1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
3. REPORT TYPE AND DATES COVERED
 Final Progress Report, 07/17/95 - 07/16/98
4. TITLE AND SUBTITLE
 Detoxification of Military Wastes by Nearcritical and Supercritical Water and QSPR Investigations
5. FUNDING NUMBERS
 DAAH04-95-1-0497
6. AUTHOR(S)
 Dr. Alan R. Katritzky
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Florida Center for Heterocyclic Compounds
 University of Florida, Department of Chemistry
 P. O. Box 117200
 Gainesville, FL 32611
8. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 U.S. Army Research Office
 P. O. Box 12211
 Research Triangle Park, NC 27709-2211
9. SUPPLEMENTARY NOTES
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.
10. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.
11. ABSTRACT
 The work on the behavior of a series of organophosphorus and organoarsenic compounds in superheated water was completed. Additional work was carried out in the area of aquathermolysis of aliphatic, aromatic, and heterocyclic amino compounds and heteroaromatic nitrogen-containing compounds. The results obtained show potential for the detoxication of military wastes by high-temperature supercritical hydrolysis. The work on the property and activity relationships with structures (QSPR/QSAR) was carried out using our recently developed CODESSA (Comprehensive Descriptors for Statistical and Structural Analysis) program containing around 1000 descriptors all of which are calculated only from the molecular structure without requiring any experimental data. We applied this approach for developing models for toxicities, vapor pressures, aqueous solubilities, water-air partition coefficients, critical temperatures, organic solvent scales, glass transition temperatures of polymers, refractive index values for polymers and organic compounds, and other properties. The correlation equations obtained can be successfully used to predict all these physicochemical properties.
12. DISTRIBUTION CODE
13. NUMBER OF PAGES
14. PRICE CODE
15. SECURITY CLASSIFICATION OF REPORT
 UNCLASSIFIED
16. SECURITY CLASSIFICATION OF THIS PAGE
 UNCLASSIFIED
17. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED
18. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED
19. SECURITY CLASSIFICATION OF ABSTRACT
 UNCLASSIFIED
20. LIMITATION OF ABSTRACT
 UL
21. PREVIOUS EDITION
22. SHEET NUMBER
23. SHEET SIZE
24. WITHDRAWAL NUMBER
25. NSN 7540-01-280-5500
26. STANDARD FORM 298 (Rev.2-89)
 Prescribed by ANSI Std. 239-18
 298-102
Detoxification of Military Wastes by Nearcritical and Supercritical Water and QSPR Investigations

Alan R. Katritzky

September 10, 1998

U. S. ARMY RESEARCH OFFICE
DAAH04-95-1-0497

Florida Center for Heterocyclic Compounds
University of Florida, Department of Chemistry

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.
1. STATEMENT OF THE PROBLEM STUDIED

During the first plan of the investigation we studied the behavior of representative model compounds in water at high temperatures. The objective was then changed to develop QSPR models for physical, chemical and biological properties of organic compounds.

2. SUMMARY OF THE MOST IMPORTANT RESULTS

2.1 The behavior of a series of organophosphorus and organoarsenic compounds in superheated water was studied followed by GC/MS identification of the reaction products. The results demonstrated the ready conversion of two sets of model substrates to lower molecular-weight compounds in aqueous media: (i) phenolic, other substituted aryl, and volatile alkyl/alkenyl organophosphorus compounds; (ii) aryls, haloaralkyl, aryldialkyl, and amino-substituted organoarsenic compounds. Two papers on this work were published in Toxicological and Environmental Chemistry. (See 3.1a and 3.1b)

2.2 Additional work in the area of aquathermolysis was carried out on the behavior of aliphatic, aromatic, and heterocyclic amino compounds and heteroaromatic nitrogen-containing compounds. The results further extend the available science base for the behavior of organic compounds on treatment with sub- and super-critical water. The paper has been submitted to (See 3.2)

2.3 The Ames test was studied to measure Mutagenicity, which is one of the properties tested for risk assessment of chemicals. Basing on the values, we developed a QSPR model to predict mutagenicity. The paper has been submitted to Quantitative Structure Activity Relationship. (See 3.3)

2.4 A QSPR model on the glass transition temperatures of polymers has been developed and published in the Journal of Chemical Information and Computer Science. (See 3.4)

2.5 We have developed a QSPR model for the prediction of the refractive index for organic compounds. A manuscript describing these results has been accepted by the Journal of Chemical Information and Computer Science. (See 3.5)

2.6 We have also developed a QSPR model for the prediction of refractive index for polymers. A manuscript describing these results has been accepted by the Journal of Chemical Information and Computer Science. (See 3.6)
2.7 We have compiled a large set of 45 individual solvent scales of commonly used solvents, and developed QSPR models for them. A principle component analysis has been done on the 45 scales of 40 solvents. Two manuscripts are attached to this report. (See 3.7a and 3.7b)

3. **LIST OF ALL PUBLICATIONS (No Technical Reports were prepared)**

4. **LIST OF ALL PARTICIPATING SCIENTIFIC PERSONNEL**

Dr. Steven Allin, Dr. Julia Pervova, Dr. Petya Shipkova, Dr. Uko Maran, Mr. Sulev Sild, Mr. Tarmo Tamm, Dr. Yilin Wang, Mr. Daniel Nicols