence for transient clouds on Titan and indications of the presence of water ice on this satellite’s surface. The dark leading hemisphere of Iapetus appears to be covered by a nitrogen-rich organic compound that is mixed with six-micron ice crystals and a dark, neutral substance resembling amorphous carbon.

This year we plan to improve presently available values of $^{12}\text{C}/^{13}\text{C}$ and $^{16}\text{O}/^{18}\text{O}$ on Mars, using high resolution near-IR spectra of Martian CO$_2$ and H$_2$O. We will search for evidence of depletion of ^{16}O on Titan, to see if oxygen has been escaping with nitrogen. We will continue our near-IR studies of Titan to search for new molecules, re-measure the CO abundance and improve constraints on surface composition. We will complete the analysis of the darkside material on Iapetus and initiate a program to compare this material with the dark matter on other outer solar system objects. The Gemini and Subaru 8-meter telescopes on Mauna Kea will become available in 2000, and will have spectrometers capable of recording the 2.85-4.15 μm spectrum of these small bodies. At the same time, NIRSPEC on Keck will enable a definitive investigation of atmospheric methane on Pluto and Triton and the 1-0 CO band on Titan. We plan to use the JCMT to search for evidence of H$_2$S on Uranus and Neptune.

PUBLICATIONS 1997-PRESENT

TCO:dst4/23/99
The research supported by this grant has focused on isotopic ratios in comets and in the atmosphere of Titan, and the determinations of surface compositions of outer solar system bodies.