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Abstract 

Adjacent grid point profile data from the canopy coupled to the 
surface layer (C-CSL) model are examined to illustrate the model's 
capability to represent effects of the surface boundary on wind flow. 
Vertical cross sections of the wind field and contours of derived 
momentum flux data are presented. Depictions of the vegetation 
morphology and terrain elevation data are also given for the areas 
studied. 

The C-CSL model provided data for an analysis of the surface layer 
wind flow within and above five different sections of vegetative 
canopy. As a result, the modeled wind speed profiles appeared to be 
in line with experimental observations. Momentum flux (Reynolds 
stress) data were calculated from the wind speed profile gradients. 
Within the canopy layer, the structure of the profiles of momentum 
flux appeared to agree well in contrast to data from two other 
turbulence closure models. In the layer above the forest canopy top, 
the structure of the momentum flux profiles were in line with 
experimental observations. In data-limited areas, this kind of 
modeling can be used to support land-based operations where the 
transport and diffusion of smoke, chemicals, or other toxic aerosols 
in complex terrain are a primary concern. 
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1. Introduction 
Modeling and analysis of wind speed profiles within and above crop- 
covered and forested areas over uneven terrain can reveal many interest- 
ing aspects of microscale canopy air flow. For example, abrupt changes in 
canopy displacement height can generate locally intense wind shears at a 
leading or trailing edge of a forest stand (Raynor, 1967; Meroney 1968; 
Shinn, 1968). Changes in the density and the type of vegetation can also 
affect the degree to which aerodynamic drag is imparted to the wind flow 
at the canopy-air interface (Cionco, 1965,1978,1979). Observations have 
shown that aerodynamic drag is greatest through a relatively thin layer in 
the upper part of a canopy (Stull, 1988; Shaw et al, 1988; Lee and Black, 
1993) and that most of the downward momentum flux is absorbed at this 
height rather than at the ground surface. Changes in elevation of the 
underlying terrain can also affect the contour patterns of the surface layer 
winds (Orgill and Shreck, 1985) as wind speeds may accelerate over 
isolated hills and ridges and diverge (converge) ahead of (behind) signifi- 
cant terrain features. 

In this study, adjacent grid point profile data from the canopy coupled to 
the surface layer (C-CSL) model (Cionco, 1965,1985) are examined to 
illustrate the model's capability to represent effects of the surface bound- 
ary on wind flow. Vertical cross sections of the wind field and contours of 
the derived momentum flux are presented for five case studies. Depic- 
tions of the vegetation morphology and terrain elevation data are also 
given for the modeled area. 

The C-CSL model is a diagnostic tool that can produce data for an analy- 
sis of the surface layer wind flow in and above a vegetative canopies. In 
data- and information-limited areas, this kind of modeling can be used to 
support land-based operations affected by the transport and diffusion of 
smoke, chemicals, or other toxic aerosols (Ohmstede and Stenmark, 1980; 
Hanna, 1981; Cionco, 1982). 



2. C-CSL Model and Coupled Wind Profile Equations 
The C-CSL model given by Cionco (1965,1985) produces data for the 
analysis of flow over complex terrain by first simulating the high- 
resolution wind (HRW) field over an entire gridded area and then cou- 
pling the horizontal flow to the canopy flow at each grid point. The 
C-CSL model is driven by the two-dimensional HRW model (Ball and 
Johnson, 1978; Cionco, 1982,1985), which calculates the wind flow over a 
gridded area of 5 x 5 km with a spatial resolution of 100 m. The HRW 
model is initialized with values for surface layer wind speed, wind 
direction, temperature, pressure, and an estimate of buoyancy (or relative 
stability) derived from a single upper air sounding. Detailed terrain 
elevation, vegetation, and land-use information is also needed as input. 
The HRW model defines an initial uniform field and then calculates 
deformations in the wind field caused by changes in the terrain elevation 
and discontinuities in the surface roughness and vegetation based on 
conservation of momentum and continuity. 

Wind speed profiles in the layer above the canopy top are written in form 
described by Businger (1973) and Garratt (1994): 

a(2) = Iji [in (z^)-¥,„,], (1) 

where Ü = the mean total horizontal wind, z = height above ground level, 
d = displacement height (* 0.7zc), z0 = the roughness height (~ 0.14zc), 
zc = canopy height, u* - the friction velocity (i.e., surface stress), k is 
von Kärmän's constant (= 0.4), and y/,„ = the buoyancy-stability function, 
i.e., the deviation in the wind speed profile from the neutral stability case 
(Paulson, 1970). 

Wind speed profiles within the canopy layer are exponential in form as 
described by Inoue (1963) and Cionco (1965): 

0(z) = Oc exp[a [f- -1)] , (2) 

where Uc = the mean total horizontal wind at the canopy top, zc = canopy 
height, and a is the canopy flow index (Cionco, 1978). The canopy flow 
index, a, represents a measure of the wind flow response to the canopy 
element, for example, its height, density, or flexibility. A compilation of 
values reported in Cionco (1978) suggests that the flow index has a range 
from approximately 1.00 to 2.80 for corn, wheat, oats, and like crops and 
from approximately 2.70 to 4.40 for forest canopies, such as oak, maple, or 
spruce. 



The calculation of the wind speed at the top of the canopy, Üc, is based 
on a coupling ratio, Rc, a relationship proposed by Cionco (1979) that can 
be expressed as 

U, 
R-ö 

0.25zc 
Lfcexp 

1.4z, 

a 
0.25z, 

^ In 
k 

1.4zc-d 
~¥r, 

(3) 

where Q0 25z and 0li4z denote the mean wind speed at heights above 
ground level in the canopy layer and in the ambient surface layer, respec- 
tively. Substituting for z0 and d, the expression for Uc can be rewritten as 

Uc = *£- ln(5.0) Rc exp(0.75a) (4) 

where values (in percent) of the coupling ratio, Rc, depend mainly on 
relative distance from either ambient flow upwind, flow in the canopy, or 
air flow downwind from the canopy's trailing edge (Cionco, 1979). Alter- 
natively, the coupling ratio can be thought of as indicating the rate of 
momentum transfer through the canopy. (It is not certain why the expres- 
sion for 0C given by equation (4) does not include y/m, the buoyancy- 
stability function.) 

The mean downward flux, - u' uf , of horizontal momentum (or Reynolds 

stress) can be expressed as 

-u w K-    dU _ „2 (5) 

where Km = u* kz/$m is a diffusion coefficient for the surface layer, u* is 
the friction velocity (which also refers to the surface stress tensor), and (/>„, 
is the nondimensional wind shear (Businger, 1973). 



3. Input Data: Meteorology, Terrain, and Vegetation 
The meteorological data for this study were taken from data collected as 
part of the meteorology and diffusion over nonuniform areas 
(MADONA) multinational field campaign (Cionco et al, 1995). Surface 
weather conditions during the field study (15 to 23 September 1992) were 
generally damp and cool, with temperatures ranging between 13 to 18 °C, 
under mostly cloud-covered skies. The MADONA experiment was held 
at the Ministry of Defense Chemical and Biological Defense Establish- 
ment (CBDE), Porton Down, United Kingdom. The test area (i.e., the 
C-CSL model area for the present study) consisted primarily of rolling 
grassy hills and forested ridges. The CBDE terrain elevation data are 
given in figure 1. The terrain data show a ridge that runs southwest to 
northeast with higher elevation at each end and a total maximum eleva- 
tion change of approximately 100 m. Also, five separate line segments are 
drawn on figure 1 to indicate where C-CSL wind speed profile data were 
taken for analysis. These segments, as opposed to other subsets of the 
study area, were chosen mainly because of their surface vegetation 
(forest) morphology. A chart of the vegetation morphology for each of five 
case studies (to be discussed in sect. 4, Analysis) is given in figure 2. 
Vegetation and land-use elements are also described in table 1. 

Figure 1. A contour 
map of terrain 
elevation data (in 
meters) for C-CSL 
model study. 
Horizontal line 
segments indicate 
where C-CSL wind 
speed profile data 
were taken for 
analysis. 
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Figure 2. A chart of 20- ■ 
vegetation (forest) 
morphology for five 1 °" 
cases of C-CSL model 0 

data studied. 
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Table 1. Vegetation 
and land-use 
elements. 

Element type Height (m) 

Full density conifers 12.0 
Full density deciduous 8.0 
Farmland or crops 0.1 to 1.0 
Grasslands 0.6 



4. Analysis 
The graphs in figures 3 to 7 show contours plotted through (a) modeled 
wind speed and (b) momentum flux data. Five cases are presented. Case 1 
(fig. 3) shows an example of the modeled surface layer flow over a sym- 
metric forest stand. Case 2 (fig. 4) is similar to case 1, although the wind 
speeds above the canopy are not as strong and the forest stand is broader 
and more even. Case 3 (fig. 5) shows an example of undisturbed wind 
flow over open cropland as it approaches the windward (leading) edge of 
a forest canopy. Case 4 (fig. 6) shows the modeled wind speed and 
momentum flux profile data at a canopy's leeward (trailing) edge. Last, 
case 5 (fig. 7) shows an example of the modeled wind flow for patches of 
forest and clearings, where the clearings extend to a horizontal distance 
much greater than the height of the individual tree elements. 

The modeled data show (in figs. 3(a) and 4(a), in particular) that abrupt 
changes at the surface boundary result in large upward and downward 
deflections of the contours and significantly reduced wind speeds 
through the leading edges of the canopy. Within and above the center 
portion of canopy, the wind speed contours tended to either level off or 
slope downward slightly. The modeled data also show (in each case) a 
slowing of the wind flow, followed by reaccelerated winds, at or near the 
trailing edges of the canopy (see figs. 3(a), 4(a), and 6(a)). Barr (1971) 
refers to this slowing as a "wave-type" deflection, which appears as a rise 
in the wind speed contour line as the canopy's trailing edge is ap- 
proached. Barr claims this feature of canopy flow has been evidenced in 
the experimental data collected by Stearns (1964) and the wind tunnel 
simulations reported by Kawatani and Meroney (1968). 

The data presented in figures 3(b) through 7(b) show the behavior of the 
derived momentum flux within and above the five sections of forest 
canopy studied. The momentum flux (Reynolds stress) data were calcu- 
lated from the modeled wind speed profile gradients. In the lower por- 
tion of the canopy, the profiles of flux data are shown to decrease rapidly 
toward the ground. Line graphs of these data appear to agree well in 
contrast to data from the higher-order turbulence closure models of air 
flow within a forest canopy reported by Wilson and Shaw (1977) and 
Patton et al (1994). Above the canopy, the derived momentum flux data 
are shown to remain fairly uniform and even increase slightly with 
height. This result agrees with the observations reported by Shaw et al 
(1988) that indicated a constant stress (constant flux) layer of about 25 m 
above the top of the forest. In contrast, data reported in Lee and Black 
(1993) indicated a reduction in the Reynolds stress in the layer between 
1.0 and 1.38 times the height of the top of the canopy. However, Lee and 
Black suggested that the reduction (flux divergence) that they had ob- 
served may have been associated with the topography of their experi- 
mental site. 
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Figure 3. C-CSL model results for case 1: (a) adjacent grid wind speed (m/s) profiles and 
(b) adjacent grid momentum flux (m2/s2) profiles. 
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Figure 4. C-CSL model results for case 2: (a) adjacent grid wind speed (m/s) profiles and 
(b) adjacent grid momentum flux (m2/s2) profiles. 
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5. Summary and Conclusions 
Adjacent grid point profile data from the C-CSL model were examined. 
Cross-section analyses of the wind fields and contours of derived mo- 
mentum flux data were presented for five different segments of forest 
canopy to illustrate the model's capability to represent effects of the 
surface boundary on wind flow. 

The wind speed cross sections showed large deflections in the contours at 
the leading edges of the forest canopies and greatly reduced wind speeds 
through the remainder of the canopy layer. At the trailing edges of the 
canopy, the modeled data showed a slowing of the wind flow, followed 
by reaccelerated winds. These model results appear to be in line with 
experimental observations. 

Momentum flux (Reynolds stress) data were calculated from the modeled 
wind speed profile gradients. Within the canopy layer, the structure of the 
profiles of momentum flux appeared to agree well in contrast to data 
from two other turbulence closure models. In the layer above the forest 
canopy top, the structure of the momentum flux profiles were in line with 
experimental observations. 
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