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ABSTRACT

This study considers multiple stream systems where it is possible to monitor only
a fraction of the total streams at a given time. This situation is of interest in those

processes where the speed of production is great and includes a large number of streams,

but the ability to monitor the process is not fully automated and unable to keep up with
the speed of production.

A method for determining the probability of detecting a shift from target of any
fraction of the streams (including none of the streams) is presented. In addition to the
mathematics involved in computing this detection probability, a computer program is
given which automates the process and quickly gives a result for any number of streams
allowing an infinite number of combinations of stream shift scenarios to be examined.
Results from several of these scenarios are tabulated and graphed.

Adaptive approaches to system monitoring are applied to multiple stream
processes in general and the fractional sampling problem specifically. This represents the
first application of adaptive techniques to multiple stream processes. The average time to
signal for an adaptively-monitored, fractionally-sampled multiple stream process is
developed using a Markov chain procedure. The average time-to-signal results are used
to identify promising adaptive sampling schemes for monitoring multiple stream
processes using fractional samples. The adaptive fraction approach is shown to give
superior results to the fixed fraction scheme and often yields satisfactory results

compared with those obtained by sampling all the streams involved in a process.

iii




Monitoring the variance of the fractionally sampled stream average is shown to
provide protection against situations where only one, or just a few streams shift, rather
than all the streams in the system. Finally an in depth example is provided by means of a

case study where the methods described in this study are applied.
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This study considers multiple stream systems where it is possible to monitor only
a fraction of the total streams at a given time. This situation is of interest in those
processes where the speed of production is great and includes a large number of streams,
but the ability to monitor the process is not fully automated and unable to keep up with
the speed of production.

A method for determining the probability of detecting a shift from target of any
fraction of the streams (including none of the streams) 1s presented. In addition to the
mathematics involved in computing this detection probability, a computer program is
given which automates the process and quickly gives a result for any number of streams
allowing an infinite number of combinations of stream shift scenarios to be examined.
Results from several of these scenarios are tabulated and graphed.

Adaptive approaches to system monitoring are applied to multiple stream
processes in general and the fractional sampling problem specifically. This represents the
first application of adaptive techniques to multiple stream processes. The average time to
signal for an adaptively-monitored, fractionally-sampled multiple stream process is
developed using a Markov chain procedure. The average time-to-signal results are used
to identify promising adaptive sampling schemes for monitoring multiple stream
processes using fractional samples. The adaptive fraction approach is shown to give
superior results to the fixed fraction scheme and often yields satisfactory results

compared with those obtained by sampling all the streams involved in a process.
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Monitoring the variance of the fractionally sampled stream average is shown to
provide protection against situations where only one, or just a few streams shift, rather

than all the streams in the system. Finally an in depth example is provided by means of a

case study where the methods described in this study are applied.
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CHAPTER 1

INTRODUCTION

Preliminaries

In the beginning, the use of statistics to monitor a process was presented by
Walter A. Shewhart as the Economic Control of Quality of Manufactured Product
(Shewhart (1931)). Duncan (1986) points out that “Shewhart’s ideas set the pattern for
application of statistical methods in process control.” Shewhart’s title also influenced the
terms associated with the use of statistical methods, primarily in the parts industry (Box
and Lucefio (1997)). Terms such as “statistical process control” (SPC), “quality control,”
and “control charts.” Unfortunately, the use of these terms has also led to some
confusion. One source of confusion stems from another term within the process industry,
“engineering process control,” or EPC. The confusion stems from the word control.

In the realm of SPC, control means to monitor a process and note when corrective
action should be taken. This is analogous to the driver of an automobile controlling her
speed by watching the speedometer. She is actually monitoring her speed and noting
when corrective action should take place. For EPC, control means to adjust a process to
keep process output variables on target (Janakiram and Keats (1998)). Using the
previous example, EPC might be thought of as a vehicle’s cruise control. This
mechanical device controls the automobile by making adjustments to throttle position
and engine speed. Table 1-1 shows the differences between SPC and EPC as presented

by Messina (1992).




TABLE 1-1. SPC and EPC Comparison (Messina ( 1992))

SPC

EPC

Philosophy
Application

Deployment:
Level
Target
Function
Cost
Focus

Correlation

Results

Minimize variability by detection of
and removal of process upsets.

Expectation of process stationarity.

Strategic

Quality Characteristics
Detecting Disturbances
Large

People and Methods

None

Process Improvement

Minimize variability by adjustment of
process to counteract process upsets.

Expectation of continuous process
drift.

Tactical

Process Parameters
Monitoring Set Points
Negligible
Equipment

Low to High

Process Optimization

Source: Messina (1992)

While the definition of control might seem a trivial matter, Box and Lucefio

(1997) tell of hostility between practitioners of SPC and EPC as the division between the

two approaches has blurred. In order to alleviate some of tension and confusion, Box and

Lucefio suggest referring to EPC techniques as process adjustment, while using process

monitoring for typical SPC approaches such as Shewhart charts, exponentially weighted

moving average (EWMA) charts, and cumulative sum (CUSUM) charts. Toward that

end, this study will use the term process monitoring in place of process control when

referring to SPC (or should that be SPM?) techniques. This is not to say that the word

control will be taboo in either EPC or SPC situations. Having defined the meaning of

control in this chapter, this study will use common terms such as control chart, control

limit, and SPC.




Research Motivation

Consider a hypothetical organization, the Acme Bottling Company, which started
business filling bottles with various beverages many years ago. Being a new business,
Acme started out small with only one bottling line consisting of a single fill valve. The
management of this fledgling company soon saw the need to statistically monitor their
small process to ensure the prevention of both under-filling and over-filling of bottles.
They settled on a simple Shewhart X chart as a reasonable means for monitoring their
process. While the economic viability of this company may be questioned, the methods
of constructing and maintaining the requested X chart are well understood.

An interesting thing happened as the Acme Bottling Company began to grow.
The addition of a second line to accommodate the filling of cans as well as bottles, did
not pose a serious problem, but did require an additional X chart. Likewise, adding an
additional valve to the bottling line was handled satisfactorily by monitoring each valve
with separate X charts. However, as growth continued and more valves were added to
each line, the number of charts required to monitor the process became overwhelming.
Since modern technology now allows over 100 valves per filling machine, an alternative
approach to monitoring the filling process at the Acme Bottling Company must be
considered.

When the Acme Bottling Company started using more than one valve on a given
bottling line, their operation became a multiple stream process (MSP). Runger, Alt, and

Montgomery (1996) define the MSP as, “A manufacturing process with observed data at




a point in time consisting of measurements from several identical process streams.”
Similarly, Stephenson (1995) refers to the MSP as, “A process consisting of several
identical sub-processes called streams.” The modern operational situation of the Acme

Bottling Company constitutes a multiple stream process with a large number of streams,

While a few streams can be effectively monitored using separate X charts for each
stream, processes with large numbers of streams require a different technique.

Many processes can be classified as multiple stream processes. Runger, Alt, and
Montgomery (1996) identify several examples: thickness measurements taken across a
sheet, or web; diameter measurements taken at different heights or radii; measurements
of identical features of a single part, measurements from several identical production
tools; measurements from identical test instruments; measurements from different
locations on a wafer or disk; and measurements from different leads on a printed circuit
board. Ott and Snee (1973) discuss MSP monitoring in a situation similar to the example
presented earlier in this chapter — filling operations. Figure 1-1 shovys an example of two
different types of filling operations. The rotary-type filling process is of special interest
as it allows very large numbers of streams (often greater than 100 fill valves) operating at

very high speeds (up to 1500 filled items per minute).
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FIGURE 1-1. Sample Filling Operations: (a) In-line Filling, and (b) Rotary Filling

While some methods have been developed to address MSP situations, to date all
of these approaches require that samples be comprised of data from each stream in the
process. That is, if a filling machine has 8 valves, a sample size of n =1 would include 8
bottles — one from each valve, or stream. In processes with very large numbers of
streams, especially those operating at high speeds, it is not always possible to collect
samples at a given point in time that include items from each stream. This situation of
taking fractional samples in a MSP has not been addressed in the literature and is the

focus of this study.

Problem Statement

This study focuses on how to monitor multiple stream processes with a large
number of streams where it may not be possible to measure all streams at a given time.
To help define the scope of this problem, the iséues associated with having a large
number of streams will be discussed first and then the situation where only a fraction of

the streams can be measured at a given point in time will be addressed.




Before proceeding, it will be advantageous to define some terminology and
assumptions of a standard multiple stream process. Assume samples are taken at time ¢
froma process w;th p streams where n samples from each stream (a sub-sample) are
measured Each measurement then can be thought of as

Xijx  where i =1,2,... ¢t time

J =1,2,... p streams
k=1,2,.. n sub-samples
Figure 1-2 shows an example from a filling operation with p = 8 streams, where each

sample taken at a given time has n =2 sub-samples.

timet+1 ﬁmet

n 2
0000 uonon
0000 | & (00000000
0000 | & |eoeeeeee
0000 | & |eoeeeeee
0000 | & |eeeeeeee
0000| & |00000000
0000 | & |eeeeeeee
000G| & |eceesees
s = 8 streams >

FIGURE 1-2. In-Line Filling Operation with pr=8 andn=2

The number of sub-samples will often be, = 1. This is especially true when all
items produced are being monitored. To simplify notation, this situation will be assumed,
although the following discussion is equally appropriate to averages taken across sub-

samples (that is each sample consisting of more than one item from each stream).
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There are several problems associated with multiple stream processes involving a
large number of streams. The first series of difficulties involves attempts to extend
standard process monitoring chart techniques for one or two process streams to processes
with large numbers of streams. Monitoring each stream individually would require p
control charts to be maintained with p samples plotted at every time ¢. As the number of
streams being monitored increases to more than just a few, this procedure clearly
becomes unmanageable.

Besides merely being cumbersome, there are other problems associated with a
large number of individual control charts. One problem is that of increased false alarms.
For example, the average number of samples taken before a false alarm is signaled for a
standard, two-sided X chart with an on-target process, is 370. If p streams are being
monitored, this false alarm rate increases to one in every 370/p samples (Stephenson
(1995)). This means more false alarms. So if a high-speed, rotary-type filling machine
has 100 fill valves and is monitored using separate X charts, the process would generate
a false alarm about every fourth rotation of the machine. This is not acceptable. We
could compensate by adjusting the location of the chart limits for each individual stream
to obtain a desired false alarm rate for the machine as a whole, but we would sacrifice the
ability to quickly detect off-target conditions of any single stream.

Another issue associated with the use of individual charts for each stream
concerns how the individual charts react to various assignable causes. If an assignable
cause affects just one stream, the individual chart will detect this within the limits of its

chart parameters. An assignable cause that has a large impact on the mean of all the
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streams will generate signals on most of the individual stream charts, but small shifts will
be detected singly. For example, given a process with 30 streams, a large shift may cause
20 or more of the individual charts to signal at the same time. On the other hand, a small
shift may cause chart 10 to signal on the 10" observation and then charts 6 and 14 to
signal on observation 12, and so on. This behavior is indistinguishable from the situation
where individual streams are being affected rather than all the streams. It would take a
substantial amount of time before the conclusion that all streams had shified from the
target mean could be reached.

Mortell and Runger (1995) raise a third concern regarding the use of individual
charts. They point out that if the product variability (czpmduct) is large compared with the
variability between streams (6”xeam), the ability of separate charts for each stream to
detect a shift of any one stream is nearly impossible. This problem is due to the fact that
the control limits for each chart must account for variability of the product as a whole, in
addition to the variability of the individual stream. For example the control limits might

be

2
ui3‘/(oim, + "m/n) (1-1)

where u is the mean of the process . It is clear that if Oproduct 18 large compared to Gyreqm,
it will be very difficult to catch a shift that impacts only a single stream (Mortell and

Runger, (1995)).




This discussion shows that while the MSP with only a small number of streams
might be monitored using separate charts for each stream, MSP situations involving
large and very large numbers of streams will require an alternate approach. A chart that
monitors the mu]tiple stream process as a whole and signals when an assignable cause
impacts the process is desired. The signal should occur whether all the streams are
impacted, just one stream, or some subset of streams. The group control chart attempts to
provide a solution to this situation.

A group control chart plots only the maximum and minimum values seen across
all streams, and identifies which stream generated each maximum or minimum, at every
time 7. While this significantly reduces the number of charts being monitored, it does not
significantly reduce the number of false alarms generated. In fact, if the control limits for
the group chart are the same as those used on charts for each individualstream, the false
alarm rate will be identical. Obviously, if any single chart had a value large enough to
cause a signal on the individual charts, then a chart of maximums with the same limits
would also signal.

By noting which streams generated the maximum and minimum values across all
streams, a technique of monitoring the runs of these values can be used to identify
individual streams that may be off-target. For example, if the same stream on the filling
machine is repeatedly producing the maximum fill, there is evidence that this stream may
be off-target. A drawback of the runs rule monitoring technique is discussed by Mortell
and Runger (1995). They point out that the runs scheme fails to account for the situation

where more than one stream shifts from target. If two streams should shift, it is likely
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that the maximum (minimum) value will alternate between them. This limitation will
reduce the ability of the group control chart to identify situations where more than one
stream is off-target. Group control charts and other methods will be discussed in the
detail in the next chapter.

The next complication for multiple stream processes involving large numbers of
streams is evident in situations where only a subset, or fraction, of the total number of
streams can be sampled. While group control charts and other methods have improved
the ability to monitor multiple stream processes, none have yet addressed how to best
monitor the MSP where only a fraction of the streams can be measured at a given time.
An example of such a situation can be found in the now familiar bottling process. A
common high-speed filling machine can have over 100 fill valves and is capable of filling
thousands of cans, or bottles a minute. At these speeds, sampling all the streams at a
given time must be accomplished by machinery which, in some cases, does not yet exist.
Instead, samples of a fraction of the streams are taken periodically.

The problem then is to determine an effective method for monitoring multiple
stream processes when only a fraction of a large number of streams can be sampled at

any given point in time.

Research Goals
The primary goal of this study is to generate a solution to the research problem
identified in the previous section. In obtaining the solution, several interim goals will be

pursued. Before developing any alternative monitoring techniques, a review of solutions
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to similar problems must be made. A necessary first objective, therefore, is to present a
comprehensive review of statistical process monitoring techniques with a special focus
on their growth and application in situations containing multiple stream processes.

The monitoring of any process by statistical methods requires knowledge of how
off-target situations will manifest themselves, and the probabilities associated with their
occurrence. These probabilities are often used to develop performance measures that
indicate the effectiveness of various methods (often charting techniques) in monitoring
specific processes. In order to evaluate the effectiveness of any proposed approach to
monitor fractionally sampled multiple stream processes, an appropriate measure of
correctly detecting off-target situations will need to be established. The same will be true
for identifying associated false alarm rates. These measures will be developed using the
likelihood, or probability, of detection.

Whenever any sample is drawn from a population, care must be taken to ensure
accurate information about the population can be gleaned from the sample. This will be
doubly true for in this case. Not only are we intending to sample from a production
population, we will also be sampling from the population of streams. The sampling plan
used to build the charts and statistics for monitoring the process will be paramount to any
method’s success. Developing appropriate fractional MSP sampling plans will be a
necessary interim goal.

While this approach may lead to an effective theoretical method for monitoring
multiple stream processes using only a fractional sample, the value will be limited unless

the method can be applied in practical situations. A final goal will be to present a
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representative MSP with a large number of streams, and demonstrate how the process

might be monitored using only a fraction of the available streams.

Importance of the Study

The ability to monitor processes involving large numbers of streams continues to
grow in importance. As the numbers of streams increase, the challenges associated with
monitoring statistical quality increase as well. In some process industries, the machinery
that enables greater numbers of streams has advanced faster than the ability to monitor all
the streams. Further complicating the situation, the speed of operation also continues to
increase. A methodology allowing fractional sampling of a multiple stream process is
necessary in these situations.

In addition to sheer size, processes with very large numbers of streams are more
likely to have some streams which are correlated and which may arise from different
underlying distributions. Likewise, as technology allows more frequent measurement of
each data stream, the possibility the data being autocorrelated becomes more likely.
Mortell and Runger were able to improve on the group control chart approach by
monitoring the range across all streams at time ¢. While their approach allows for
correlation among the streams, their technique, like other control charting schemes, is
subject to distortion by autocorrelated data.

The issue of autocorrelated data is an important one and can be a major headache
for many statistical charting schemes. These charts rely on an important assumption of

independent observations. When this assumption is violated, problems occur. The
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principle problem centers on increased false alarm rates. While positively autocorrelated
data does help a chart signal more quickly when an assignable cause has impacted the
process, it also substantially increases the false alarm rate for on-target processes.

Conditions resulting in autocorrelated data are fairly common. Many processes
are driven by inertial forces relating to the physical aspects of the process, flow rates,
tank pressure, etc. Advancements in technology allowing inspection of every discrete
part manufactured also introduce autocorrelated data in cases where the “sampling
interval is short compared with the time constant of the process.” (Faltin, et al.(1997)).
That is when relatively few items are produced between samples.

While existing methods have been developed for dealing with autocorrelated data
in a single stream environment, it is unclear how this would translate to a multiple stream
environment. Until methods are developed enabling the direct monitoring of
autocorrelated multiple stream processes, a technique using fractional sampling might
circumvent some of the problems associated with autocorrelated multiple streams.

Stream correlation implies underlying relationships among the streams. These
relationships can arise in many different fashions. When each stream draws from a
common resource, be it a common raw product being packaged, or a common pressure
supply, variations in the common resource have related impacts among the streams of a
process. Some of these relationships may exist across all streams, say a common raw
material, and some may affect only a subset of the streams, say a manifold supplying
pressure to 10 out of 40 streams. Other relationships may relate to the date of

manufacture or last maintenance action, human interaction with the equipment (different
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operators, or different shifts), or even relative position within the set of streams. Often
these relationships may help the statistical monitoring process. Groups of deviations will
make it more likely to catch an assignable cause and will facilitate correction of the
problem. For example, if 12 sequential valves on a filling machine fail together, the
likelihood of each valve having an internal problem is less than an outside cause.

Clearly there are several issues surrounding multiple stream processes. These
MSP issues can usually be split into two broad categories; those processes involving a
relatively few, or moderate number of streams, and processes with a large number of
streams. If very few streams are involved, each stream can be monitored separately.
Most MSP research has addressed the situation involving a moderate numbers of streams
where there are too many streams to monitor individually. This research builds on the
work presented in the literature for moderate numbers of streams, average run length
determination, adaptive monitoring methods, and associated techniques for determining
adaptive chart performance to produce original contributions for how to monitor MSPs
with large numbers of streams.

Contributions center around processes where only a fraction of the total streams
can be monitored, and that are typically influenced by assignable causes that impact all or
most of the process streams. This is the first presentation of issues surrounding
fractionally sampled multiple stream processes. Specific contributions include the
development of a model for determining detection probabilities in fractionally sampled
multiple stream processes. This probability model is used to derive associated ARL

performance measures. The integration of adaptive sampling schemes to large MSP
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problems is also introduced. While adaptive approaches themselves are not new, this
work is the first to use adaptive schemes to monitor MSP problems. The final
contribution is the construction of a Markov chain method that incorporates the new
probability model to measure the performance of adaptive schemes of monitoring

fractionally sampled MSPs.

Organization

This study is made up of four primary parts excluding this introduction and the
concluding chapter. The Chapter 2 is devoted to the foundation of statistical process
monitoring (also called statistical process control, or SPC), and many of the techniques
from which multiple stream process monitoring has grown. While some background
material will be reserved for later chapters, the bulk of the literature review for this study
will be found in Chapter 2.

Chapter 3 develops and discusses the probability of detection associated with
fractional sampling from multiple streams. These probabilities are presented in tabular
and graphical form as well as the more familiar associated measure of performance, the
average run length (ARL). The computer program code used to determine general and
specific probability values is included as an appendix to Chapter 3.

Sampling plans are presented in Chapter 4. The emphasis is on adaptive
approaches to sampling and how they can be applied to MSP situations. Background
information on adaptive processes is presented here as well as examples for each method

considered.
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Chapter 5 draws the ideas from the previous chapters together in an interesting
case study. While the names have been changed, and the numbers altered — the situation
presented is genuine. Much of the discussion is hypothetical as the actual process is not
prepared to move to the stage of monitoring proposed by this study, at least not yet.
Other process improvements need to be made first, but the progression is toward being
able to implement a similar scheme to that presented in Chapter S.

Finally, Chapter 6 concludes the study with a summary of findings and presents
several avenues for further research in the area of multiple stream processes in general,

and multiple stream processes with very large numbers of streams in particular.




CHAPTER 2

LITERATURE REVIEW

Introduction

Monitoring the quality of manufactured product (often called quality control, or
statistical control) is an issue which engineers have been wrestling with for some time.
W. A. Shewhart defines the problem as the determination of how much variance should
be left to chance (Shewhart, 1931). The ability to anticipate reasonable levels of chance
variation, and thereby also recognize unreasonable levels, is fundamental to effective
staﬁsti;:a] process monitoring. Indeed, Douglas Allan states the purpose of statistical
quality monitoring is to assess the amount of chance variability likely to occur and
thereby allow the detection of assignable causes of variation (Allan, 1959).

The following section discusses the Shewhart X chart to introduce notation and
termi_nology. We will also review the concept of average run length as a measure of the
performance of X and other charts where the time between subgroups is a constant. The
section on Shewhart charts will conclude with a look at several X chart enhancements
proposed to improve the performance of the Shewhart type charts.

Then we will review some of the charts suggested as alternatives to the Shewhart
X chart. We will investigate the how these methods work and compare them with one
another and with the standard Shewhart X chart. Techniques used in special situations

will also be examined. Particular attention will be given to multi-variate techniques as
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these provide a springboard for discussion of multiple stream processes.  This chapter

will conclude with a look at how multiple stream processes have been monitored to date.

Shewhart Charts

A common method of monitoring processes and detecting assignable causes of
variation is by way of a control chart. The first charts were developed by Walter
Shewhart while working for Bell Telephone Laboratories in 1926 (Shewhart, 193 1) and
are commonly called Shewhart or X (X bar) charts. Control charts are a graphical
method of displaying process variation on a time scale.

Assuming a process is only being subjected to chance causes of variation,
statistical limits can be established within which observations should fall with some
desired probability. In addition to control limits and plotted points, the typical Shewhart
chart has a center-line (CL) representing the target of the process usually centered
between the upper control limit (UCL) and lower control limit (LCL). This type of chart

is shown in Figure 2-1.
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FIGURE 2-1. Typical X Chart
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Suppose a process to be monitored has a mean, 1y and variation, 6%y. Then the

typical Shewhart chart would establish limits and target values of

UCL =X +3s,
CL=X
LCL=X-3s,

where X is the grand average and a best estimator of the process mean, p, and s is the
estimated variance. Observed values of the process are plotted on this chart and the chart
is monitored for evidence of an assignable cause impacting the variability of the process.
Figure 2-2 shows a typical X chart with observed values. Values can be recorded singly
(in which case X =x), or in subgroups of a desired size. These are referred to as charts

for individuals, and charts for averages, respectively.
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FIGURE 2-2. X Chart for Monitoring a Process
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Should an event occur which results in a shift of the mean of the process, the
points will soon plot beyond the statistical limits causing the chart to signal. This signal
indicates an a551gnable cause may now be influencing process variability and causing the
process to be off- target The 10 data point in Figure 2-2 plots beyond the UCL and
therefore gives sufficient evidence that the process may be off-target to warrant some
corrective action. Figure 2-3 shows how an upward shift in the process mean of size §
causes the Shewhart chart to signal. As the process mean has increased, there is a greater

probability that a sample from the shifted process will plot beyond the UCL.
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FIGURE 2-3. Distribution of X Before and After a Process Shift

Performance Measures. The number of samples required for a chart to

signal, after a shift in the process occurs, is called a run length. An average run length
(ARL) is simply the expected number of samples taken before the chart signals. The

ARL can be computed for various size shifts in the process variability. The ARL
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associated with a shift of size zero, or no change in process variability, indicates the
likelihood of a false alarm and is called ARIL(0).

The determination of the ARL is closely linked to hypothesis testing. Essentially
each plotted sample represents a hypothesis test. The null hypothesis, Hy, states the
realized sample was drawn from a population matching the target characteristics. When a
sample falls within the control limits, we fail to reject Hy and assume the process is on-
target. Should a sample plot beyond the chart limits, we reject Hy and assume the sample
came from a population that does not match the target characteristics. Since we know the
sample came from the monitored process, we assume that process has changed, and the
change is substantial'enough to warrant an investigation into the cause of the process
change.

Where we decide to set the chart limits is a critical decision that determines the
probability of a chart signaling when the process remains on-target (false alarms) and the
risk of failing to detect off-target conditions. These situations are known as type I and
type II errors respectively. Table 2-1 shows four possible outcomes of every sample
plotted on the control chart and how type I and type II errors occur. Looking back at
Figure 2-3 we see that widening the chart limits decreases the chance of a type 1 error.
Unfortunately, this action will also increase the probability of a type II error. If we make
the chart limits more narrow, the opposite holds true (that is we increase the likelihood of

type I errors while reducing type I errors).
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TABLE 2-1. Type I vs. Type II Errors

Sample within Sample beyond
chart limits chart limits
Process On-target Correct ID False Alarm
Continue monitoring Type I error
Process Off-target | Fail to Detect Problem Correct ID
Type I error Chart Signals

In most circumstances, type II errors are considered more troublesome than type I
errors. The rationale for this is seen in Table 2-1. The type II errors indicate situations
where we assume the process is operating normally, when in fact there is a problem. This
results in wasted product or lost revenue until the situation finally generates a signal.
(Note: this need not necessarily be a signal from a control chart. If the process was
allowed to run off-target long enough, the signal may be from numerous irate customers!)

While false alarms (type I errors) are unwelcome and may take some time to straighten

out, at least unacceptable production is not taking place.

The ability of a control chart to minimize type II error while preventing the type I
error from inflating beyond a reasonable level is often measured using average run
lengths. A Shewhart chart with limits at +3 standard deviations of process variation has
an ARL(0) of about 370. This means that, on average, a Shewhart chart will signal once
in every 370 trials for an on-target process. For Shewhart charts where the plotted points
are independent, the ARL can be found easily using

arr =1 (2-1)

p
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where p is the probability that a point will exceed the chart limits, Note that p is simply

1 — g where g is the probability that X lies between the lower and upper chart limits.
q=P{LCL< X <UCL} (2-2)

For a Shewhart chart with upper and lower limits at 30, g is simply
g=P{Z<3}-P{-3<7Z}
=0.99865 — (1 - 0.99865)

=0.9973

and since p=1-q we have p =1-0.9973 which yields p = 0.0027. Applying Equation

2-1 and taking the inverse of p we obtain the stated result

The ARL for off-target situations depends on both the size of the process shift and
the size of the sub-sample averaged for each data point. Average run lengths for
Shewhart charts with various sub-samples at several different shift sizes are shown in

Table 2-2.
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TABLE 2-2. 2-sided Shewhart Chart Average Run Lengths with Various Sample Sizes

Shift = 6 n=1 n=2 n=3 n=4 n=5 n=10 n=20
0.0 37038 37038 37038 37038 37038 37038 37038
0.5 15522 9065  60.69 43.89 3340 12.83 4.50
1.0 4389 17.73 9.76 6.30 4.50 177 1.08
L5 14.97 5.27 291 2.00 1.57 1.04 1.00
20 6.30 2.32 1.47 1.19 1.08 1.00 1.00
25 3.24 1.42 1.10 1.02 1.00 1.00 1.00
3.0 2.00 1.12 1.01 1.00 1.00 1.00 1.00

The performance of alternative chart techniques is usually determined by
comparison with the ARL values of the Shewhart chart. When other monitoring
techniques are discussed later in this study, comparisons will be made in this fashion.
Runger and Pignatiello (1991) sum up the idea nicely.

When the waiting time (time between samples) is constant, the

performance of various control charts can be compared by considering

their respective ARLs. If two charts have the same ARL when the process

is operating in an on-target state, then the two charts can be compared by

examining their ARLSs for various off-target states. If one chart yields

smaller ARLs for all off-target states, then it is clearly better on an ARL

basis.

Runger and Pignatiello point out that the time between samples needs to be
constant for this type of comparison. This implies that performance measures other than
the ARL are occasionally warranted. Reynolds, Amin, Arnold, and Nachlas (1988) point
out that, with a fixed time interval between samples, the ARL can be converted to an
expected, or average time to signal by simply multiplying the ARL by the fixed time

interval. The average time to signal (ATS) can also be computed for monitoring schemes

that allow the time interval between samples to vary. The ATS performance measure can
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then be used to compare those monitoring techniques with the standard Shewhart
technique.

A potential drawback of the ATS is its assumption that the assignable cause
responsible for shifting the process off-target occurs at time 0. In practice the process
may start out on-target, and shift at some time ¢ # 0. Therefore, Reynolds, Amin, Arnold,
and Nachlas (1988) suggest the process should be measured using the adjusted average
time to signal (AATS) when the interval between samples is variable. Costa (1997) also
uses this approach and defines the AATS as the average time from the shift in the process
mean until a signal is generated. Runger and Pignatiello (1991) and Runger and
Montgomery (1993) also use a similar approach, but prefer the term steady-state ATS to
AATS.

To determine the AATS, Costa makes use of the average time of the cycle (ATC)
defined as the average amount of time from start of production until the first signal
following a shift in the process. As_suming an exponential distribution with parameter A
for the occurrence of an assignable cause, he obtains AATS = ATC — 1/A.

Costa goes on to define two more terms for purposes of comparing chart
performances. He says control charts should be compared which require, on average, an
equal number of samples and an equal number of items inspected via those samples.
Charts are then compared using the average time of the cycle (ATC), the average number

of samples (ANS), and the average number of items (ANI).
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One potential problem with the ATS is that it does not differentiate between
sampling plans that call for short time intervals between samples and those with long
intervals. For example, if scheme 1 samples the process every 10 minutes while scheme
2 samples every 10 hours, scheme 1 will have a much shorter ATS for process shifts
since scheme 2 cannot have an ATS of less than 10 hours. Reynolds, Amin, Arnold, and
Nachlas (1988) prefer to define yet another measure for schemes allowing variable
intervals between samples to account for this. They define the average number of
samples to signal (ANSS) as the expected value of the number of samples taken from the
start of the process until the time the chart signals.

Rather than use the ANSS performance measure, or defining still another new
measure, Runger and Pignatiello (1991) opt to “calibrate” their charts. This is
accomplished by setting the adaptive chart’s average time between samples when the
process is on-target equal to the fixed time between samples of the Shewhart chart.
Runger and Pignatiello use a common average time between samples of one hour. The
standard Shewhart chart is then considered to always gather samples at 1-hour intervals
thereby allowing direct comparisons of alternative monitoring techniques.

For monitoring approaches where the sample size is not constant, the ANSS is not
sufficient as it does not account for variable sample sizes. Costa (1994), as well as Park
and Reynolds (1994) address this issue by defining yet more performance measures.
Tagaras (1998) sums up these measures using the following definition:

Average Number of Observations to Signal (ANOS): the expected value

of the number of inspected items from the start of the process (or the
occurrence of the assignable cause) to the time when the chart signals.
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While many performance measures have been used to evaluate chart performance
and effectiveness, the average run length measure remains most important. Any new
approach to monitoring a given process will always be compared against standard
statistical monitoring techniques. As the standard approaches are measured in terms of
ARL, a conversion or comparison between a new technique and its associated

performance measure to a standard format will be required.

Sensitizing Rules. Several enhancements to the Shewhart chart have been

proposed over the years in an attempt to improve chart performance. Most of the
enhancements suggested involve having the chart signal based on various sensitizing, or
runs rules. Some of the most popular rules were introduced by the Western Electric
Company in 1958 and so these rules are often known as the Western Electric run rules.
Duncan (1986) defines a run as a succession of items of the same class. As an example,
consider the performance of the stock market. A succession of market closings below the
previous day’s close would be considered a run of down days. A runs rule can be derived
by considering the probability of interesting and rare data histories.

As it pertains to statistical process monitoring, a runs rule takes into account the
likelihood of a particular plotted point by comparing it to the points immediately
preceding it. That is, rather than considering only the most recent sample point, we also
take into consideration the recent run of data points and note any “unnatural” data
patterns. The Western Electric Company’s Statistical Quality Control Handbook (1958)

describes characteristics of unnatural data patterns.
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Unnatural data patterns always involve the absence of one or more of the

characteristics of a natural pattern. For example:

(1) Absence of points near the centerline produces an unnatural pattern

known as “Mixture.”

(2)  Absence of points near the control limits produces an unnatural

pattern known as “Stratification.”

(3)  Presence of points outside of the control limits produces an

unnatural pattern known as “Instability.”

Montgomery (1996) sums up the motivation for runs rules by pointing out that, in
addition to looking for data points which plot beyond chart limits, we are also interested
in situations where the data exhibit non-random behavior. For example, if the data are
behaving in a truly random fashion we would expect roughly half the data points to lie
above the center line, and half below. If, however, we realize an unusually high
percentage, say 90 percent, of the data points above the center-line we would conclude
the data pattern appears very non-random.

In addition to the familiar control limits, runs rules schemes use other limits often
called warning limits, or thresholds. To monitor the run history on a standard Shewhart
X chart, warning limits are usually added at + 2 o and + 1 5. These limits divide the
chart into 3 zones above the center-line and 3 zones below the center line. Runs rules are
then established making use of these zone definitions. Figure 2-4 shows the standard

Shewhart chart is modified in this fashion.
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FIGURE 2-4. Shewhart Chart with Additional Warning Limits for Runs Rules

The Western Electric Handbook (1958) provides several decision rules for

potential nonrandom chart patterns. Some of these rules are listed in Table 2-3.

TABLE 2-3. Typical Runs Rules

Rule # | Chart Signals if ...
1 .. a single data point plots outside Zone A, the 3¢ chart limits.
2 .. two out of three consecutive data points plot beyond Zone B, the 20 warning limits.
3 .. four out of five consecutive data points plot at or beyond Zone C, 1o from center.
4 .. eight consecutive data points plot on one side of the center line.
5 .. any obvious nonrandom pattern is seen within the data points.

The first rule is recognized as the standard method by which the Shewhart chart

signals. Rules 2, 3, and 4 are illustrated in Figures 2-5, 2-6, and 2-7 respectively.
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FIGURE 2-5. Runs Rule #2: 2 of 3 Sequential Points Plot in Zone A
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FIGURE 2-6. Runs Rule #3: 4 of 5 Sequential Points Plot in Zone B or Beyond
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FIGURE 2-7. Runs Rule #4: 8 Sequential Data Points Plot Above the Center Line

Rule 5 is less well defined, but some nonrandom patterns are easily recognized.
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Figure 2-8 shows a pattern of high, negative correlation, while Figure 2-9 shows positive

correlation. Note that in each case the charts would not signal using the other runs rules.
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FIGURE 2-8. Runs Rule #5: Data Points with High Negative Correlation
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FIGURE 2-9. Data Points with High Positive Correlation

Enhancing the Shewhart chart with run rules makes the chart more sensitive to
detecting off-target conditions. Unfortunately, as more rules are added to the chart, the
likelihood of false alarms also increases. In fact, if a control chart is constructed using

rules and each rule i is independent and has an associated probability of generating a false

alarm, o, then the overall false-alarm probability, o, is given by

a=1-]]0-a,) (2-3)
i=]
Montgomery (1996) points out that the assumption of independence between each rule is
probably not accurate, and so Equation 2-3 should be considered an approximation of the
overall false-alarm probability.
The exact performance results for Shewhart charts augmented with various runs

rules are enumerated by Champ and Woodall (1987). Table 2-4 is a condensed version of
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Champ and Woodall’s Table 1 and shows how the runs rules improve the performance of
the Shewhart chart especially for small shifts of the process mean. Note that the values

for a shift of 0 have also decreased indicating higher false-alarm rates.

TABLE 2-4. ARLs for Shewhart Charts Enhanced with Various Runs Rules

Shift Rule Rules Rules Rules Rules Rules Rules Rules
) 1 1,2 1,3 1,4 1,23 1,24 1,34 1,234

0.0 370.40 225.44 166.05 152.73 132.89 122.05 105.78 91.75
0.6 119.67 57.92 33.99 33.64 28.70 27.49 23.15 20.90
1.0 43.89 20.01 12.66 14.58 10.95 11.73 10.19 9.22
16 12.38 6.21 5.24 7.03 454 5.27 5.01 4.41
2.0 6.30 3.65 3.68 4.89 3.14 3.50 3.65 3.13
2.6 2.90 2.13 2.43 2.81 2.07 2.13 243 2.07
3.0 2.00 1.68 1.89 1.99 1.67 1.68 1.89 1.67

Source: Champ and Woodall (1987)

Range Charts. When monitoring a process variable it is standard practice to
monitor both the process mean and variation (Montgomery (1996)). The Shewhart X
chart is used to monitor the process mean, but can often be improved by the addition of a
chart designed to monitor process variability.

To illustrate the need for both charts, consider the following example. In the
manufacture of automobile tires, the thickness of the tire tread is a key factor in
determining tire quality. Monitoring the thickness of tires during production is important
as tires that are too thin will wear out before the warranty expires and tires that are
thicker than necessary mean wasted material an& lower production yields. The target

production distribution might look like that shown in Figure 2-10.
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FIGURE 2-10. Target Distribution for Tire Production

The Shewhart X chart used to monitor the mean of the production process should

quickly identify situations where the process mean shifts off-target as shown in Figure 2-

11.

Production
out of limits
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I T
Tread Tread Tread

Thickness Thickness Thickness
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FIGURE 2-11. Upward Shift in the Production Mean = More Out-of-limits Tires

The X chart fails to perform adequately when the mean remains on-target, but

the process variation increases. In such cases the sample averages will tend to be drawn
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toward the target value, but a greater percentage of the process will be operating in the

tails of the distribution. This situation is illustrated in Figure 2-12.
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FIGURE 2-12. Tire Production Mean On-target, but with Increased Process Variation

The situation shown in Figure 2-12 can be effectively monitored using a chart for
the process range, called an R-chart. A sample range is defined as the difference between

the largest observation, Xmay, and the smallest observation, x,;,. That is,
R=x__ —x. ' (2-4)

Since the range (R) contains information about the spread of the sample data, R can be

used to estimate the process standard deviation. If we define R as the average range

taken over several samples, then the standard deviation can be estimated by

. R
- 2-5
o2 Z (2-5)
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where d, is the mean of the relative range (Montgomery (1996)). The relative range is
the random variable ¥ = R/c whose distribution depends on the number of observations
contained in a sample. Values for d, can be found in quality control texts such as

Montgomery (1996), and Duncan (1986) among others. Some of the values for d, are
given in Table 2-5 along with the relative efficiencies Montgomery reports for using R

to estimate o rather than s°.

TABLE 2-5. Values of d; and the Relative Efficiency of R vs. s* for Various n

n d, Relative Efficiency
2 1.128 1.000
3 1.693 0.992
4 2.059 0.975
5 2.326 0.955
6 2.534 0.930
10 | 3.078 0.850

Now that we know how to compute the range, we can monitor the range along
with monitoring the process mean. To monitor the range we establish R as the center

line, and define range limits using an estimate of the standard deviation of R, o.

Montgomery shows that o can be estimated by

. R
Sx=dy— (2-6)
2
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where d; is the standard deviation of the relative range W = R/c and is a function of the
sample size. Like d, d; can be found in most quality control texts. Now the upper range

limit (URL) and lower range limit (LRL) using 3¢ control limits are

(2-7)

With these parameters an R chart can be constructed to monitor the process
variability. It is worth noting that for many processes the lower range limit, LRL, will be
negative in which case the chart should be used with simply an upper range limit.
Furthermore, evidence of a process exceeding the LRL will often not result in production

problems, but may represent an opportunity to reduce overall process variability.

Alternative Monitoring Techniques

In addition to the Shewhart X charts, other methods of statistically monitoring
processes have been developed. Notably the cumulative sum (CUSUM) chart first
suggested by Page (1954) and the exponentially weighted moving average (EWMA)
introduced by Roberts (1959). In many, if not most, applications these charting schemes

are superior to the Shewhart method.

Cumulative Sum (CUSUM). A major drawback of the Shewhart chart is the fact

that it only incorporates data from the current time period. The runs rules try to fill this

gap, but other methods have been developed which often work better. Montgomery
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(1996) tells how the CUSUM incorporates information from the sequence of data points
by plotting the cumulative sums of the deviations of the sample values from the specified
target. The basic idea of the CUSUM is to note the difference between the most recent

sample mean, X; and the intended process mean, or target value, to. Then, as the name

implies, this difference is added to the sum of previous differences as in
S, =2 (%~ 1) (2-8)
J=1

where i is the observation number. Rather than actually plotting this value, however,
most CUSUM techniques make use of a threshold, or reference value, K, which must be
overcome before the CUSUM increased. Since the CUSUM approach was initially
developed to monitor processes for a shift in only one direction (Montgomery (1996)),
the following quantities are defined to monitor upper (Sy) and lower (S) one-sided

process shifts respectively.

Sy ()= max[0, %, - (, + K)+ S, (i~ 1)] (2:9)

8, (1) = min[0, %, + (i, + K)- S, (i -1)] (2-10)

where X is the reference value, typically chosen midway between the target mean value
and the value of the mean we want to be able to detect. The reference value serves to
keep the value of the CUSUM equal to zero unless the current sample mean is

substantially greater than (less than) the target mean. The two-sided CUSUM chart is
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derived through the combining of two, one-sided procedures using upper and lower
reference values, Ky and K}, respectively.

The primary advantage of the CUSUM is realized in situations where the shift in
the process mean is small, or when the sample size () of each data point is 1, also known
as charts for individuals. A second advantage is that the process shift is often easy to
detect by simple inspection of the plotted data. Another advantage is that CUSUM
method also allows for fast initial response (FIR). This technique allows the chart to
have a head-start toward signaling whenever the chart is initially started, or restarted
following an assignable cause. This option is desirable in that when a process restarts,
there is some chance that the problem which triggered the signal may not have been
corrected, or that the corrective action further affected the process.

Brook and Evans (1972) used Markov chains to find ARLs for the CUSUM
method. Champ and Woodall (1987) also used Markov chains to thoroughly compare
run lengths of CUSUM charts against Shewhart charts augmented with runs rules. The
Markov chain approach to determining average run length will be described in some
detail later in this document. Goel and Wu (1971) give a nomogram on the design of
CUSUM charts with specified average run lengths.

CUSUM design methods are reviewed by Gibra (1975), Goel (1981), and
Woodall (1986) among others. Many other authors have studied various aspects of the
CUSUM chart. Lucas (1985) describes design and implementation procedures for a

counted data CUSUM, also called CUSUM for attributes. Gan (1991a and 1994)) looked
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at optimal CUSUM control chart schemes. Finally, Hawkins (1993b) discusses a

technique for making the CUSUM robust through Winsorization.

Exponentially Weighted Moving Average (EWMA). The exponentially

weighted moving average monitoring technique also outperforms the Shewhart chart
when small shift sizes are to be detected. The EWMA technique introduced by Roberts
(1959) has been studied by many authors; including Lucas and Saccucci (1990), Crowder
(1989), Ng and Case (1989), and Gan (1991b). Crowder identifies two situations for
applying the EWMA technique. The first is a white noise process occasionally affected
by shifts in the process mean where the EWMA is used to monitor the process. The
second situation is characterized by gradual drifts in the process mean and affords the
EWMA an opportunity to forecast process behavior. Box, Jenkins, and Reinsel (1994) as
well as Hunter (1986) provide detailed discussions of the latter situation.

Montgomery (1996) points out that the EWMA is roughly equivalent to the
CUSUM in performance, although it may be simpler to operate. The EWMA is defined
as

z,=AXx,+(1-4)z,, (2-11)

where 0 <A < 11is a constant and z, = ¥. The control limits for the EWMA are

- A
UCL=%+3c /(2 o (2-12)

A
2-A)n

LCL=%-3c (2-13)
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Other work using the EWMA approach includes a study using the EWMA to
monitor process standard deviations by Crowder and Hamilton (1992). MacGregor and
Harris (1993) introduce the notion of an exponentially weighted moving variance
(EWMV) chart and an exponentially weighted mean squared deviation (EWMS) to

monitor process variation.

Multivariate Charts. To this point we have assumed a need to monitor only one

process variable. This is often not the case. Many situations exist in which two or more
characteristics of the same item need to be monitored. Montgomery (1996) gives an
example of a bearing with both an inner and outer diameter. When confronted with
multiple variables that need to be monitored simultaneously, several univariate control
charts could be used. This approach can, however, give poor results in certain situations.

The first problem is one of increased false alarm rates. If we use 3 separate charts
to monitor 3 variables, where each chart has an ARL(0) of 370, the false alarm rate of the
3 charts combined will be approximately 123. Clearly it does not take very many
variables before the false alarm rate will be unacceptably high. Montgomery (1996)
shows that, in general, for p statistically independent quality characteristics monitored
using X charts with type I probability of o, the true probability of type I error for the
joint procedure is

o=1-(1-af (2-14)
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The probability that all the means will plot inside their independent chart limits

simultaneously (that is the probability of not getting a false-alarm) is
P{all p means within chart limits} = (1 — )’

Another problem arises if the variables have a high degree of correlation. In this
situation, the use of several univariate charts can give poor performance (Ryan, (1989)).
Ryan (1989) discusses a multivariate control chart scheme based on the T distribution

work done by Hotelling (1947). In the single variable case

X—u
t= 2-15
s/\n ( )

where £ follows a t distribution. Now letting u = u, and squaring the distribution

tzzM
s*/n

= n(x ~ s X(s*) (X - 45)

This result can be generalized allowing k variables as

T* =n(X- p)S™ (X~ ) (2-15)

where

]

Il

&
I
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now when u= pu,, 7° follows an F distribution so values of 7° can be plotted on a
control chart with an appropriate F-value as a control limit. Ryan suggests comparing T
with

-1
P(n ) F, a(p,n-p)
n-p

(2-16)

where a is chosen so that a/2p = 0.00135 which is the 3¢ value for a univariate chart.

Figure 2-13 shows how two univariate X control charts for a hypothetical data set
might miss an out of control situation. A multivariate chart using T? plotted against an

appropriate F limit is shown in Figure 2-14 for the same data.
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FIGURE 2-13. X Charts for Two Hypothetical Variables
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FIGURE 2-14. Multivariate Control Chart (7° vs. time)

Since most quality control applications involve the monitoring of more than one
variable, the multivariate problem continues to be an important issue. Interesting
contributions to the multivariate problem have been made by several authors. Tracy,
Young, and Mason (1992) looked specifically at the multivariate problem for individuals.
A CUSUM approach to multivariate processes was developed by Pignatiello and Runger
(1990). Lowry, Woodall, Champ, and Rigdon (1992) extended the process to the EWMA
chart. Rigdon (1995b) used integrals to develop ARL(0) run lengths for multivariate
EWMA charts. The identification of off-target characteristics in the multivariate arena
was investigated Doganaksoy, Faltin, and Tucker (1991 ). Hawkins (1991) used
regression-adjusted variables to monitor multivariate processes. An attempt to help
interpret signals from multivariate charts by decomposing the T distribution was made
by Mason, Tracy, and Young (1995). Finally, a new approach using projections and the

U multivariate chart was proposed by Runger (1996).
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Multiple Stream Processes

A special monitoring problem arises when there are several identical sub-
processes, or streams. This situation is referred to as a multiple stream process (MSP).
The statistics obtained when sampling from an on-target MSP are generally independent
and identically distributed. An example of a multiple stream process might be a machine
used to fill several bottles at one time (Ott and Snee, 1973). Each group of bottles enters
the machine where they are filled simultaneously and then move on down the line as in

Figure 2-15.
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FIGURE 2-15. In-line Filling Machine

A control chart could be monitored for each stream, but as mentioned in the
previous section, the false alarm rate increases dramatically as the number of streams
becomes large. An alternative approach to this problem, developed over 50 years ago

(Nelson (1986)), is called group control charts.
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Group Control Charts. To construct a group control chart, only the largest
and smallest values observed need to be plotted. If the maximum and minimum values
are within acceptable limits, all streams will be in control since all the other observations
must lie between the maximum and minimum values. Figure 2-16 shows how four

separate charts would be combined as one group chart.
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FIGURE 2-16. Separate X Charts vs. a Group Control Chart
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Two possible assignable cause scenarios immediately present themselves. The
first involves an assignable cause which shifts the mean of all the streams (Nelson, 1984).
The second is a shift that affects only one stream. The first case is handled directly by
the control chart. If a shift affects all the streams, then the maximum and minimum will
likewise be impacted and the chart will signal in the usual fashion. For the second case a
special runs rule is used. The stream that generates the maximum (or minimum) value
should change in a random fashion. If the same strearﬁ generates an unusual number of
maximums in a row, then that particular stream is likely to be out of control (Nelson,
1986).

The use of the runs rule for a multiple stream process raises a practical difficulty.
Mortell and Runger (1995) point out that since the runs scheme is a discrete process, the |
difference in ARL(0) for 3 maximums in a row can be substantially different than that for
4 maximum values in a row. Nelson (1986) and Montgomery (1996) give the following

equation for determining the ARL of the runs scheme for an on-target process

ARL =P =1

P (2-17)

where p is the number of streams and 7 is the run length of a particular stream as the
maximum (minimum) value. For example, if a process has 15 streams, a runs rule based
on 3 maximum (minimum) in a row yields an ARL(0) of 121.8. This may result in

unacceptably high numbers of false alarm indications. Moving to a scheme based on 4
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maximum (minimum) in a row results in an ARL(0) of over 1800. Unfortunately this
will result in long detection times for small to moderate shift sizes.

Another runs rule 11m1tat10n pointed out by Mortell and Runger is where more
than one stream' (say two) sh1fts but not all the streams. In this case it is reasonable that
the two streams would alternate among themselves the maximum value and not cause the
runs rule to signal.

One of the problems associated with maintaining a separate chart for each stream
is the resultant high false alarm rates. This problem is not solved by use of the group
control chart. Since the group control chart is plotting maximums and minimums and
using the same control limits as the separate charts, if any one of the individual charts
would have signaled, the maximum chart will necessarily also signal. One possible
means of improving this situation is to set the chart limits further apart. AThis makes sense
for a chart of maximums (minimums) as the last (first) order statistic is expected to be
well beyond the standard + 3 limits. In fact, for a sample of size 10, the value likely to

be exceeded with probability 0.0027 is 3.64.

Other MSP Methods. Stephenson (1995) uses a method of least favorable

conditions to develop conservative ARLs for the group control chart approach to multiple
stream processes. The ARLs are validated using material presented by Woodall and
Reynolds (1983) on the application of Markov chains to the sequential probability ratio
test. Stephenson also attempts to address one of the runs scheme problems by proposing

an n-1 out of n in a row rule. This approach allows some flexibility back into the model,
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but also adds complexity since the runs rule is no longer a simple counting procedure.
Furthermore, the original runs problem still exists for multiple stream processes with
extremely large numbers of streams. The concept of least favorable conditions will
continue to apply as a method for generating conservative ARL estimates.

The multiple stream process problem is nicely laid out in Mortell and Runger
(1995). In addition to defining the current state of the problem, they offer a new solution
by suggesting control charts based on the range of observed data. Mortell and Runger
specifically address the important role of how the variance is allocated in the model. The
relative size of these variance components plays a key role in deciding how to approach
the MSP problem. In their approach to the MSP problem, Mortell and Runger use a two
pronged attack. They use a classic X chart for the average across all streams in the
process to detect a shift affecting all streams. In order to detect shifts affecting only one,
or just a few streams, they monitor the range of the process at each sample. That is rather
than plot the maximum (X4) and minimum (x,) values as in a group chart, they plot R
= Xmax — Xmin. Clearly if all streams shift at once, the range will not be affected, but the
X chart should quickly signal. On the other hand, if only one stream shifts, the X chart
may not detect the shift, but the range chart should. In an advantage over the group chart,
if two or more streams shift, the range chart is more likely to signal, rather than less
likely as in the group chart’s runs scheme.

Finally Mortell and Runger show how the application of other multivariate
techniques can be applied to the MSP problem. This suggests the possibility of entirely

new approaches to the problem in areas like principal components, cluster analysis, and
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factor analysis. In addition to these new approaches, Mortell and Runger also indicate
that their approach will work in an adaptive environment like that proposed by Prahbu,
Montgomery, and Runger (1994).

Runger and Alt (1996) discuss the application of principal component analysis of
the multivariate problem by customizing multivariate control charts. Building on this
effort and Mortell and Runger’s work, Runger, Alt, and Montgomery (1996) suggest
approaching the MSP problem using principal components. They use the first two
principal components to controllthe two kinds of partitioned variation in the multiple
stream process. Jackson (1980) gives an excellent tutorial on the use of principal

components.

Summary

This literature review provides a history of the foundations of statistical process
monitoring and multiple stream process issues and serves to identify the large amount of
work still possible in this area. One of the prime areas as yet undeveloped is the very
large number of streams problem. This problem involves both correlated and
autocorrelated data, systematic sub-sampling and adaptive techniques, and the impact of
non-identical streams. Whether there are a large number of streams or not, the issue of
non-identical streams is an area as yet unsolved.

The focus of the following investigation is to address those situations where a
large number of streams are contained in the process and not all the streams can be

sampled at a given time. The study will commence with a look at how to determine the
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probability of detecting an off-target condition when only a fraction of the streams are
sampled. The application of adaptive sampling methods will also be pursued and how to

implement adaptive techniques in a fractionally sampled process.




CHAPTER 3

PROCESS MONITORING USING FRACTIONAL SAMPLES

Introduction

In traditional statistical process monitoring (SPM), the performance of various
monitoring methods is compared using the average run length (ARL) of each proposed
scheme. As discussed in the previous chapter, false alarm rates, (also called ARI(0)), are
usually equated for each competing scheme and then various off-target ARL results are
compared, and conclusions made, regarding the performance of each method.

We also saw that adaptive monitoring situations tend to complicate matters of
comparison by using performance measures other than the ARL. In these situations, a
conversion is necessary to directly compare the non-ARL measured chart with the
performance of established charting methods. Runger and Pignatiello (1991) accomplish
this by having the average, on-target time between samples equal the fixed sampling
interval of Shewhart type charts. We will see how a special case of the multiple stream
process (MSP) generates a further complication in ARL definition and chart comparison.

In addition to considering MSPs where all streams shift simultaneously, or cases
where exactly one stream shifts, some recent work has addressed MSPs where more than
one stream shifts (see Mortell and Runger (1995) and Runger, Alt and Montgomery
(1996)). However, no discussion has been given to processes where only a fraction of the
total streams are sampled.

In certain MSP situations it may not be feasible to measure all the streams in the

process at each sample. Instead only a fraction, or subset of the streams is measured. In
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such cases it may be easier to consider a probability of detection for the given number of
streams sampled rather than an average run length. Since the ARL is, in effect, a
detection probability, once the probability of detection for a fractionally sampled MSP
has been established, we should be able to compare results with known ARLs for

standard charts.

Background

Average Run Length. Recall from the previous chapter that the average run

length refers to the run length of the chart used to monitor a process. Thus the ARL is the
average number of points plotted on the chart before an off-target situation is signaled.
For Shewhart charts where the plotted sample data points are assumed to be independent,

the ARL can be found using the formula given by Montgomery (1996) and others:

ARL = — (3-1)

R

where a is the probability that a point will fall beyond the chart limits, or the probability
of detecting a shift in the process. Note that o, is simply 1 — B where B is the probability
that a given sample mean, X, lies between the lower and upper chart limits. For a
Shewhart chart with upper and lower limits at 30, p = 0.9973 and, since =1 — B, we

have a = 1 - 0.9973 which yields o = 0.0027.
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Now if we take the inverse of o we obtain the familiar ARL result for the average

number of points plotted on the Shewhart X chart before a false alarm is indicated,

ARL(0),

= =370

ARL = 1
a 0.0027

Of more importance to the information in this chapter, we can also say that the
probability of generating a signal in any given sample is 0.0027 — a probability of

detection (a false alarm detection in this case).

Adaptive Sampling. The appeal of using a probability of detection rather than
the ARL becomes clear when we consider adaptive sampling schemes. When we vary
the time between samples, and to some extent, the size of the sample, the ARL doesn’t
serve very well. Recall that the ARL gives an average number of plotted points on the
chart before a signal is anticipated. If the time between those plotted points is allowed to
vary, the ARL no longer translates directly to the amount of time expected before
signaling.

Several authors have defined new performance measures to use in place of the
ARL. Some of these suggestions were spelled out in the previous chapter. In each case,
the new performance measure is related to a probability of detection. Assuming the
samples obtained are independent, simply taking the inverse of the performance measure
will yield a value analogous to a detection probability for each item sampled, or

measured, depending on the definition of the associated performance measure. For
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example, Costa (1997) uses the adjusted average time to signal (AATS) in place of the
ARL. He defines the AATS as “The average time from the process mean shift until the
chart produces a signal.” If we consider the inverse of the derived AATS, and assume the
AATS is reported in hours, we could think of the result as the probability that the process

mean shift will produce a signal in any given hour — a probability of detection.

Multiple Stream Processes. ~Several additional issues are raised when working
with a multiple stream process. When sampling from a MSP, each sample is generally
assumed to contain equal numbers of measurements from each stream in the process.
That is each sample from a 25-valve filling machine is assumed to contain groups of 25
measurements — one or more from each valve. In some processes it is not feasible to take
samples across all streams at a given point in time. In such instances a fraction of the
streams are often sampled. For example, if the hypothetical 25-valve filling machine is
operating at a high rate of speed with samples being collected by hand, fractional samples
may be taken in groups of, say, 5 at a time.

A special concern in monitoring multiple stream processes is that while an
assignable cause may affect all streams equally, this is not necessarily true. In fact one of
the unique aspects of the MSP problem is that individual streams or clusters of streams
can move off-target independently of one another. In addition to detecting instances
where all streams shift off-target, we aléo desire to detect and identify individual off-

target streams quickly whether they occur singly or in groups.
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Answering the question of how to best organize fractional samples from a MSP to
achieve rapid detection of off-target conditions all the while maintaining a low false
alarm rate is the stated goal of this study. To accomplish this we may want to vary both
the fractional sample size and the time between these sub-samples. This points to a need
for a performance measure other than an average run length. In addition, taking
fractional samples of multiple stream processes begs for an approach using probabilities
of detection.

The probability of detection measure needed should allow for fractional sampling
schemes involving combinations of all, some, or none of the streams being off target.
Once the probabilities associated with various sample schemes have been identified,
sampling plans can be developed combining several different fractional sampling

schemes to achieve a desired level of protection.

Probability of Detection for Fractional Samples

Determining the probability of detection for a multiple stream process in which
the streams are fractionally sampled involves two distinct computations. The first is the
probability of obtaining a specific sequence of streams while the second is the probability
of signaling given a specific sample sequence. Before we start, let’s define some terms
and assumptions.

Assume we have a multiple stream process consisting of a number of identical

product streams. The measurements from each stream are in equal units and have the

same target value, W, and standard deviation, . Furthermore we will assume that while
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the process is on target, the measurements from each stream are independent, identically
distributed normal random variables. We will also assume the process has a large
number of streams and the sampling limitations are such that we are not able to sample
all the streams at a given time, . Given this, it is also reasonable to assume that the
number of items gathered from each stream sampled is, 7 = 1. For this process we now

define the following parameters.

p = number of streams in the process

W = mean of the i stream i=l..p
s = number of streams sampled s<p
g = number of groups of streams with unique & values j=0..g¢g<p

k; = size of the shift associated with the j® group (inunits of6) ky =0
m; = number of streams in the /™ group
my = number of on-target streams
m;* = number of streams from the /© group contained in s

mo* = number of on-target streams in s

To better understand each of these terms, a hypothetical fractional sampling
situation is shown in Figure 3-1. This fictional process represents a filling operation
using a 16 valve rotary filling machine (p = 16). Samples are limited to 5 items at a time
due to cart capacity limitations (s = 5). Currently 5 valves are overfilling. These 5 valves
can be separated into 2 groups (g = 2). The first group, containing valves 3 and 6 (m; =
2), are overfilling by an average of 1 process standard deviation each (k1=1.0). The

second group includes 3 valves; valves 2, 9, and 14 (m2 = 3); each overfilling an average
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of 2 standard deviations (k, =2.0). The remaining valves are all on-target (my=p — m; —

my = 11 valves).

RIS

Empty Bottle Intake
Filler
Rotation
p =16 streams
s =5 streams sampled
g =2 groups .
m, =2 valves B___a(; \gaivisl.c
m, =3 valves 2.9, ’1 4=120
Sample Cart Capacity #
] s =35 bottles
Rotary Filling Machine oJoloJoJe)

FIGURE 3-1. Sample Filling Operation and Standard Notation

Note that many combinations of good and bad streams are possible using a
sample size of 5. We could catch 5 on-target streams, 5 off-target streams, or any
combination in between. Assume a random sample is drawn capturing items from valves
(streams) 3, 7, 9, 14, and 15. In this case, m;* = 1 (valve 3), my* =2 (valves 9 and 14),

and my* = 2 on-target valves (valves 7 and 15).
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Sequence Probability. To find the probability of obtaining a specific

sequence we need to consider all possible sequences that can be obtained for the
fractional sample size, given a total number of streams as well as specific numbers of off-
target streams. First we will consider the probability of obtaining the required number of
on-target streams. This is accomplished by considering all possible ways of obtaining a
sample containing mo*on-target streams from a total of m, on-target streams. This result

is then divided by all the possible ways of obtaining a sample of size s from p streams.

=)

This, of course, is simply

GOS

X

(3-2)

All off-target sub-group possibilities are found in a like manner and when

combined with the on-target results we obtain the following equation.

g mj
P _ L-OI(’"; J (3-3)

sequence ~ p
A

This is the probability of obtaining exactly m;* streams of shift size ki, my*
streams of shift size &y, ..., mp* streams of shift size ko, and my* on-target streams in a

fractional sample of s streams from a total of p streams.
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Now that we have determined the probability of obtaining a particular sequence,
we need the probability that this sequence will generate a signal on the chart. This result

is developed next.

Signal Probability. ~ The probability of obtaining a signal is the same as 1-8,

where fis the probability of not obtaining a signal. This Srisk is defined as

B =PYCL<X<UCLju=p,+ko} (3-4)

where X is distributed x ~ N ( M, O'Z/;] » Mo 1s the target mean, o* is unknown but

constant variance, s is the size of the sample, and £ is the shift size.

We can now rewrite Sas

5= UCL —G(,u0 +ko)| o LCL —a(,;(, +ko) (3-5)
AR An
and letting  LCL =y, - 3% , UCL=pu,+ 3% we have
(o3 (o2
ﬂo+3_“_(/10+k°') /‘o_3_"(ﬂo+k0—)
Js g s (3-6)

p=0
7 7
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We are able to use u+ko as the mean of the sample by making use of the linear

combination of independent normal variates.

Now using this information and working backwards we obtain

;10+3—‘%—%Zs:(;101+k,.0') yo—3%_1‘2(uoi+k,.0')

S el (3-7)

f=@
7 7

Keeping w4 constant, but allowing &; to vary gives

y0+370-;——(,u0 Zk) (D,uo—3%—-(,uo+%zs:kiJ

i=1

B=d
Ar 7

=¢J_.uo +3— ,uo‘/_ ‘/;ikf} l: ‘/_ 3_/‘0‘/;_£ikl]

o s o

=J3..§ik,}-¢[_3-§§k,.] 39)

i=1

Finally, by letting Zik,. / s =k we obtain a Brisk for a specific sequence of

p=op-ks|-of 3- V5] (3-9)

Since B is the probability of not signaling, the desired Piignat 18
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Pt =1- (0P - Es |- 0 3- £ 5])
= ®|-3-Fvs |- op-£s] (3-10)

Thls reguli lS useful fof detenmmng a probability of detection in a multiple stream
environment as we are particularly interested in allowing situations where some, but not
all of the streams shift and therefore the sample contains streams with different expected
values.

Note that if we allow all s streams in the sample to have the same & equation 3-7

reduces to the more familiar result
B =03 -ks)-of-3- ks) (3-11)

Detection Probability. Knowing the sequence probability and the signal
probability, we can determine a probability of detection by combining equations 3-3 and
3-10 to obtain

15
P = 2522 (@] 3- B3 |- @B - £45]) (3-12)

detection
p
s

N——

This result yields a probability of detection for a specific sequence. Given a
fractional sample size and number of off-target streams along with their associated

means, every possible sequence must be determined and an associated Pzrecrion can be
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computed for each. Summing over all possible sequences determines the overall
probability of detection for each sample.

Let’s look at an example using terms as defined in the previous section. Say we
have a process containing p = 16 streams where 5 of the streams are off-target. Let the
off-target streams fall into g = 2 groups, m; = 2 streams with a shift of k; = 1 ¢ above
target and m; = 3 streams with a shift of k, = 2 & above target, leaving my=11. At each
sample point assume we take a fractional sample of s = 5 streams. This situation results
in the 12 possible sample combinations shown in Table 3-1. For each combination a
sequence probability and signal probability are determined using equations 3-3 and 3-10
respectively. A total probability for each combination is then found using equation 3-12.

Summing over all combinations yields the probability of detection for this situation.

TABLE 3-1. Possible Sample Combinations and Associated Probabilities

) ) . Sequence Signal Total
# my m; m, Probability Probability Probability
1 5 0 0 11% 0% 0.0%
2 4 1 0 15% 1% 0.1%
3 4 0 1 23% 2% 0.4%
4 3 2 0 4% 2% 0.1%
5 3 1 1 23% 5% 1.1%
6 3 0 2 11% 11% 1.3%
7 2 2 1 4% 11% 0.4%
8 2 1 2 8% 22% 1.7%
9 2 0 3 1% 38% 0.5%
10 1 2 2 1% 38% 0.3%
11 1 1 3 1% 55% 0.3%
12 0 2 3 0% 2% 0.0%

Probability of Detection = 6.12%
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If we assume this sample plan will continue for all future samples, and that the
samples obtained are independent, we can obtain an associated ARL by simply inverting

the probability of detection. For the previous example we would obtain

1

ARL =
0.0566

=177

While this may seem like an arduous procedure, the computer can be used to
quickly enumerate all possible fractional sample combinations and apply equation 3-11 to
each. A program written in Visual Basic for use inside Microsoft® Excel is described in

the Appendix 3B at the end of this chapter.

Performance Measure and Tables & Graphs

The computer program referred to in the previous section was used to generate
multiple tables of detection probabilities for various combinations of total streams (p) and
number of off-target streams (m). These results are gathered into the tables found in
Appendix 3A. Since the probability of detection is not convenient for comparison with
known monitoring techniques, tables are also given showing the associated average run
lengths. Finally, several average run lengths are graphed showing how different
fractional combinations impact process monitoring abilities.

Now that we can determine the probability of detection for any given sample, we
should be able to construct an appropriate sampling plan to achieve a desired level of

confidence in catching any off-target condition. The tables and graphs in Appendix 3A
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give an initial look at how various fractional sampling combinations might be used to
effectively monitor a process where all streams cannot be sampled at a given time. The
next chapter will investigate alternative sampling plans to determine the best course of

action.

Summary

A potential limitation of the method discussed in this chapter is its dependency on
independent data streams. For many processes the streams may be autocorrelated (stream
1 at time ¢ correlated with stream 1 at time ¢+ /), or cross-correlated (stream 1 correlated
with stream 2), or both.

The issue of potential correlation is resolved in two ways. First, since we are
concerned about a system where we are unable to sample all the sﬁearﬂs at a given time,
autocorrelated data is not likely to be a concern. Even if samples are taken very
frequently, a different subset, or fraction of the total streams is sampled in each time
period. This procedure will put enough time between samples from the same streams to
remove much of the autocorrelation contained in the process. Second, the data from the
streams sampled at time ¢ are averaged to provide a single data point. This can be
thought of as a form of batching to remove the effects associated with stream-to-stream
correlation. Finally, if the time between samples is large compared with the time
constant of the process, an assumption of independence of the sample averages is

reasonable (Mortell and Runger(1995)).
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APPENDIX 3A

ARL TABLES & GRAPHS
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% sampled

5
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15
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370.38
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370.38

shift

370.38
370.38
370.38
370.38
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370.38
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370.38
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370.38
370.38
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370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 20 Streams

0.5
289.99
281.06
27246
264.31
256.61
249.32
242.42
235.88
229.67
223.77
218.16
212.81
207.72
202.85
198.20
193.75
189.49
185.41
181.49
177.73

0.5
238.27
207 .46
183.91
164.96
149.31
136.17
124.96
115.31
106.90

99.51
92.97
87.15
81.92
77.22
72.96
69.09
65.56
62.32
59.34
56.59

1
148.89
138.85
129.19
120.58
112.94
106.16
100.11

94.68
89.78
85.34
81.30
77.61
7422
71.10
68.22
65.55
63.07
60.76
58.61
56.59

93.17
67.46
53.24
43.74
36.89
31.71
27.67
2443
21.78
19.58
17.73
16.14
14.78
13.59
12.55
11.63
10.82
10.09

9.44

8.86

Streams = 20
Off-Target = 20%

1.5
64.42
60.45
55.26
50.68
46.71
43.26
40.26
37.62
35.29
33.21
31.35
29.67
28.16
26.78
25.52
2436
23.30
22.32
21.41
20.56

Streams = 20
Off-Target = 40%

15
35.28
23.7
18.11
14.52
12.01
10.17

8.77
7.66
6.77
6.05
544
493
449
412
3.79
3.51
326
" 3.04
2.84
2.66

2
29.51
29.12
26.30
23.86
21.78
20.00
18.47
17.14
15.97
14.94
14.02
13.20
12.46
11.80
11.19
10.64
10.14

9.68
9.25
8.86

16.37
10.74
8.26
6.64
5.51
4.69

3.57
317
2.85
258
2.36
217
2.01
1.87
1.75

155
146
139

25
15.66
16.49
14.71
13.18
11.84
10.88

9.98
9.20
8.52
7.93
7.40
6.93
6.51
6.14
5.80
5.49
5.21
4.95
4.71
450

25
8.00
6.26
483

3.31
2.85
2.49
222
2.00
1.82
1.68
1.56
1.46
1.37
1.30
1.24
1.19
1.14
1.1
1.08

9.79
10.66
9.52
8.42

6.85
6.25
5.73
528
4.89
4.55
424
3.97
3.73
3.50

3.12
295
2.80
266

4.96
4.38
3.37
2.78
237
2.07
1.84
167
1.53
1.42
1.33
1.25
1.19
1.14
1.11
1.07
1.05
1.03
1.02
1.01
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% sampled
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370.38
370.38
370.38
370.38

shift

0
370.38
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370.38
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370.38
370.38
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370.38
370.38
370.38
370.38
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370.38
370.38
370.38

Average Run Length Tables for p = 20 Streams

0.5
202.21
154.16
123.50
102.15

74.45
65.00
57.40
51.16
45.96
41.57
37.82
34.58
31.77
29.31
27.14
25.21
23.49
21.95
20.56

0.5
175.63
116.86

85.14
65.556
52.39
43.03
36.09
30.78
26.61
23.26
20.53
18.28
16.39
14.79
13.42
12.25
11.23
10.33

9.55

8.86

1
67.80
39.12
26.83
19.96
15.61
12.64
10.50

8.90
767
6.69
5.91
5.27
473
4.29
3.91
3.58
3.30
3.06
2.85
2.66

53.29
25.37
15.46
10.64
7.89
6.15
498
414
3.53
3.07
2.7
243
220
2.01
1.86
1.73
1.62
1.53
1.46
1.39

Streams = 20
Off-Target = 60%

1.5
24.29
12.56

8.42
6.23
4.88
3.98
3.34
2.88
252
224
2.02
1.84
1.70
1.58
1.48
1.40
133
1.27
1.22
1.18

Streams = 20
Off-Target = 80%

1.5
18.52
7.76
4.69
3.30
255
2.08
1.77
1.56
1.41
1.30
1.22
1.16

2
10.39
5.59
3.94
3.02
245
2,07
1.80
1.61
1.46
135
1.26
1.20
1.15
111
1.08
1.05

1.02
1.01
1.01

7.85
343
228
1.75

1.29
1.18
1.1
1.07
1.04
1.02
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

25
5.37
3.33
248
1.98
1.68
1.47
1.33
1.23
1.16
1.1
1.07
1.04
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00

25
4.04
2.08

1.30
1.16
1.08
1.04
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

3.32
246
1.87
1.56
1.36
1.24
1.16
1.10

1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.50
1.59
1.28
113

1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled
5
10
15

ARLs

% sampled

15

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 40 Streams

0.5
279.43
260.10
243.08
228.00
214.56
202.51
191.64
181.80
172.83
164.65
157.13
150.22
143.83
137.92
132.43
127.31
12254
118.08
113.90
109.97

0.5
206.13
161.98
132.36
111.08

95.08
82.65
72.73
64.66
57.96
52.34
47.56
43.44
39.88
36.76
34.02
31.59
29.43
27.49
25.75
2417

1
135.83
114.25

98.02
85.49
75.55
67.49
60.83
§5.23
50.47
46.38
4282
39.70
36.95
34.51
32.32
30.36
28.58
26.97
25.51
2417

66.39
41.95
29.86
2268
17.97
14.68
12.28
10.45
9.03
7.90
6.99
6.23
5.61
5.08
463
424
3.91
3.61
3.36
3.13

Streams = 40
Off-Target = 20%

1.5
58.32
46.76
3853
32.52
27.97
24.41
21.56
19.23
17.29
15.66
14.27
13.07
12.03
11.12
10.31

9.60
8.96
8.39
7.87
7.40

Streams = 40
Off-Target = 40%

1.5
23.21
13.86

9.58
717
5.64
4.61
3.87
3.32
2.80
257
230
2.09
1.92
1.77
1.65
1.55
1.46
1.38
1.33
1.27

2
27.99
21.97
17.79
14.81
12.60
10.89

9.54
8.45
7.56
6.81
6.18
5.63
5.17
4.76
440
4.09
3.81
3.56

3.13

10.51
6.40
4.51
345
278
2.33
2.01
1.78
1.60
1.47
1.36
1.28
1.21
1.16
112
1.09

1.05
1.03
1.02

25
15.94
12.31

9.88
8.18
6.93
5.98
5.23
463
4.14
3.74
3.39
3.10
2385
263

227
213
1.99
1.88
1.77

25
6.14
3.85
2.80
221
1.85
1.60
1.43
1.31
1.2
1.16
1.1
1.07
1.05
1.03
1.02
1.01
1.01
1.00
1.00
1.00

10.41
7.99
6.39
5.29
4.49
3.88
341
3.03
272
247
2.25
2.07
1.92
1.79
1.67
1.57
1.48
1.40
1.33
1.27

4.31
2.76
2.08
1.70

1.31
1.21
1.14
1.09
1.0
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled

5
10
15
20
25
30
35

ARLs

% sampled

5
10
15
20
25
30
35

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 40 Streams

0.5
153.43
100.77

72.90
55.85
4447
36.41
30.46
25.93
2237
19.53
17.22
15.31
13.72
12.37
11.23
10.24

9.38

8.64

7.98

7.40

0.5
116.58
65.10
42.57
30.36
22.89
17.95
14.51
12.00
10.12
8.67
7.53
6.62
5.88
5.26
475
4.32

3.64
3.37
3.13

1
38.76
19.46
12.21

8.56
6.43
5.06
4.14
3.47
2.99
261
233
210
1.91
1.76
1.64

1.45
1.38
1.32
1.27

Streams = 40
Off-Target = 60%

1.5
12.42
6.08
3.89
2.83
223
1.85
1.60
143
1.31
1.22
1.16
1.11
1.08
1.05
1.04
1.02
1.02
1.01
1.01
1.00

Streams = 40
Off-Target = 80%

1.5
7.73
3.27
2.07
1.57
1.32
1.18
1.10
1.08
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00

©1.00
1.00
1.00

2
5.52
298

1.62
1.38
1.23
1.14
1.08
1.05
1.03
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

3.41
1.75
1.30
1.12
1.05
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

25
3.30
1.98
1.49

1.13
1.07
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

25
2.07
1.30
1.09
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00

244
1.57

1.12
1.05
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.59
1.14
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled
- 5
10

15

ARLs

% sampled
5
10
15

shift

. 370.38
370.38
"370.38

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

0
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 60 Streams

0.5

'241.08

218.36

199.24
182.93
168.88
156.63
145.88
136.37
127.89
120.29
113.45
107.25
101.62
96.47
91.76
87.42
83.42
79.72
76.29

0.5
180.89
131.17
101.20

81.27
67.14
56.65
48.60
4225
37.14
32.95
2947
26.54
24.04
21.90
20.04
18.42
16.99
15.74
14.62
13.62

. 268.50,

51.17
29.30
19.61
14.27
10.96
8.75
7.18
6.04
5.17
4.49
3.96
3.53
3.17
2.88

243
225
2.10
1.97
1.85

Streams = 60
Off-Target = 20%

1.5
51.09
37.17
28.68
23.03
18.04
16.08
13.81
12.03
10.59

9.42
8.44
762
6.92
6.32
5.80
5.35
495
4.60
429
401

Streams = 60
Off-Target = 40%

1.5
17.27
9.41
6.20
4.52
3.52
2.86
241
2.09
1.85
1.67
1.53
1.42
1.33
1.26
1.20
1.16
1.12
1.09
1.07
1.056

2424
17.19
13.03
10.34
8.47
712
6.09
5.29

4.15
3.72
3.37
3.07
2.81
260
241
224
210
1.97
1.85

7.92
446
3.05
232
1.89
1.62
1.43
1.30
1.21
1.15
1.10
1.07

1.03
1.02
1.01
1.01
1.00
1.00
1.00

25
13.70
9.61

5.76
4.74
4,00
3.44
3.02
268
240
2.18
2.00

1.71
1.60

1.42
1.35
1.29
1.24

25
4.70
2.79
2.01
1.61
1.38
1.24
1.15
1.09

1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

9.01
6.27
475
3.80
3.15
269
235
2.08
1.87
1.71
1.57
1.46
1.37
1.30
1.23
1.18
1.14
1.10
1.08
1.0

3.32
2.08
1.58
1.32
1.19
1.10
1.06
1.03
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled

5
10
15
20
25
30
35

ARLs

% sampled

5
10
15
20
25
30
35

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for » = 60 Streams

0.5
121.99
72.42
49.16
35.99
27.67
22.04
18.03
15.06
12.79
11.03
9.62
8.48
7.55
6.77
6.12

5.09
4.68
4.32
4.01

0.5
84.61
4243
26.08
17.85
13.08

1
26.19
12.08

7.28
5.01
3.74
2.96
2.45
2.09

1.65
1.51
1.40
1.31
1.24
1.19
1.15
1.12
1.09
1.07
1.05

15.30

3.48
2.41
1.86
1.55
1.36
1.23
1.15
1.10
1.07
1.04
1.03
1.02
1.01
1.01
1.00
1.00
1.00
1.00

Streams = 60
Off-Target = 60%

1.5
8.20
3.86
248
1.85
1.52
1.32
1.20
1.12
1.08
1.05
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Streams = 60
Off-Target = 80%

1.5
463
2.07
143
1.18
1.08
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2
3.85

1.49
1.24
1.12
1.06
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.26
1.30
1.08
1.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

2.5
245
149
1.19
1.08
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

25
1.55
1.10
1.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.87
1.26
1.09
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.29

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled

15

ARLs

% sampled

e R8I 23 e bR LN,

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

0
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 80 Streams

0.5
258.10
22425
197.63
176.18
158.53
143.77
131.26
120.52
111.21
103.07

95.90
89.53
83.84
78.74
7413
69.96
66.16
62.70
59.52
56.59

0.5
160.58
109.12

80.60
62.66
50.45
41.68
35.13
30.08
26.09
22.88
20.25
18.07
16.23
14.68
13.34
12.19
11.19
10.31

9.54

1
111.34
81.42
63.14
50.92
42.21
35.73
30.74
26.80
2362
21.01
18.83
17.00
15.43
14.08
12.91
11.89
10.99
10.20
9.49
8.86

41.13
21.92
14.07
9.98
7.53
5.95
4.86
4.07
3.49
3.04
2.70
242
2.19
2,01
1.86
1.73
1.63
1.53
1.46
1.39

Streams = 80
Off-Target = 20%

1.5
45.04
30.45
22.41
17.39
14.00
11.58

9.78
8.40
7.3
6.44
5.73
514

Streams = 80
Off-Target = 40%

15
13.56
6.96
4.48
3.25
2.54
2.09
1.79
1.58
1.43
1.32
1.23
1.17
1.13
1.09
1.07
1.05
1.03
1.02
1.01
1.01

2
21.16
13.92
10.09

7.77
6.23
5.15
4.36
3.77
3.30
293
263
238
2.18
2.01
1.86
1.74
163
1.54
1.46
1.39

6.30
340
232
1.79
1.50
1.32
1.20
1.13
1.08
1.0
1.03
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
11.93
7.80
5.67
4.40

2.98
2.56
2.25
2.00
1.81

1.53
143
1.35
1.28

1.17
1.13
1.10
1.08

25
3.81
221
1.62

1.19
1.10
1.0
1.03
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00

275
1.71
1.33
1.16
1.08
1.04
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled
[ 5
10

15

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

ARLs

% sampled

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

shift

. 37038 .
370.38
©370.38

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 80 Streams

0.5

.100.13.
" 8513
35.78

25.39
19.08
14.93
12.056
9.97
8.41
7.21
6.27
5.52
4.91
4.40
3.98
3.63
3.33
3.07
2.85
2.66

0.5
64.89
30.16
17.80
11.89

8.59
6.56
5.22
429

3.12
274
244
220
2.01

1.73
1.62
1.53
1.46
1.39

19.23

Streams = 80
Off-Target = 60%

1.5
6.01
2.80
1.85
1.45
1.24
1.13
1.07
1.04
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Streams = 80
Off-Target = 80%

1.5
3.26
1.57
1.19
1.06
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2
2.96
1.63
1.24
1.10
1.04
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.74
1.13
1.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
1.98
1.27
1.08
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
1.30
1.03
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.57
1.13
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.15
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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ARLs

% sampled

5
10
15
20
25
30
35

100

ARLs

% sampled

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

Average Run Length Tables for p = 100 Streams

0.5
248.31
209.33
180.08
157.34
139.19
124.39
112.10
101.75

92.92
85.31
78.68
72.87
67.74
63.18
59.10
55.43
52.12
49.12
46.39
43.89

0.5
143.91
92.66
66.09
50.09
39.55
32.15
26.74

19.45
16.92
14.87
13.18
11.78
10.61
9.60
8.75
8.01
7.36
6.80
6.30

101.59
70.48
52.76
4145
33.66
28.01
23.76
20.46
17.84
15.72
13.98
12.53
11.30
10.25

9.35
8.58
7.80
7.30
6.77
6.30

34.03
17.16
10.71
747
5.59
4.40
3.60
3.03
261
230
2.05
1.86
1.71
1.58
1.48
1.40
1.33
1.28
1.23
1.19

Streams = 100
Off-Target = 20%

1.5
40.05
25.53
18.12
13.72
10.84

8.84
7.39
6.29
5.44
4.77
423
3.79
3.42
3.11
2385
263
244
227
213
2.00

Streams = 100
Off-Target = 40%

1.5
11.04
5.45
3.48
253
2.00
1.68
1.47
1.32
1.23
1.16
1.11
1.07
1.05
1.03
1.02
1.01
1.01
1.00
1.00
1.00

2
18.67
11.59

8.14
6.14

3.99
3.37
2.90
255
227
205
1.87
1.72
1.60
1.50
1.41

1.28
1.23
1.19

5.19
275
1.90
1.50
1.29
1.17
1.10
1.0
1.03
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
10.52
6.52

3.54
2.85
239
2.06
1.82

1.50
1.39
1.30
1.23
1.18
1.13
1.10
1.07
1.0
1.04
1.02

25
3.21
1.86
1.40
1.19
1.09
1.04
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

6.89
433
3.12
244
2.02
1.73
1.54
1.39
1.29
1.21
1.15
1.1
1.07
1.05
1.03
1.02
1.01
1.01
1.00
1.00

2.36
148
1.20
1.08
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

80




ARLs

% sampled

5
10
15
20
25
30
35

ARLs

% sampled

5
10
15
20
25
30
35

Average Run Length Tables for p = 100 Streams

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

shift

370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38
370.38

0.5
84.12
43.66
27.38
18.99
14.05
10.88

8.72
717
6.04
5.17
4.50
3.97
3.54
3.18
290

245
2.28
213
2.00

0.5
51.67
22.68
13.02

8.58
6.16
4.71
3.76
3.1
265
2.31
2.05
1.86
1.70
1.58
1.48
1.39
1.33
1.27
1.23
1.19

1.09
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7.73
3.02
1.86
1.41
1.21
1.1
1.05
1.03
1.01
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Streams = 100
Off-Target = 60%

1.5
4.69
222
1.52
1.24
1.12
1.05
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Streams = 100
Off-Target = 80%

1.5
2.52
1.32
1.08
1.02
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2
241
1.39
1.13

1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.47

1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
1.69
1.15
1.03
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

2.5
1.17
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.39
1.06
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.08
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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60% of 20 Streams Off-target
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60% of 40 Streams Off-target
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20% of 60 Streams Off-target
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60% of 60 Streams Off-target
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20% of 80 Streams Off-target
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:-20% of 100 Streams Off-target
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60% of 100 Streams Off-target
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APPENDIX 3B

VISUAL BASIC PROGRAM FOR PROBABILITY OF DETECTION

The following computer code was written using Visual Basic for Applications and

Microsoft® Excel 97.

Option Explicit

Dim K{() As Single

Dim M() As Integer

Dim Mstar() As Integer

Dim Response, Msg, Style, Title, DefaultAnswer

'Integer Variables

Dim N As Integer

Dim P As Integer

Dim Q As Integer

Dim Bad As Integer
Dim Pointer As Integer
Dim Sample As Integer
Dim Need As Integer
Dim Coll As Integer
Dim LookHere As Integer
Dim ZZ As Integer

'Real Variables

Dim SumMK As Single

Dim ZStatl As Double

Dim ZStat2 As Double

Dim Numerator As Double
Dim Denominator As Double
Dim SeqProb As Double
Dim SignalProb As Double
Dim TotalProb As Double

' Boolean Variables

Dim Finished As Boolean
Dim EnoughLeft As Boolean
Dim BackingUp As Boolean
Dim FirstTime As Boolean
Dim GoingAgain As Boolean

' Counter Variables
Dim I As Integer, J As Integer, Z As Integer, Count As Integer




Sub

End

Sub

ProbDetect ()
IntroQuestion
Do
If Not Finished Then
Initialize
GetInputs
End If .. .. ... . ..
Do Until Finished
AllocateSamples
If EnoughLeft Then RunIt
ResetPointer
Loop
ShowOutput
CopyResult
Loop Until Not GoingAgain
CleanUp
Sub
IntroQuestion()

FirstTime = False

Range ("B1") .Select
If ActiveCell = Empty Then
DefaultAnswer = vbDefaultButtonl

Msg = "Do you want to start from scratch?"
Else

DefaultAnswer = vbDefaultButton2

Msg = "Do you want to overwrite existing values?"
End If

Style = vbYesNoCancel + vbQuestion + DefaultAnswer
Title = "Probability of Detection"
Response = MsgBox (Msg, Style, Title) ' Display message.
If Response = vbYes Then
FirstTime = True
Finished = False
ElseIf Response = vbNo Then
FirstTime = False
Finished = False
ElseIlf Response = vbCancel Then
Finished = True
End If

End Sub
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Sub Initialize()
Range ("B1") .Select
If FirstTime Then
Cells.Delete
Cells.Font.Bold = False
Cells.Font.ColorIndex = xlColorIndexAutomatic
Cells.NumberFormat = "General"
ActiveWorkbook.Names.Add Name:="Streams", RefersToR1Cl:="=R1C2"
ActiveWorkbook.Names.Add Name:="BadGroups",
RefersToR1Cl:="=R2C2"
ActiveWorkbook.Names.Add Name:="SampleSize",
RefersToR1C1l:="=R3C2"
ActiveWorkbook.Names.Add Name:="M0", RefersToR1Cl:="=R3C5"
ActiveWorkbook.Names.Add Name:="TotalProb",
RefersToR1C1:="=R5C2"
Else
Columns ("H:2") .Select
Selection.Delete Shift:=x1ToLeft
End If
Bad = 0: Pointer = 0
Sample = 0: Need = 0
SumMK = 0: ZStatl = 0
Numerator = 0: Denominator = 0
SegProb = 0: SignalProb = 0: TotalProb = 0
Finished = False: EnoughLeft = True
BackingUp = False: GoingAgain = True

I =20: J=20:2=20: Count = 0
End Sub

Function GetInputs ()
If FirstTime Then
Title = " "
Msg = "How many streams in the process?"
P = InputBox (Msg, Title, , 400, 1500)
Range ("Streams") .Select
With Selection
.HorizontalAlignment = xlLeft
.Value = P
.Offset(, -1).ColumnWidth = 23
.Offset(, -1).HorizontalAlignment = xlRight
.Offset(, -1).Font.Bold = True

.Offset(, -1).Value = "Streams(P) ="
End With
Else
P = Range ("Streams") .Value
End If

Continued ..




Do
If FirstTime Or Q > P Then
Title = " "
Msg = "Number of streams = " & P & Chr(13) & Chr(13)

many subsets of bad streams?"
Q = InputBox(Msg, Title, , 400, 1500)
Range ("BadGroups") .Select
With Selection
.HorizontalAlignment = xlLeft
.Value = Q
.Offset(, -1).HorizontalAlignment = xlRight
.Offset(, -1).Font.Bold = True
.Offset(, -1).Value = "# of Bad Groups(Q) ="
.Offset(, 1).HorizontalAlignment = xlLeft
.Offset(, 1).Font.Bold = True

.Offset(, 1).Value = "'====>"
End With
Else
Q = Range ("BadGroups") .Value
End If

Loop While Q > P

ReDim M(0 To Q), Mstar(0 To Q), K(0 To Q)
Range ("MO") .Select
With Selection
If FirstTime Then
.Offset (-1, -1).HorizontalAlignment = xlCenter
.Offset (-1, -1).Font.Bold = True
.Offset (-1, -1).Value = "Group #"
.Offset (-1) .HorizontalAlignment = xlCenter
.Offset(~1) .Font.Bold = True
.Offset (-1) .ColumnWidth = 10
.Offset (-1).Value = "Streams(M)"
.Offset (-1, 1).HorizontalAlignment = xlCenter
.Offset(~1, 1).Font.Bold = True
.Offset (-1, 1).vValue = "k"
End If
LookHere = Q + 1
While LookHere > 0
If .0Offset(LoockHere, -1).Value > 0 Then
.Offset (LookHere, -1).Delete Shift:=x1lUp
.Offset (LookHere) .Delete Shift:=x1Up
.Offset (LookHere, 1).Delete Shift:=x1Up
Else
LookHere = -1
End If
Wend

Continued ..

&

95

"How




For J =1 To Q

.Offset (J, -1).HorizontalAlignment

.Offset (J, -1).Value = J
If .Offset(J).Value = Empty

Then

= x1Center

Title = "Inputs For Bad Sub-Group #" & J

Msg = Chr(13) & "

How many bad

streams in subset #" & J
M(J) = InputBox(Msg, Title)
.Offset (J) .HorizontalAlignment

.Offset (J) .Value = M(J

)

= x1Center

Title = "Inputs For Bad Sub-Group #" & J

Msg = Chr(13) & "

Chr(13) & Chr(13) & "

Shift for Subset #" & J

K(J) = InputBox(Msg, Title)
.Offset (J, 1).HorizontalAlignment = xlCenter
.Offset (J, 1).Value = K(J)

Else
M{(J) = .0ffset(J).Value
K(J) = .Offset(J, 1).Value
End If

Bad = Bad + M(J)

If Bad > P Then
.Offset (J) .ClearContent
Bad = Bad - M(J)

S

Number of bad

streams in subset " & J & " is " & M(J) &
Size of

J=J -1
Msg = "Choose fewer bad streams or Abort"”
Style = vbOKOnly + vbExclamation
Title = "Too Many Bad Streams Selected.™
' Display message.
Response = MsgBox (Msg, Style, Title)
End If
Next J

M(0) = P - Bad
.HorizontalAlignment = xlCenter
.Value = M(0)

If FirstTime Then

.Offset(, -1).HorizontalAlignment = xlCenter

.Offset(, -1).Value = 0

.Offset(, 1).HorizontalAlignment

.Offset (, 1).Value = K(0)
End If

End With

Continued ..

x1Center
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If FirstTime Then

Title = "SAMPLE SIZE"

Msg = "Number of streams = " & P & Chr(13) & "Number of subsets
bad streams = " & Q & Chr(13) & Chr(l13) & "
Number of Streams to Sample?"

N = InputBox (Msg, Title, , 400, 1500)

Range ("SampleSize") .Select
With Selection
.HorizontalAlignment = xlLeft
.Value = N
.Offset(, -1).HorizontalAlignment = xlRight
.Offset(, -1).Font.Bold = True
.Offset(, -1).Value = "Sample Size(N) = "

End With
Else

N = Range ("SampleSize").Value
End If

Coll = Range ("MO") .Offset (-1, 3).Column
For J = 0 To Q + 4
If <= Q + 1 Then
Columns (Coll + J).HorizontalAlignment = xlCenter
Else
Columns (Coll + J).Style = "Percent"
End If
If J=00r J> (Q + 1) Then
Columns (Coll + J).Font.Bold = True
End If
If J = (Q + 2) Then
Columns {Coll + J).Font.ColorIndex
ElselIf J = (Q + 3) Then
Columns (Coll + J).Font.ColorIndex = 50
ElseIf J = (Q + 4) Then
Columns (Coll + J).Font.ColorIndex = 3
Columns (Coll + J).NumberFormat = "0.0%"
End If
Next J
Range ("MO") .Select
With Selection
.0ffset (-1, 3).Value = "Number"
For J =0 To Q
.Offset (-1, 4 + J).Font.Bold = True
.Offset (-1, 4 + J).Value = "Mstar " & J
Next J
.Offset (-1, 5 + Q) .HorizontalAlignment
.Offset (-1, 5 + Q).Value = "Seqg"
.Offset (-1, 6 + Q) .HorizontalAlignment = x1lCenter
.Offset (-1, 6 + Q).Value = "Signal"
.Offset (-1, 7 + Q).HorizontalAlignment
.Offset (-1, 7 + Q).Value = "Total"
End With
Denominator = Application.Combin (P, N)
End Function

it
>
juY

x1Center

x1lCenter

of
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Sub AllocateSamples()
Need = N - Sample
While (Need > 0) And EnoughLeft
If (M(Pointer) =~ Mstar (Pointer)) >= Need Then

Mstar (Pointer) = Mstar (Pointer) + Need
Sample = Sample + Need

Else
Mstar (Pointer) = M(Pointer)

Sample = Sample + Mstar (Pointer)
If Pointer = Q Then
Enoughleft = False
Else
Pointer = Pointer + 1
End If
End If
Need = N - Sample
Wend
Z = Pointer + 1
While Z <= Q
Mstar(zZ) = 0

Z =2+ 1
Wend
End Sub
Sub RunlIt():
Numerator = 1
SumMK = 0

For Jd =0 To Q
Numerator = Numerator * Application.Combin(M(J), Mstar(J))
SumMK = SumMK + (Mstar(J) * K(J))
Next J
‘SeqProb = Numerator / Denominator
ZStatl = 3 - (Sqr(N) / N) * (SumMK)
ZS8tat2 = -3 - (Sgr(N) / N) * (SumMK)
SignalProb = 1 - (Application.NormSDist (ZStatl) -
Application.NormSDist (ZStat2))
TotalProb = TotalProb + (SeqProb * SignalProb)
Count = Count + 1
Range ("MO") .Select
With Selection
.Offset (-1 + Count, 3).Value = Count
For J =0 To Q
.Offset (-1 + Count, 4 + J).Value = Mstar(J)
Next J
.Offset (-1 + Count, 5 + Q).Value = SegProb
.Offset (-1 + Count, 6 + Q).Value SignalProb
.Offset (-1 + Count, 7 + Q).Value SeqProb * SignalProb
End With
End Sub




Sub ResetPointer ()
Mstar (Pointer) = Mstar (Pointer) -~ 1
Sample = Sample - 1
If Pointer < Q Then
Pointer = Pointer + 1

Else
While Mstar{Pointer) > 0
Mstar (Pointer) = Mstar (Pointer) - 1
Sample = Sample - 1
Wend

BackingUp = True
While BackingUp
Pointer = Pointer - 1
If Pointer < 0 Then
Finished = True
BackingUp = False
ElseIf Mstar(Pointer) > 0 Then
BackingUp = False
Mstar (Pointer) = Mstar (Pointer) -~ 1
Sample = Sample - 1
Pointer = Pointer + 1
EnoughLeft = True
End If
Wend
End If
End Sub

Sub ShowOutput ()
' MsgBox ("Overall Probability is " & TotalProb)
Range ("TotalProb") .Select
With Selection
.Offset(, -1).HorizontalAlignment = x1lRight
.Offset(, -1).Font.Bold = True
.Offset(, -1).Font.ColorIndex = 5
.Offset(, -1).Value = "Probability of Detection ="
.HorizontalAlignment = xlCenter
.Style = "Percent”
.NumberFormat = "0.00%"
.Font.Bold = True
.Font.ColorIndex = 5
.Value = TotalProb
.Offset (1, -1).HorizontalAlignment = x1Right
.Offset(l, -1).Font.ColorIndex = 9
.Offset (1, -1).Value = "in " & Count & " sequences"
.Offset (2, ~1).HorizontalAlignment = xlCenter
.Offset (2, -1).Font.Bold = False
.Offset (2, -1).Font.ColorIndex = 50
.Offset (2, ~1).Value = "Assoc ARL ="
.Offset (2) .HorizontalAlignment = xlCenter
.Offset(2) .Font.Bold = False
.Offset (2) .Font.ColorIndex = 50
.Offset (2).Value = 1 / TotalProb
End With
End Sub
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Sub CopyResult ()
1

' CopyResult Macro
' Macro recorded 5/13/98 by Jeffrey Wayne Lanning

Selection.Copy
Sheets (Results") .Select
Selection.PasteSpecial Paste:=xlValues, Operation:=x1None,
SkipBlanks:= _
False, Transpose:=False
If M(Q) < P Then
ActiveCell.Offset (1) .Select
If M(Q) < 10 Then

M(Q) = M(Q) + 1
Else

M{Q) = M(Q) + 5
End If
Finished = False

Else

If M(Q) = 5 Then

ZZ = 10
Else

ZZ = M(Q)
End If

ActiveCell.Offset ((((2Z / 5) - 2) * 4) - M(Q), 2).Select
GoingAgain = False
End If
Sheets ("Sheet2") .Select
Range ("MO") .Offset (Q) .Select
Selection.Value = M(Q)
End Sub

Sub CleanUp{()
For =0T
M(J)
Mstar
K(J)
Next J
End Sub

Q

J) =0

-

o
0
)
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CHAPTER 4

ADAPTIVE MONITORING TECHNIQUES

Introduction

Earlier we introduced the simple, yet effective, Shewhart X chart. We also
pointed out that while the Shewhart chart is popular for monitoring the mean of a process,
it is often too slow to respond to situations characterized by small process shifts, or a
drifting mean. To compensate for this, several enhancements and alternatives have been
proposed to improve the Shewhart chart’s performance. Alternative charts such as the
cumulative sum, exponentially weighted moving average, and hybrid were reviewed
earlier. Enhancements previously discussed included Shewhart charts with warning
limits, and Shewhart charts with runs rules.

Each of the Shewhart chart alternatives and enhancements discussed to this point
havg assumed a constant interval between samples as well as constant sample size. An
enhancement that warrants further consideration does not rely on such assumptions. A
monitoring technique that makes use of the most recent information on the X chart and
modifies the sample size or sample interval accordingly is called an adaptive monitoring
chart. This adaptive approach essentially says: If the current sample’s mean is within the
chart limits, but remote from the target value, either don’t wait a full time interval before
forming the next sample, or let the next sample be larger than normal. On the other hand,

if the mean of the current sample is relatively close to target, the next sample need not be
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taken immediately, or the next sample might be smaller than normal. In this fashion the
sampling rate or sample size adapts based on the most recent sample information.

The idea of employing an adaptive approach to statistical monitoring is an
intuitive one. When an observed sample is near the process target value we are confident
that the process is behaving as desired and are content to let the process run for a while.
However, when a point plots near the chart limits, we begin to wonder whether the
process mean may have moved off-target and tend to watch things more closely.

While an on-target process may produce a sample near a chart limit, this is a
relatively rare event or else the limits would not be where they are. On the other hand, if
the process mean hasi shifted to a higher value, a realized sample close to the upper limit
is much more reasonable. So, if a sample plots near a limit, it makes intuitive sense to
watch the process more closely. This may be accomplished by re-sampling immediately,
or taking a more thorough sample next time.

As a simple example of this method’s appeal, let’s consider an average car owner.
Most drivers have a general idea of how many days, or how many rr—xiles they can drive on
a tank of gas, even if they don’t routinely monitor their miles per gallon (mpg). As long
as trips to the gas station occur after the usual amount of time or distance the mpg is not
tracked very closely, and maybe only figured exactly while on long trips. However, if
suddenly the gas tank needs to be filled more frequently than normal, the driver is quick
to determine his mpg to the exact digit after every fill-up. This is an example of adaptive
monitoring. While things are on-target less items are monitored less frequently, but when

the process is relatively far from target the situation is monitored more closely in an
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attempt to determine if the process has changed or is simply experiencing natural
variation.

When constructing a typical Shewhart X chart, appropriate consideration must
be given to selection of a rational subgroup, or sample size, as well as a practical
sampling frequency. In many manufacturing situations, physical constraints may dictate
upper and lower boundaries for possible sample sizes and frequencies. Generally these
decisions are made after considering the size of shift in the process that it is necessary to
detect (Montgomery (1996)). While samples taken more frequently and of larger size
provide better protection against process shifts than few samples of small size, large,
frequent samples are often not feasible due to limited sampling resources. Traditionally a
sampling plan is developed which provides adequate protection against expected process
shifts. However, it may be feasible to take larger, or more frequent samples occasionally
if the remaining samples can be made respectively smaller, or less frequent. This is the
notion behind adaptive process monitoring.

In the following section the development of the adaptive methods will be laid out
followed by an examination of the methodology for each of three adaptive approaches.
We will see that by varying the sample size or sample interval, we can improve upon the
results obtained with standard, fixed-interval, fixed-sample size X charts. We will also
see that a combined approach, allowing the interval and sample size to be adaptive,
provides the best monitoring results. Following the discussion of how each modification
works, we will consider how adaptive techniques can be used in a multiple stream

situation.
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Background

Adaptlve process monltonng is comprised of two primary approaches, variable
sample mterval (VSI) and varzable sample size (VSS). A third technique called variable
sample size and interval (VSSI) is, as its name suggests, a combination of the two
previous methods. Before we consider the background for each of these techniques let’s
develop definitions and notation for a representative process to be monitored.

Assume we have a process with a quality characteristic X to be monitored. Let X

be normally distributed with a target mean Mo and a standard deviation ¢ which is both

known and constant. If X ; is the mean of the i sample with an associated sample size
of n, then standardizing we obtain

T -y

Zi - i 0

o/Jn

where Z; ~ N(0,1). The use of Z; will be especially important in constructing variable

@“-1)

sample size charts. Since the computation of upper and lower chart limits as well as
threshold values involve the sample sizes, if we allow variable sample sizes we will also
have variable limits. By standardizing the values first, we can monitor the process using
a chart with only one set of limits and threshold values.

We will consider the process on-target if the process mean, ., equals the target
mean, y,. If any point plots beyond the chart limits the chart will be considered to have
signaled giving an indication that the process has shifted to a new mean, say |, and the

process will be stopped to allow for correction of the associated assignable cause.
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Shifts in the process mean will be expressed in terms of process standard
deviation units using 8. For example, a shift of §; s would indicate an upward shift of the
process mean by 1.5 standard deviations. We will also assume the use of a standardized
X chart. Recall that such a chart has a center line at zero and chart limits at + 3 .
Finally, we will define the sample size and sampling interval of the fixed-interval, fixed-

sample size chart to be ny and £, respectively.

Variable Sample Interval. ~ The VSI approach to adaptive monitoring makes

improvements on traditional X charts by allowing the frequency of samples taken to
vary. The technique uses information contained in the previous sample to determine
when the next samplé should be taken. While the process is relatively close to target,
samples are taken infrequently and the frequency is increased as the chart limits are
approached.

The idea of modifying the waiting times in Shewhart X charts is introduced by
Reynolds, Amin, Arnold, and Nachlas (1988) and extended througﬁ independent work by
Runger and Pignatiello (1991). Runger and Pignatiello also include information on
practical implications of VSI monitoring. Other independent work includes Cui and
Reynolds (1988) who consider VSI monitoring using X charts enhanced with runs rules
and Chengular, Arnold, and Reynolds (1989) who introduce VSI techniques for
multiparameter X charts. Concurrent work by Reynolds (1989), and Reynolds and
Amold (1989) consider optimal adaptive sampling schemes and obtain theoretical results

similar to Runger and Pignatiello.
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Runger and Pignatiello (1991) extend the VSI work of Reynolds, Amin, Arnold,
and Nachlas by providing detailed performance calculations for many one-sided and two-
sided adaptive Shewhart schemes. They point out that for the one-sided case the adaptive
schemes provide the greatest improvement. Furthermore, they provide formulas for the
performance of the adaptive charts in terms of proposed waiting times and analyze the
‘effects of different choices. Finally, the two-sided dual waiting time chart is described

and evaluated using formulas and tables.

Variable Sample Size. The VSS approach to adaptive monitoring makes

improvements on traditional X charts by allowing the size of samples taken to vary. The
technique uses information contained in the previous sample to determine how large the
next sample taken should be. While the process is relatively close to target, samples are

relatively small in size and the sample size is increased as the chart limits are approached.

The idea of modifying the sample size in Shewhart X charts probably grew out
of double-sampling acceptance plans. Typical acceptance sampling plans are methods of
making decisions regarding the appropriate disposition of inspected material by taking a
sample from the material in question (Montgomery (1996)). The decision process is
sometimes called sentencing. A double-sampling acceptance plan is a procedure where
one of the possible results of the sentencing from an initial sample is to take a second
sample. Montgomery indicates the primary advantage of double-sampling plans as

compared with single-sample plans is a reduction in the number of total inspections
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required. Acceptance sampling is discussed in detail in several texts including
Montgomery (1996) and Duncan (1986).

The concept of vaxymg the sample size withinan X charting scheme was
1ntroduced by Flaig (1991). He. d1v1ded the region between the chart limits and the
center-line into three zones on each side of the center line. Depending on which zone
contained the previous sample mean, a corresponding sample size was indicated for the
next sample. The link to double-sampling acceptance plans is clearly seen in work by
Daudin (1992). Rather than determining what the next regularly scheduled sample size
should be, Daudin suggests collecting an additional, larger sample immediately and
combining this information with the first sample. He provides a table of optimal double-
sampling X charts for use with various associated fixed sample size Shewhart charts,

The concept of adapting the next sample to be taken using a dual-sample size
scheme was proposed by Prabhu, Runger, and Keats (1993) and also studied by Costa
(1994). These works closely parallel the VSI results mentioned above and will be the
basis of the discussion to follow. Other related work of note addresses situations where,
rather than being adaptive, the sample sizes are simply not uniform. That is, situations
where the data, as collected, happens to have samples of various sizes due to
circumstances such as lost data, etc. Burr (1969) weights each sample according to its
size to estimate the standard deviation while Nelson (1990) considers standard deviation

estimation when sample sizes are not uniform.
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Variable Sample Size and Interval. The VSSI approach to adaptive monitoring

makes improvements on traditional X charts by allowing the both the frequency and size
of samples taken to vary. The technique uses information contained in the previous
sample to determine when the next sample should be taken and how large the sample
should be. While the process is relatively close to target, samples are small and taken
infrequently with both the size and frequency being increased as the chart limits are
approached.

The idea of combining the VSI and VSS monitoring approaches was first
suggested by Prabhu, Montgomery, and Runger (1994). Their work is a natural
progression of the research cited above. Rendtel (1990) propose a similar adaptive
approach for CUSUM p-charts, allowing both sample size and interval to vary.

Prabhu, Montgomery, and Runger (1994) provide detailed performance
calculations for their combined adaptive scheme. Their results show that the combined
approach is better than the pure VSS approach in terms of the average time to detect an
off-target process. The combined approach is also seen to outperform the pure VSI
approach for small shifts in the process mean, although the VSI approach seems to have a
slight advantage for large shifts of the process mean. The advantage of the VSI in the
latter case, however, is very slight and most likely attributable to the more frequent large
sample sizes required of the VSSI technique as the process shifts further from the target.

The following sections will discuss these adaptive monitoring schemes and
provide an example for each method. This discussion will serve as a foundation for

developing an adaptive approach to fractional monitoring of multiple stream processes.
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A more detailed, general discussion of these and several other adaptive approaches in

quality monitoring is given by Tagaras (1998).

Variable Sample Interval Methodology

Before setting up a VSI monitoring scheme, minimum and maximum allowable
intervals between samples need to be established. Minimum times are often driven by
physical or practical factors such as time to acquire the sample, time to measure the
items, and time necessary to record the results and prepare for the next sample.
Maximum interval times are generally based on comfort level — how long one is willing
to let the process go without at least a small sample being taken.

While we might envision a myriad of interval times being used for each of several
warning zones between the target value and chart limits, Reynolds (1989) and Reynolds
and Arnold (1989) showed that only two intervals are needed for any process which can
be modeled as a Markov chain. They also showed that the technique works best when
the two values are spread far apart. This result allows us to make use of the minimum
practical and maximum allowable intervals. Both Reynolds et a/ (1989) and Runger and
Pignatiello (1991) make use of this dual waiting time approach in constructing VSI
monitoring schemes. Runger and Pignatiello also impose a constraint based on a
symmetry requirement for the two-sided monitoring problem that simplifies the theory
and is easily understood in practice.

Since the VSI adaptive approach constructs charts where the interval between

samples is allowed to vary, the traditional method of comparing different monitoring
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schemes using the average run length (ARL) is not appropriate. Since the ARL measures
the number of samples before a chart signals, this approach is only valid if each scheme
uses a fixed sampling interval. Runger and Pignatiello (1991) point out that since the
VSI approach intentionally varies the timing between samples, the average number of
samples taken before detection is no longer an appropriate measure. They suggest the
use of the mean time until detection. By careful construction of the VSI sampling plan
they cause the average time between samples of an on-target variable interval scheme to
be equal to a comparable on-target fixed rate interval scheme. So in the VSI case, the
average time between samples equals the exact time between samples of the fixed rate
case thereby allowing for direct comparisons of on-target ARLs.

To constructa VSI X chart using the approach of Runger and Pignatiello we
need to identify sampling intervals both less than and greater than the fixed interval chart,
to. Let#; be the shorter interval and #, be the longer interval. If we also allow w; to be the
threshold value for switching between sampling intervals we can define an adaptive
sampling interval function for the current sample (7), based on the value of the previous
sample, Z; ;.

Lifw <Z,_, <UCL
()=44if-w <Z_, <w (4-2)

i-1 —

Wif LCL< Z, | <-w,

Equation 4-2 shows that if the previous sample (Z;.,) falls beyond the threshold
value (w;), but remains within the chart limits (UCL and LCL) we will use the short

sampling interval, #; (greater frequency) for the current sample (7). However, if the
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previous sample is located within the threshold values, the longer sample interval, #,, will

be used. Figure 4-1 shows the function in a graphical format adapted from Runger and

Pignatiello (1991).
é Adaptive t
= Interval
o0
R
8 Fixed b
= Interval
i ] ] [ 1
LCL -W, 0 W, UCL
V4

FIGURE 4-1. Fixed Interval and Adaptive Interval Waiting Time Functions

A note of practical consideration is worth mentioning here. While any
manageable values for ¢, and 1, can be selected, we might want to consider the potential
consequences of various choices. For example, if currently sampling every hour, but an
adaptive approach is desired, we might decide to sample as often as every 15 minutes and
allow the process to run without being sampled for up to 4 hours. If the average time
between samples is to remain equal to 1 hour, the threshold value will be such that we
expect to be within the threshold limits only about 20 percent of the time. The practical

implications are that samples will need to be taken at 15 minute intervals much more
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often than not. So, if taking samples every 15 minutes is possible, but constitutes a major
inconvenience, different interval values ought to be chosen.

As implied in the previous discussion, the selection of upper and lower allowable
sampling intervals will determine the value of the threshold value. Runger and
Pignatiello give an equation similar to the following for determining the proper value for

wi in a two-sided monitoring situation.

—d! q)(UCLXZXto“'tl)'*'(’z_"o) _
o] Syl “

where @ is the cumulative standard normal function. Note that if fois equal to 1 time

unit, say 1 hour, then equation 4-3 simplifies to

w = -] PUCL2 -21]+1, -1 (44)
: 2t, - 21,

which is the result given by Runger and Pignatiello.

As an example of this procedure, consider a simple filling operation where plastic
bottles are filled one at a time with a liquid to a target value, Ko = 2000 ml. The standard
deviation of the process is stable and known to be equal to 6 = 6 ml. This process is
susceptible to shifts in the process mean resulting in either over or under-filled bottles.
Under-filled bottles are a problem as the bottle no longer contains the advertised amount
of product while over-filling reduces product yield and overall profits. Since replacing or
adjusting the filling valve requires shutting down the filling machine, unnecessary valve

adjustments are to be avoided.
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Rational subgroups from this process consist of 5 bottle samples. Currently a
sample is taken once every hour and, although the sample interval could be allowed to

vary, the average inter-sample time is desired to remain at one hour. The upper and
lower chart limits for this process are UCLg = py +3 0'/ \n =2000+3- 6/ V5 22008 and
LCLy =1992. Due to constraints associated with the time required to pull a sample,
measure each bottle, record the values, and return them to the bottling line; the minimum
time between samples is estimated at 15 minutes. Management does not feel comfortable
letting the line operate for more than 2 hours between samples. Therefore we shall set

t1=0.25and , =2.0.

Using this information and equation 4-4 we can find an appropriate value for w;.

", = q)_l[(DG)(Z)(l - 25)+(2- 1)J _0.56

2(2-.25)

We can now establish upper and lower sampling thresholds of s, + w, 0'/ Vn =2001.5
and 1998.5 respectively. Figure 4-2 shows the chart with threshold limits and how
samples in each zone will affect the next sample taken.

Now assume the first sample from the bottling operation occurs at 8 o’clock am.,
(1) =08:00 and yields X ; = 1995.6. As this value is within the chart limits, but outside
the threshold limits, we see from Figure 4-2 that the next sample should be taken at #(2) =
(1) +t,=08:15. If the average of the next sample, X , (that is the sample taken at
08:15), falls within the threshold limits, say 2001.2, we would schedule the next sample

at 1(3) = 2) + 2:00 = 10:15.
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— UCL=2008

Take next sample
in 15 minutes

Upper threshold
2001.5 g — -
2000 ml ———— _ | | Take next sample
* in 2 hours
19985 )
Lower threshold |
- | Take next sample

in 15 minutes

FIGURE 4-2. VSI Chart Showing Threshold and Limit Values and Appropriate Actions

This procedure continues until a sample mean exceeds the chart limits. The tables
given by Runger and Pignatiello indicate that if the process mean should shift by, say
2.0c to a new mean of 2000 + 2(6) = 2012 the chart will signal within 2.6 hours on
average as compared with 5.8 hours using a standard, fixed-interval Shewhart chart. This
will result in detecting shifts of this size roughly twice as soon with the VSI adaptive
approach as we would with the standard, fixed-interval scheme.

Being able to detect off-target processes quickly is often the goal of switching to a
new monitoring scheme, however, this adaptive technique may be used to enhance
process performance in other ways. For example, if the current process seems to be
identifying off-target conditions at a rate that is deemed acceptable, an adaptive approach

could be used to maintain that level of protection and free up more of an operator’s time.
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This in turn might allow for a reduction in staffing, or enable the operation to expand
without a need to greatly increase personnel. The point is that we often look to make
improvements in the ability to monitor a process by detecting off-target situations more
quickly when in-fact more significant improvements might be possible using a new

approach to maintain a current level of risk, but free up other process resources.

Variable Sample Size Methodology

Much like the VSI case, the VSS monitoring scheme requires that minimum and
maximum allowable sample sizes be initially established. Maximum sample sizes are
often driven by physical or practical factors such as available space, available sample
collection time, and ability of machinery and/or operators to collect large sample sizes.
Minimum sample sizes will often be a single item produced, but may also be driven by
how few samples one is willing to measure and still continue normal process operation,
or what constitutes a logical definition of a minimum sub-group.

We might envision several threshold levels between the target value and chart
limits each with a corresponding sample size. Indeed Flaig (1991) proposed two sets of
threshold values on either side of the center-line with three different sample sizes.
Prabhu, Runger, and Keats (1993) showed that simply using two sample sizes yields
excellent results. This result allows for simple implementation of the procedure and
allows us to make use of the minimum practical and maximum allowable sample sizes.

Both Prabhu, Runger, and Keats (1993) and Costa (1994) use this approach in
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constructing VSS monitoring schemes, and we will take advantage of the technique in
this section.

Unlike the VSI adaptive approach where the traditional method of comparing
different monitoring schemes using the ARL was not appropriate, the VSS approach
could be compared to fixed-sample size Shewhart techniques using standard definitions
of ARL. Since the ARL measures the number of samples taken before a chart signals,
and the VSS scheme uses a fixed sampling interval, the definition technically holds.
However, Prabhu, Runger, and Keats (1993) use careful construction of the VSS plan to
force the average sample size taken to be equal to a comparable on-target fixed sample
size scheme to avoid misleading results obtained by taking the same number of samples
but of varying sample sizes. So in the VSS case, the average sample size equals the exact
sample size of the fixed chart case thereby removing any discrepancies in comparisons of
on-target ARLs.

To constructa VSS X chart using the approach of Prabhu, Runger, and Keats
(1993) we will need to identify sample sizes both less than, and greater than the sample
size on the fixed chart, ny. Let n; be the smaller sample size and 7, be the larger sample
size. If we also allow w; to be the threshold value for switching between sample sizes,
we can define an adaptive sample size function for the current sample (/), based on the

value of the previous sample, Z;.;.




117

nifw,<Z_ <UCL
n()=mif-w,<Z _ <w, (4-5)
mif LCL< Z,_ <-w,

Equation 4-5 shows that if the previous sample (Z;.,) falls beyond the threshold
values (-w,, or w;), but remains within the chart limits (UCL and LCL) we will use the
large sample size, n, for the current sample (/). However, if the previous sample is
located within the threshold values, the smaller sample size, n;, will be used. Figure 4-3

shows the function in a graphical format similar to that used in the previous section.

o Adaptive Jn,
N Sample
wn
© Plan
=9
5 Fed | | o I R
A Sample Plan
1,
[ { | 1
LCL -W, 0 W, UCL
Z

FIGURE 4-3. Fixed Interval and Adaptive Interval Waiting Time Functions

Analogous to the caution mentioned in the previous section, we need to make
informed choices when choosing values for n; and n,. For example, if we are currently

using a sample size of 5, but want to implement an adaptive approach we might decide
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we could accept samples of as few as only 1 item and as many as 20. If we want the
average sample size to remain equal to 5, the threshold value will be such that we expect
to be within the threshold 11m1ts nearly 80 percent of the time. The practical implications
are that we w111 need to take samples of only 1 item much more often than we will take
samples of 20. So, if taking samples this small is acceptable only if it is a rare event,
different sample size values ought to be chosen.

As implied in the previous discussion, the selection of upper and lower allowable
sample sizes will determine the threshold value. Prabhu, Runger, and Keats (1993) give
an equation similar to the following for determining the proper value for w; in a two-

sided monitoring situation.

— (I)(UCLXZX”O - ”2)"” (nl - no) ' )
Y@ l: 2(”1 _”2) :, (+6)

where @ is the cumulative standard normal function.
As an example of this procedure, consider again the simple filling operation

where plastic bottles are filled with a liquid to a target value, po = 2000 ml., with a stable

and known process standard deviation of ¢ = 6 ml.

Rational subgroups from this process are taken once every hour. Currently each
sample contains 5 bottles and, although the sample size requirement is flexible, the
average sample size should equal 5 bottles with an inter-sample time of one hour. The

upper and lower chart limits for this process are

UCLy = py +306/+/n =2000+3- 6/J— 2008 and LCL; =1992. Due to space
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limitations and sample collection workload, the maximum sample size is limited to 20
bottles. Management has agreed to allow sample sizes as small as 2 bottles to be taken as
long as the interval between samples does not exceed 1 hour (the current operating
condition). Therefore we shall set #,= 2 and n, = 20.

Using this information and equation 4-6 we can find an appropriate value for w,.

s = (D_l[q)(z.)(z)(s -20)+(2- 5)] 138

2(2-20)

We can now establish upper and lower sampling thresholds of + w on the standardized
chart using Equation 4-1. For a non-standardized chart we obtain two sets of threshold

values and chart limits. For n,, the upper and lower threshold values are

Ho +w, 0/ \Jn, =2005.85 and 1994.15 respectively with control limits at 2000 + 12.73,

For ny, the upper and lower threshold values are 4, + w, 0'/ \/;z: =2001.85 and 1998.15

respectively with control limits at 2000 + 4.02.

UCL = 2012.73 = - —
Next sample EOOLOT T e
size = 20 bottles Upper threshold
=2005.85 UCL = 2004.02
Next sample
: Upper threshold size = 20 bottles
size = 2 bottles 2000 ml R i o i, Lower threshold size = 2 bottles
- . L =1998.15 } Next sample
Lower threshold : LCL = 1995.98 size = 20 bottles
Next sample =1994.15°
size = 20 bottles

LCL = 1987.37 it

FIGURE 4-4. VSS Chart Showing Threshold and Limit Values and Appropriate Actions
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Figure 4-4 shows the non-standardized chart with threshold limits. Compare this
chart with the standardized chart shown in Figure 4-5. The standardized chart has fewer
horizontal lines and generates less potential for confusion. Both charts show how

samples in each zone will affect the next sample taken.

—UCL=3

Next sample

FCAR R size = 20 bottles
Upper threshold #+ - ~7
1.38

- - Next sample
ml
0 i : : size = 2 bottles

-1.38
Lower threshold i

L Next sample
- size = 20 bottles

T LCL=3

FIGURE 4-5. Standardized VSS Chart Showing Threshold and Limit Values
and Appropriate Actions

Now assume the first sample from the bottling operation occurs at 8 o’clock am.,

(1) = 08:00, is a sample of 20 bottles, and yields X ; = 1995.6. As this value is within
the chart limits, but outside the threshold limits, we see from Figure 4-4 that the next

sample size should also be 20 bottles, taken at £2) = #1) + #, = 08:00 + 1:00 = 09:00. If

the average of the next sample, X , (that is the sample taken at 09:00), falls within the
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threshold limits, say 2002.2, we would sample only 2 bottles at the next scheduled
sample time #(3) = 10:00.

This procedure contmues untll a sample mean exceeds the chart limits. The tables
given by Prabhu Runger and Keats indicate that if the process mean should shift by, say
1.0 o to a new mean of 2000 + 2(3) = 2006 the chart will signal within 2.59 hours on
average as compared with 4.50 hours using a standard, fixed-sample size Shewhart chart.
This will result in detecting shifts of this size roughly twice as soon with the VSS
adaptive approach as we would with the standard, fixed-sample size scheme. Unlike the
VSI technique, the VSS approach to adaptive monitoring does reach a point of
diminishing returns as shown in Table 4-1. Table 4-1 is a condensed version of Table 4

in Prabhu, Runger, and Keats (1993).

TABLE 4-1. Comparison of ARLSs for VSS vs. Shewhart Schemes (ry = 5)
Condensed from Prabhu, et al. (1993)

n_n,  w 5=0  6-05 06-10 o6-20
Shewhart chart 370.42 33.41 4.50 1.08
VSS chart .
1 8 056 370.42 22.61 6.28 139
1 12 091 370.42 15.34 257 1.62
1 20 125 370.42 0.88 2.93 1.86
2 8 067 370.42 23.06 2.90 129
2 12 103 370.42 15.93 2.47 141
2 20 138 370.42 10.29 2.59 1.51
3 8 084 370.42 23.75 2.92 1.20
3 12 12 370.42 17.01 2.44 1.25
3 20 155 370.42 11.30 2.45 129
4 8 115 370.42 25.14 2.98 1.12
4 12 152 370.42 19.42 2.49 1.14
4

20 185 370.42 13.97 2.46 1.15




122

Table 4-1 shows that for large shifts in the process mean, the fixed-sample size
Shewhart chart outperforms the VSS chart. This result is most pronounced for VSS
schemes utilizing large values for n,. It is these large upper sample sizes which cause the
poor performance. As the process moves further from target, we see from Figure 4-5 that
we will be taking a greater percentage of large samples thereby causing the average
number of samples to greatly increase and resulting in a slight inflation of the associated
ARL.

As with the VSI approach, the VSS adaptive technique may be used to enhance
process performance in ways other than improving time to detection, Rather than
reducing employee workload by lengthening the average interval between samples, the
VSS approach can allow for a reduction in the average number of samples collected.
This might reduce the number of destructive tests required, free up more resources for
other sampling procedures, or extend the life expectancy of the equipment involved in
sample taking operations. Once again, the point is that we may be able to make
significant improvements to overall process operation by maintaining a current level of

risk protection, but freeing up other process resources along the way.

Variable Sample Size and Interval Methodology
In a process that combines the features of both the VSI and VSS schemes, the
VSSI technique requires defining minimum and maximum values for both the intervals

between samples and sample sizes. As before, minimum interval times and maximum
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sample size values will likely be driven by physical or practical limitations while
maximum times and minimum sample values will tend to be more arbitrary. The choice
of threshold values will be slightly different. Generally the two sample sizes will be
fixed along with the lower sampling interval rate and we will solve for the upper
sampling interval rate.

While we might envision separate threshold values for determining when to
switch sample size and when to adjust the sampling interval, Prabhu, Montgomery, and
Runger (1994) show that selecting a single threshold value to indicate both changes is
both simpler and sufficient.

Since the VSSI adaptive approach allows the interval between samples to vary,
the traditional method of comparing different monitoring schemes using ARLs will, once
again, not be appropriate. Like the VSI approach discussed earlier, Prabhu, Montgomery,
and Runger use the mean time until detection, here called average time to signal (ATS).
By careful construction of the VSSI sampling' plan, they cause the average time between
samples of an on-target combined adaptive scheme to be equal to a comparable on-target
fixed rate interval scheme. Likewise the average sample size of the on-target adaptive
scheme will equate to the on-target fixed sample size approach. So in the VSSI case, the
average time between samples equals the exact time between samples of the fixed rate
case and the average sample size equals the exact sample size of the fixed chart case,

thereby allowing direct comparisons of on-target ARLs.
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To construct a VSSI X chart using the approach of Prabhu, Montgomery, and
Runger we will need to identify adaptive sampling intervals, ¢, and t, as well as adaptive
sample sizes, n;, and n,. As before, we will let £, indicate the short interval, #, the long
interval, n; the small sample size, and 7, the large sample size. We will set w = w1 =w,
to indicate the threshold value for switching between both sampling intervals and sample
sizes. The combined adaptive sampling function for the current sample, (/) based on the

value of the previous sample, Z;; is given in Equation 4-7.

(t,.n)ifw< Z_ <UCL

i~]
(t(),n()) = {(t,.m )if -w< Z_ <w -7
(t,m)if LCL<Z, <-w

Equation 4-7 shows that if the previous sample (Z;.;) falls beyond the threshold
value (w), but remains within the chart limits (UCL and LCL) we will use the short
sampling interval, #; (greater frequency), and large sample size, n,, for the current sample
(7). However, if the previous sample is located within the threshold values, the longer
sample interval, t, and small sample size, n;, will be used. Figure 4-6 shows the function
in a graphical format similar to those in the previous sections.

The practical considerations mentioned in the previous sections regarding making
informed decisions about minimum sampling intervals and maximum sample sizes take
on added urgency in the VSSI case. In the VSSI adaptive monitoring scheme we will be
sampling more frequently when we find sample means plotting beyond the threshold

values, and these samples will be large. For example, we may have decided a VSI
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approach in which samples were allowed to adapt between 15 minutes and 4 hours
worked fine for a fixed sample size of 5 units per sample. However, the VSSI technique
will adapt both sampling interval and sample size so if we leave the VSI values the same,
we may find ourselves sampling every 15 minutes with sample sizes of, say, 20 units per
sample. Taking such large samples every 15 minutes may not be possible in which case

different interval values and/or sample sizes should be chosen.

LEGEND

£ Standard
Shewhart

Adaptive
Interval

Adaptive_ _
Sample Size

Waiting Time
Sample Size

FIGURE 4-6. Fixed Interval and Adaptive Interval Waiting Time Functions

Unlike the VSI and VSS adaptive approaches where we had three parameters
(VSL: t,, 1, and wy, or VSS: n,, n,, and w,), the VSSI scheme has five parameters (¢, ¢,
m, my, and w). If the average sampling interval of the VSSI adaptive approach is to equal
the fixed sample interval of the standard Shewhart chart, and likewise for the sample size,
two constraints are effectively generated. Prabhu, Montgomery, and Runger use these

constraints to generate threshold equations for a two-sided monitoring situation. The
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threshold equations below are the same as those seen in earlier sections (Equations 4-3,

and 4-6 respectively).

L[ oeL)eXt, -4)+ @, -+,
w=00 ( XZX(;"Q; (, )] (4-8)
e @_,:®(UCLX2?2(ZZ - r:z))+ (n, —no)] 4.9)

We see from Equations 4-8 and 4-9 that selecting either upper and lower sampling
intervals, or upper and lower sample sizes will allow us to solve for the threshold value,
w. Now only one of the remaining parameter values needs to be specified in order to
uniquely determine the other. Prabhu, Montgomery, and Runger suggest selecting
desired sample sizes first in order to avoid any potential round off errors as sample sizes
will necessarily be integer values. Having determined the threshold value, w, they further
recommend fixing #; and solving for #, as the minimum sample interval is usually the
least flexible of the two. Having fixed the parameters 7, n, and t; we can solve for 7, by

setting equations 4-8 and 4-9 equal to one another.

& [ O(UCLY2Nz, ~ 1)+ (2, -1, )} _ (D_,{(D(UCLXZXnO -n)+(n, —n, )]

2(’2 - tl) 2(”1 - ”2)

(D(UCszxto - an —n2)+ (tz “toan ""2) = Q(UCLXZ)(no "nzxtz - tl)+ (nl _noxtz _tl)
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t2(n1 _nz)_tz(nl _no)_tzq)(UCL)(z)(no _nz)

= to(nl _nz)_ tl(nl "no)_ fx@(UCL)Q)(no _nz)_ (D(UCL)(ZXto -1 an —n2)

(=b (n1 —n )- 4L [(nl L) )+ Q)(UCLXZX}?O -n, )]_ q)(UCLXtho ~t,Xn,-n,)
: [, -n,)-(n, _no)_q)(UCszxno -n,)]

Letting ¢ equal the constant ®(IUCL)2) = 1.9973 we obtain a final equation

similar (and equivalent) to that given by Prabhu, Montgomery, and Runger

t = to(n, —n,)-1,[(n, — 1)+ cln, —n, )] clt, ~1,Xn, —n,) (4-10)

: [(nl"nz)’(nl —no)_c(no_nz)]

As an example of the VSSI procedure, reconsider the filling operation of the
previous sections. Recall that plastic bottles are filled with a liquid to a target value,
Ho = 2000 ml. The standard deviation of the process is stable and known to be 6 = 6 ml.
This process is susceptible to shifts in the process mean resulting in either over or under-
filled bottles.

Previous monitoring with a standard Shewhart X chart required subgroups of 5
bottles taken once an hour. A VSSI adaptive scheme is desired, but the average inter-
sample time is to remain at one hour and the average sample size should be 5 bottles.

Since the VSSI scheme allows the sample size to vary, we will monitor the process using
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a standardized chart as demonstrated in the previous section. The upper and lower chart
limits will be + 3.

Following the advice of Prabhu, Montgomery, and Runger we will fix the
adaptive sample sizes and lower sampling interval. Due to space limitations and sample
collection workload the maximum sample size is limited to 20 bottles. Management feels
sample sizes should not drop below 2 bottles at any time. Therefore set n; =2 and n, =

20. The threshold value is now determined using equation 4-9.

o [@(3)(2)(5 20)+(2- S)J ©(0.916)= 138
2(2 - 20)

Constraints that affect the sampling interval center around the time required to
pull a sample, measure each bottle, record the values and return them to the bottling line.
The minimum practical interval between samples is estimated to be 15 minutes if the
associated sample size is not overly large. Previous experience indicates the line should
not operate for more than 2 hours between samples. Now set ;= 0.25 and determine 4
using equation 4-10.

_ o =n) -1, - ny) + cln, —n,)]- ct, -1, X, - n,)
[r, = 7,)= (v, ~ ;) ~ cln, =, )]

where ¢ = ®(UCLY2)=1.9973

_1(2-20)-0.25[(2 - 5)+ ¢(5 - 20)]- c(1- 025)(2 20)

=1.15h 1 hour, 09
t,= [2-20)-(2-5)-c(5- 20)] ours =1 hour, 09 minutes




129

Now we can establish upper and lower sampling thresholds of Mo +w=138, and

-1.38 respectively. Figure 4-7 shows the standardized VSSI chart with threshold limits

and how samples in each zone will affect the next sample taken.

UCL =3
Next sample:
Upper threshold 20 bottles in 15 mins
1.38
0ml Next sample
m 2 bottles in 1 hr, 09 mins
-1.38
Lower threshold
Next sample:
20 bottles in 15 mins

LCL=-3
FIGURE 4-7. Standardized VSSI Chart Showing Threshold and Limit Values
and Appropriate Actions

Assume the first sample from the bottling operation occurs at 8 o’clock am, (1)
=08:00. Prabhu, Montgomery, and Runger suggest conducting the first sample as
though the previous sample had been beyond the threshold limits. Initializing the chart
procedure in this manner gives the chart the best opportunity to catch an off-target
condition that might be present at start-up. If the first sample (size = 20) is within the
chart limits, but outside the threshold limits, say X ; = 1996.3 (standardizing using
equation 4-1 gives Z; = -2.76), the next sample should be taken at (2)=11)+ 1t =08:15.

If the average of the next sample, X , (that is the sample taken at 08: 15), falls within the
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threshold limits, say 2001.2, we would schedule the next sample at #(3) = #2) + 1:.09 =
09:26.

This procedure continues until a sample mean exceeds the chart limits. The tables
given by Prabhu, Montgomery, and Runger indicate that, if the process mean should shift
by, say 1.5 o to a new mean of 2000 + 2(9) = 2018, the chart will, on average, signal
within 1.44 hours of the process shift. This is compared with 1.57 hours using a standard,
fixed-interval Shewhart chart. This result may not be enough of an improvement to
warrant the added complexity of the VSSI scheme. However, Table 4-2 shows that the
VSSI approach significantly outperforms the standard Shewhart chart, the VSI chart, and
the VSS chart for small shifts in the process mean. The differences for larger shift sizes
can be minimized if we allow smaller values for both #; and n,. The VSS data in Table
4-2 is from Prabhu, Runger, and Keats (1993), the VSI data from Prabhu, Montgomery,
and Runger (1994). The VSSI data agrees with the numbers given by Prabhu,
Montgomery, and Runger, but was obtained using the Markov chain ATS, and the
modified probability of detection computer program found in the appendix to Chapter 3.
This provided an opportunity to test the program before applying it to fractional sampling

situations.
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TABLE 4-2. Comparison of ARLSs for Shewhart (no=15), VSS, VSI, and VSSI Schemes

Ly b n_n w =0 6=0.5 6=1.0 =20
Shewhart chart 370.42 33.41 4.50 1.08
VSS chart

1 8 056 37042 22.61 6.28 139
1 12 0091 370.42 15.34 2.57 162
1 20 125 370.42 9.88 2.93 1.86
2 8 067 37042 23.06 2.90 1.29
2 12 103 370.42 15.93 2.47 1.41
2 20 138 37042 10.29 2.59 1.51
3 8 084 37042 23.75 2.92 1.20
312 122 37042 17.01 2.44 1.25
3 20 155 370.42 11.30 2.45 1.29
4 8 115 370.42 25.14 2.98 1.12
4 12 152 37042 19.42 2.49 1.14
4 20 185 370.42 13.97 2.46 115
VSI chart
025 2.00 056 37042 23.34 2.23 1.02
025 143 0.91 370.42 24.62 235 1.02
025 120 1.25 370.42 26.30 2.56 1.02
025 1.75 067 37042 23.69 2.26 1.02
025 132 1.03 370.42 25.21 2.42 1.02
025 1.15 1.38 370.42 27.00 2.66 1.02
025 1.50 084 37042 2433 232 1.02
025 121 122 37042 26.13 2.54 1.02
025 1.10 1.55 370.42 27.98 2.82 1.02
025 125 1.15 370.42 25.77 2.49 1.02
025 1.11 152 37042 27.82 2.79 1.02
025 1.05 1.85 370.42 29.54 3.12 1.02
VSSI chart
025 200 1 8 056 37042 15.28 182 1.15
025 143 1 12 0091 370.42 10.85 1.98 127
025 120 1 20 125 370.42 7.74 2.54 1.43
025 175 2 8 067 37042 15.71 1.74 1.08
025 132 2 12 103 370.42 11.39 178 1.13
025 115 2 20 138 37042 18.06 2.10 1.19
025 150 3 8 084 37042 16.57 1.72 1.05
025 121 3 12 122 37042 12.58 1.70 1.07
025 110 3 20 155 37042 19.07 1.93 1.09
025 125 4 8 115 370.42 18.71 1.79 1.03
025 111 4 12 152 37042 15.50 1.76 1.04
025 105 4 20 185 370.42 11.94 1.96 1.05
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As discussed in the previous sections, we may be able to use the VSSI approach
to simply improve the current monitoring situation. For example, set 7, equal to the
emstlng sample size and t1 equal to the current inter-sample time, let #; approach a single
unit and solve for tz ) We could then develop a new VSSI monitoring plan where the data
is collected of the same size and at the same rate as the fixed rate plan when we exceed
the threshold values, but at a more “leisurely” pace when we are within the threshold
values. A note of caution here: In this case ny and #, will not equal the existing process
values, but will instead be at least marginally larger than the small sample size and

frequent sampling interval respectively.

Adaptive Multiple Stream Monitoring

Let’s now consider how to apply the concepts of adaptive procéss monitoring to
MSP situations. The idea of adapting the interval between samples is exactly the same as
discussed in the previous sections. Two sampling intervals are chosen and a threshold
value selected such that the average time between samples equals some desired fixed rate
of sampling. The concept of adapting sample size can also be easily transferred to the
MSP problem although how we define a sample will have an important impact on the
results. Two sample size definitions will be presented. The first assumes all streams in

the process are included in a sample, the second allows fractional sampling,

Complete Stream Sampling. Traditionally, multiple stream processes define a

sample of size of one to be a sample of a single item from each stream. Using this

definition, a sample size of 5 would involve 5 items from each stream. For example, in a
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process with 10 streams, a sample of 5 would involve 50 production items. Adapting the
sample size would therefore select between two sample sizes with an appropriate
threshold value to result in an average sample size of a desired number of full collections
from the MSP.

The combined adaptive approach of the VSSI technique applied to the MSP
problem would simply involve a combination of the VSI and VSS approaches.
Redefining the bottling process as a MSP will show how the adaptive techniques might
work. The basics of the process remain the same. Plastic bottles are filled with a liquid
to a target value (o = 2000 ml), the standard deviation of each stream is stable and
known to be equal to 6 = 6 ml. Rather than being filled one at a time bottles are filled on
a rotary-filling machine with 12 valves. In this case a sample size of 1 involves 12
bottles.

Past monitoring of this process has been accomplished with a fixed interval, fixed
sample size Shewhart X chart using 3 samples from each valve (36 bottles) taken each
hour. Monitoring each stream would require p = 12 charts with upper and lower chart

limits of UCLy = g, +30/v/n =2000+3-6/+/3 =2010.39 and LCL, =1989.61. Aswe

saw earlier, we can greatly simplify the monitoring situation by taking an average value

across all the streams. Upper and lower limits for monitoring the average are

UCLg = pty +365 [y[p =2000+3-3.464/v12 = 2003 and LCL_ =1997. Given this

background, a VSSI adaptive scheme is desired, with an average inter-sample time of one

hour and an average sample size of 3.
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Fixing the adaptive sample sizes and lower sampling interval will again define the
threshold value and upper sampling interval. Due to space limitations and sample
collection workload, the maximum sample size is limited to 60 bottles (5 turns of the
filling machine). Management feels sample sizes should not drop below 1 bottle from
each stream at any time. Therefore set n;=1 and n, = 5. The threshold value is now

determined using equation 4-9.

w= @“[ q>(3)(2)§3(1__52; (- 3)] = ®7(0.7493) = 0.6724

The sampling interval is constrained by the time required to pull a sample,
measure each bottle, record the values and return them to the bottling line. The minimum
practical interval between samples is estimated to be 15 minutes if the associated sample
size is not overly large. Previous experience indicates the line should not operate for
more than 2 hours between samples. Now set #; = 0.25 and determine ¢, using equation 4-
10.

_1(1-5)-0.25[(1-3)+ c(3-5)]-c(1-0.25)1-5)

[0-5)-(1-3)-c(3-5)]

=1.75 hours

2

Now we can establish upper and lower sampling thresholds and chart limits.

Table 4-3 shows the appropriate values for 7; and »; in non-standardized units.
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TABLE 4-3. Actual Limits for MSP VSSI Chart (n;=1, ny=5)

Lower Upper
LCL Threshold Threshold ucL
(lzn ll):tti es) 1994.80 1998.84 2001.16 2005.20
(6(;1 :):ttsles) 1997.68 1999.48 2000.52 2002.32

To simplify things, we will use a standardized chart with threshold values of
10.6724. Figure 4-8 shows the standardized VSSI chart with threshold limits and how

samples in each zone will affect the next sample taken.

UCL=3

Next sample = 5

Upper threshold (60 bottles) in 15 mins
0.4418 :
0 Next sample = 1
(12 bottles) in 1 hr, 45 mins
-0.4418}
Lower threshold

Next sample =5
(60 bottles) in 15 mins

TCL=-3

FIGURE 4-8. Standardized MSP VSSI Chart Showing Threshold and Limit Values
and Appropriate Actions.

Now assume the first sample from the bottling operation occurs at 8 o’clock am.,
1(1) = 08:00 with a sample size of 5 called for when using the FIR approach suggested by

Prabhu, Montgomery, and Runger. If the first sample taken is within the chart limits, but

outside the threshold limits, say X | = 1998.6, the next sample should be taken at {2)=
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(1) + = 08:15 using a sample size of n, = 5. If the average of the next sample, X,
(that is the sample taken at 08:15), falls within the threshold limits, say 2000.2, we would
schedule the next sample at #(3) = #(2) + 1:45 = 10:00 using a sample size of 1.

This procedure continues until a sample mean exceeds the chart limits. The tables
given by Prabhu, Montgomery, and Runger indicate that, if the process mean shifts by,
say 1.5 o, to a new mean of 2000 + 1.5(6) = 2009 across all streams, the chart will signal
within 1.26 hours on average as compared with 2.91 hours using a standard, fixed-
interval Shewhart chart. Refer to Table 4-2 for performance comparisons of the VSSI
approach compared to the standard Shewhart chart, the VSI chart, and the VSS chart.

Note that the preceding results are valid if we have p identically distributed,
independent streams, all the streams shift together, and samples consist of full turns of the
filling machine (all streams sampled). Recall at the beginning of this section we
mentioned that the definition of a sample size would have a direct impact on how the
VSSI approach was applied to a MSP situation. If, instead of taking samples consisting
of data from every stream, we sample only a fraction of the streams at any given time, the
definition of a sample size will be slightly different. This situation will be investigated

next.

Fractional Stream Sampling. When faced with a fractional sampling situation, we

will consider the number of streams sampled, s, to be the sample size. So if a process has
60 streams and 25% of the streams are sampled, the sample size is s = 15. Using a VSSI

adaptive approach adapts the size of this fractional sample (s; and ;) and the time
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between fractional samples (#; and #,). In the case where we were sampling from each

stream, the X chart only gave an indication if an assignable cause had impacted all the
streams and did a poor job of noting when individual streams had moved off-target.
Earlier we saw how Mortell and Runger (1995) address this issue by also monitoring the
range, Ry, of each sample. This measure performs well in detecting shifts affecting one or
more streams. However, Mortell and Runger require the size of each sample taken to be
equal, a problem if we intend to use a VSS or VSSI approach. To accommodate this
requirement, only fractional samples where s, is an integer multiple of s; will be taken,
and one or more range charts for each sample will be generated.

Since only a fraction of the total streams are sampled, a chart signal indicates a
shift in the mean of that fraction, not necessarily all the streams in the process. The
tables in Chapter 3 show that this signal is more likely the greater the number of streams
in the sample that shift. For example, if we sample 20 of 60 streams at any given time, a
signal indicates that a shift may be impacting the 20 streams sampled and a signal is more
likely if 18 streams have shifted than if only 2 streams shift. So a signal indicates that
either all streams in the process have shifted, or a significant number of the streams
contained in the fractional sample. By adapting the sample fraction, we can quickly
determine if the shift is affecting all streams or limited to a certain subset of the streams.

To clarify the fractional sampling VSSI approach, reconsider the MSP bottling
process with a large number of streams. Once again we will assume plastic bottles are

filled with a liquid to a target value (o = 2000 ml), the standard deviation of each stream
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is stable and known to be equal to 6 =6 ml. For this example, assume bottles are filled
on a rotary-filling machine with 60 valves.

Past monitoring of this process has been accomplished with a fixed interval, fixed
sample size Shewhart X chart using a sample from one third of the streams (20 bottles)

every hour. By taking an average value across 20 streams, upper and lower limits have
been established at UCLg = y, +30/,[s, = 2000+ 3-6/+20 =2004.02 and

LCLy =1995.98. A VSSI adaptive scheme is desired, but the average inter-sample time

is to remain at one hour and the average sample size should be 20 bottles.

Again the adaptive sample sizes and lower sampling interval are fixed. In this
case space limitations and sample collection workload limit the maximum sample size to
30 bottles. Since two fractional sample sizes where s; is an integer multiple of s; are
desired, set s;= 15 and s, = 30. The threshold value can now be determined using

equation 4-9.

w= @*‘[ CD(3)(2X22(21—53—0;;)(15 - 20)} = 7(0.8324) = 0.9638

Using a minimum interval between samples of 15 minutes (¢, = 0.25) determine #,

using equation 4-10.

1(15-30)—0.25[(15 - 20)+ ¢(20 - 30)] - c(1 - 0.25)15- 30)
2= [(15-30) (15~ 20)— (20~ 30)] =137 hours
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Now upper and lower sampling thresholds and chart limits can be established.
Table 4-4 shows the appropriate values for s; and s, in non-standardized units. A
standardized chart with threshold values of +0.9638 will be used to actually monitor the

process for simplicity.

TABLE 44. Actual Limits for Fractional VSSI Chart (s1=15, 5,=30)

Lower Upper
LCL Threshold Threshold UcL
s =15 1991.95 1997.41 2002.59 2008.05
5, =30 1996.71 1998.94 2001.06 2003.29

Now assume the first sample from the bottling operation occurs at 8 o’clock a.m.,
#(1) = 08:00. The FIR approach requires the first sample to be s, = 30 bottles. If the first
sample taken is within the X chart limits, but outside the threshold limits the next
sample should be of size s, = 30 bottles taken at #(2) = /(1) + t; = 08:15. Ifthe average of
the next sample, X , (that is the sample taken at 08: 15), falls within the threshold limits
we would schedule the next sample at #(3) = #(2) + 1:22:30 = 09:37:30 using a sample
size of s; = 15 bottles. This procedure continues until a sample mean exceeds the chart
limits.

The tables given by Prabhu, Montgomery, and Runger do not help determine the
chart’s performance as we are sampling only a fraction of the total streams and allow a

process shift to impact fewer than all the streams. Instead a Markov chain approach is
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used to determine the performance of the adaptive, fractional X chart, in a fashion
similar to that used by Prabhu, Montgomery, and Runger. The particulars of the Markov
process are given in Appendix 4A.

The tables on the following pages show the ATS performance of various VSSI
schemes for the 60 bottle process example using the Markov chain method of
determining the ATS. Tables are given for average sample sizes of 12 and 24 bottles, and
for situations with various numbers of off-target streams. Table 4-6, 4-7, 4-8 and 4-9
show results when 20%, 40%, 60%, and 80% of the streams are off-target respectively.
Each table also shows the results of a fixed sample chart for the same situation. Note that
the VSSI approach outperforms the fixed sample size approach in nearly all cases. Those
instances where the fixed method holds an edge, it is seen to be only marginally better
than the adaptive methods. Sets of tables for other MSP situations can be found at the end

of the chapter.




TABLE 4-5. ATS Results for 12 Streams Off-target in a 60 Stream Process

So 8¢ Sz t1 tz w [4] 0.5 1 1.5 2 25 3

12 fixed - - - — 37038 199.24 6454 23.03 1034 576 3.80
12 6 18 025 175 067 370.38 187.64 5012 1429 559 307 2.16
12 6 24 025 138 0.96 370.38 186.83 4750 1272 490 279 206
12 6 30 025 125 1.5 37038 18598 4521 1148 443 264 203
12 6 36 025 119 128 370.38 185.10 43.14 1048 411 257 205
12 6 42 025 115 1.38 370.38 184.20 4124 967 390 256 208
12 6 48 025 1.13 146 370.38 183.28 3949 901 377 258 2.14
12 6 54 025 111 152 370.38 18237 3787 846 370 262 2.19
12 6 60 025 109 158 370.38 181.46 3636 802 367 267 225
Sp 84 Sp t tg w 0 0.5 1 1.5 2 2.5 3

24 fixed - - - — 370.38 14588 3698 1203 529 302 208
24 6 30 025 325 032 370.38 130.42 2434 6.02 254 167 1.38
24 6 36 025 213 0.52 370.38 128.21 22.18 525 233 164 141
24 6 42 025 175 067 370.38 12624 2039 470 222 165 145
24 6 48 025 156 0.79 370.38 12440 1885 429 216 168 150
24 6 54 025 145 0.88 370.38 12265 1752 398 214 172 155
24 6 60 025 138 096 370.38 120.99 1636 3.76 215 177 161
24 12 30 025 250 043 37038 131.03 2465 609 255 166 1.35
24 12 36 025 175 067 370.38 12956 2284 539 233 161 1.36
24 12 42 025 150 0.84 370.38 128.24 21.33 486 221 159 1.37
24 12 48 025 138 0.96 370.38 127.00 2000 446 213 160 140
24 12 54 025 130 1.06 370.38 12580 18.83 4.16 209 161 143
24 12 60 025 125 115 370.38 124.63 17.78 392 207 164 146
24 18 30 025 175 067 37038 13246 2550 6.3¢4 261 167 1.35
24 18 36 025 138 096 370.38 13226 2447 584 244 162 134
24 18 42 025 125 115 370.38 131.94 2352 542 232 160 1.35
24 18 48 025 119 1.28 370.38 131.52 2263 507 224 159 1.36
24 18 54 025 115 138 370.38 131.04 2178 478 219 160 1.38
24 18 60 025 113 146 370.38 13052 2098 455 216 1.61 140

141




TABLE 4-6. ATS Results for 24 Streams Off-target in a 60 Stream Process

Sp Sy Sz t t w 4] 0.5 1 1.5 2 25 3

12 fixed - - - — 37038 8127 1427 452 232 161 132
12 6 18 025 175 067 37038 6257 654 208 143 124 1.16
12 6 24 025 138 096 37038 5838 542 197 146 129 120
12 6 30 025 125 115 37038 54.79 476 196 151 134 124
12 6 36 025 119 128 37038 5162 437 200 157 138 127
12 6 42 025 115 1.38 37038 4878 4.15 207 162 142 130
12 6 48 025 113 146 37038 4622 403 214 167 145 132
12 6 54 025 1.11 152 37038 4392 400 222 172 148 134
12 6 60 025 109 1.58 37038 41.83 401 229 177 150 1.36
8o S§1 L)) t1 12 w 0 0.5 1 1.5 2 2.5 3

24 fixed - - - - 37038 4225 604 209 130 1.09 1.03
24 6 30 025 325 032 37038 2718 257 133 114 109 1.06
24 6 36 025 213 052 37038 2435 233 137 120 114 110
24 6 42 025 175 067 37038 2206 222 142 125 118 113
24 6 48 025 156 079 37038 2016 218 147 130 121 1.16
24 6 54 025 145 088 37038 1856 218 153 134 124 1.18
24 6 60 025 138 096 37038 1720 220 158 1.38 127 120
24 12 30 025 250 043 37038 2759 257 130 1.1 105 1.03
24 12 36 025 175 067 37038 2518 232 130 1.13 107 1.04
24 12 42 025 150 084 37038 2320 219 132 115 1.09 1.05
24 12 48 025 138 096 37038 2151 212 135 1.18 1.10 1.06
24 12 54 025 130 106 37038 2005 208 137 120 111 1.07
24 12 60 025 125 115 37038 1878 208 140 121 112 1.07
24 18 30 025 175 067 37038 2866 265 129 109 103 1.01
24 18 36 025 138 096 37038 2720 243 128 110 104 1.02
24 18 42 025 125 115 370.38 2587 230 129 141 105 1.02
24 18 48 025 119 1.28 370.38 2466 222 130 1.42 105 1.02
24 18 54 025 115 138 370.38 2353 218 132 113 1.06 103
24 18 60 025 113 146 37038 2250 216 134 114 1.06 1.03

142




TABLE 4-7. ATS Results for 36 Streams Off-target in a 60 Stream Process

Sp S1 Sz t t w 0 0.5 1 1.5 2 25 3

12 fixed - - - — 37038 3599 501 185 124 108 1.03
12 6 18 025 175 067 370.38 2017 205 126 1141 106 1.04
12 6 24 025 138 096 37038 1691 193 131 115 109 105
12 6 30 025 125 115 37038 1460 193 136 119 111 106
12 6 36 025 119 128 37038 1291 199 141 121 112 1.07
12 6 42 025 115 138 37038 1166 206 145 123 113 1.08
12 6 48 025 113 146 37038 1072 215 149 125 114 108
12 6 54 025 111 152 37038 1003 224 153 127 115 1.09
12 6 60 025 109 158 37038 951 232 156 128 115 1.09
Sp S¢ Sz t t w 0 0.5 1 1.5 2 2.5 3

24 fixed - - - - 37038 1506 209 112 1.01 1.00 1.00
24 6 30 025 325 032 37038 672 131 109 105 1.03 1.02
24 6 36 025 213 052 37038 565 135 114 108 105 1.03
24 6 42 025 175 067 37038 496 140 118 110 1.06 1.04
24 6 48 025 156 079 37038 449 146 122 1142 107 1.04
24 6 54 025 145 0.88 37038 417 151 125 114 108 1.05
24 6 60 025 138 096 37038 396 157 128 115 1.09 1.05
24 12 30 025 250 043 37038 680 128 106 102 101 1.00
24 12 36 025 175 067 37038 581 128 108 103 101 1.00
24 12 42 025 150 084 37038 513 130 109 103 101 1.00
24 12 48 025 138 096 37038 465 132 111 104 101 1.01
24 12 54 025 130 106 37038 431 135 112 104 101 1.01
24 12 60 025 125 1.15 37038 4.07 138 113 105 1.02 1.01
24 18 30 025 175 067 37038 715 127 104 101 1.00 1.00
24 18 36 025 138 096 37038 639 126 1.05 101 1.00 1.00
24 18 42 025 125 115 37038 582 127 106 101 100 1.00
24 18 48 025 1.19 128 37038 537 128 106 101 100 1.00
24 18 54 025 115 1.38 37038 503 130 107 101 100 1.00
24 18 60 025 113 146 37038 477 132 1.07 101 100 1.00

143




TABLE 4-8. ATS Results for 48 Streams Off-target in a 60 Stream Process

So S 82 t t w 0 0.5 1 1.5 2 2.5 3

12 fixed - - - -~ 37038 1785 241 1148 102 100 1.00
12 6 18 025 175 067 37038 724 134 109 103 101 1.00
12 6 24 025 138 096 37038 576 138 1.13 105 102 1.01
12 6 30 025 125 115 37038 497 144 115 106 102 1.01
12 6 36 025 119 128 37038 454 150 117 1.06 1.02 1.01
12 6 42 025 1.15 138 37038 432 156 119 1.07 102 1.01
12 6 48 025 113 146 37038 424 161 121 107 103 1.01
12 6 54 025 1.11 152 37038 423 166 122 108 1.03 1.01
12 6 60 025 1.09 158 370.38 429 1.71 123 1.08 1.03 1.01
So S¢ Sz ty t w 0 0.5 1 1.5 2 2.5 3

24 fixed - - - - 37038 658 1 .23\ 1.00 100 100 1.00
24 6 30 025 325 032 37038 259 112 104 102 101 1.00
24 6 36 025 213 052 37038 234 117 1.07 103 101 1.00
24 6 42 025 175 067 37038 222 121 109 1.03 1.01 1.00
24 6 48 025 156 079 37038 219 125 110 1.04 101 1.01
24 6 54 025 145 088 37038 220 129 1.11 1.04 102 1.0
24 6 60 025 138 096 37038 224 132 113 1.05 1.02 1.01
24 12 30 025 250 043 37038 258 1.08 101 1.00 1.00 1.00
24 12 36 025 175 067 37038 231 110 102 100 1.00 1.00
24 12 42 025 150 084 37038 217 112 102 1.00 100 1.00
24 12 48 025 138 096 37038 210 114 103 100 1.00 1.00
24 12 54 025 130 1.06 37038 208 115 103 1.00 100 1.00
24 12 60 025 125 115 37038 208 1.17 1.03 1.00 1.00 1.00
24 18 30 025 175 067 370.38 266 107 1.00 100 1.00 1.00
24 18 36 025 138 096 37038 243 107 1.01 100 100 1.00
24 18 42 025 125 115 37038 229 108 101 1.00 1.00 1.00
24 18 48 025 119 1.28 370.38 2.21 1.09 1.0% 100 1.00 1.00
24 18 54 025 115 138 370.38 217 110 101 100 1.00 1.00
24 18 60 025 113 146 37038 216 110 1.01 100 1.00 1.00
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In addition to comparisons with the fixed sample scheme, it is interesting to note
performance differences among the VSSI schemes. Figure 4-9 shows how changes in s,
affect the ATS performance for a process with 60 streams, 40 percent of which are off-
target using an average sample size, so = 12 and a minimum sample size, s, = 6. Note

that while larger values of s, provide better results, they are not dramatically better than

the smaller s, values.
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FIGURE 4-9. ATS Results for Various s, and #, Values in a 60 Stream Process
with 40% Off-target and so= 12, s;=6, o= 1.0, 1;=0.25
Figure 4-10 shows how increasing the average sample size, so, improves ATS
performance for a 60 stream process with 40% off-target and a common threshold value,

w=0.67. In general, larger values of s, perform better, but smaller values of s, can be

competitive performers.
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FIGURE 4-10. ATS Values for a 60 Stream Process with Various Average Sample

Sizes, 40% Off-target, w =0.67, £, = 1.0, t; = 0.25

Figure 4-11 shows how changes in the percentage of off-target (OT) streams

impacts a VSSI scheme for 60 streams with an average sample size of so= 12 and

common threshold value of w = 0.67.
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FIGURE 4-11. ATS Values for 60 Stream Process with Various Off-Target Percentages,

w=0675=12,8=6,5= 18,4=1.0,14 =0.256=1.175
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Selecting an adaptive scheme to use involves practical considerations beyond
simply choosing the best ATS performance. In many cases the desired shift size to be
detected affects the choice of the best VSSI scheme. Another important consideration
centers on the threshold value, w. Adaptive schemes where w is less than 0.67 indicate
more samples will fall in zone 2 than in zone 1 for an on-target process, thereby
necessitating the taking of frequent large samples. As w is allowed to increase, the

proportion of samples that fall in zone 1 will also increase (for an on-target process).

Range Monitoring

In addition to X , the range for each fractional sample should also be monitored
using the R, chart. Since the range chart requires all samples to be of a fixed size, values
for the variable sample size portion of an adaptive scheme should be chosen with care.
By selecting the larger value, s,, as an integer multiple of the smaller value, s;, multiple
ranges can be calculated when the larger sample size is taken. Each of these ranges
should be plotted on the range chart in the order taken so that a signal will allow proper
identification of the suspect sample fraction. In the previous bottling example, two
ranges would be calculated when s = s, = 30: the first derived from the first 15 bottles,
the second using bottles 16 — 30. This way all range chart values are based on a common
sample size of 15 bottles. Furthermore, if the process has shifted, these range charts will

help indicate which fraction contains the shift.




148

Appropriate range limits can be determined by estimating the expected fractional
sample range when the process is on target. For a given sample size we can determine
the probability of realizing a range value above a given limit by simulating the situation,
or referring to table of Normal distribution range limits. Pearson (1932) provides a
detailed table of sample range percentage limits for samples of size 2 to 100.

Note that the traditional purpose of the range chart is to track process variance,
but here it is used to watch for a mean shift. Since the range chart is monitoring the
maximum and minimum values within a sample, it is actually estimating the stream-to-
stream variability. Any statistical chart that accomplishes the same task ought to serve as

an adequate mechanism for monitoring shifts that impact a subset of the process streams.

Summary

The algorithm developed in Chapter 3 has allowed the performance of adaptive
monitoring schemes for fractionally sampled multiple stream processes to be measured
using a Markov chain approach. Specific performance results are dependent on the
parameters of the process being monitored, but the results presented here show that the
adaptive technique generally outperforms fixed sample size methods. Furthermore, in
many cases the performance of an adaptively monitored process using fractional samples
can compete directly with schemes where all streams are required to be included in a
given sample.

The tables and graphs in Appendix 4B show a great deal of flexibility is available

in determining an appropriate adaptive monitoring scheme. To illustrate the
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implementation of an adaptive scheme for a process requiring fractional sampling, a case

study will be presented in Chapter 5.
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APPENDIX 4A

ATS DEVELOPMENT USING MARKOV CHAINS

The average time to signal (ATS) is used as a performance measure to indicate the
expected value of the elapsed time between the occurrence of an assignable cause and its
detection by a given process monitoring scheme. A large ATS is desired when the
process is on-target, but a short ATS is needed when the process drifts off-target since we
want to detect this situation as quickly as possible. We are interested in detecting
situations where the process mean shifts from a target value, p, to a new value, p. The

size of the shift is commonly expressed in terms of the process standard deviation, .

Thus we desire to detect the situation where p, shifts to p = py + 0.

A Markov chain technique can be used to determine the ATS. A Markov process
is defined as a process independent of previous actions and dependent only on the current
state of the process. That the adaptive process fits this description can be seen in that the
probability of transitioning from one state to another is a function only of the present
state and the applied sampling decision rule.

The development given in this appendix closely parallels the description given by
Prabhu, Montgomery and Runger (1994) although the specifics given here will be unique
to the fractionally sampled MSP. Other Markov approaches to determining average run
lengths are given by Brook and Evans (1972), Prabhu, Runger, and Keats (1993), and

Costa (1994).
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A traditional Shewhart chart can be thought of as consisting of two zones, or
states. The on-target state where plotted data points fall within the chart limits, and the
off-target state, where a plotted point falls beyond the chart limits. By specifying the
location of the chart limits, we define the probability of being in one state or the other for
a given sample. In adaptive monitoring schemes, more than two states are defined for the
system. For adaptive schemes using one set of threshold values and one set of chart

limits, three possible states are defined.

State 1: within the threshold values = [-w, w]

State 2: outside the threshold values, but within the chart limits
= [LCL, -w] U [w, UCL]

State 3: outside the chart limits = (-0, LCL] U [UCL, »)

State 3 can be seen to be an absorbing state, that is no sampling action takes place
if we enter state 3, rather we cease monitoring, stop the process, and search for an
assignable cause which may have impacted the process.

The development of a Markov chain approach to determining the ATS begins
with a transition probability matrix. For the adaptive models used in this chapter this

matrix is given by

Pu Pn P
P=\py Pn Py
Py Py Ps
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where pj represents the probability of moving from state i to state j for a given shift size
in the mean, 3. For example, p)) represents the probability that being in state 1, we will
remain in state 1 after taking a sample when the process has shifted by 5. Since we are
currently in state 1 we will be using s, as the sample size and so p; =Pr[-w <Z; <w | 51;

8]. Now solving using the cumulative standard normal distribution gives

Py = CI)(w— 5‘/;)-— (IJ(— w— 5&)
To determine the ARL for a VSS chart, Prabhu, Runger, and Keats (1993) and

Costa (1994) use the following equation.
ARL=b"(I-Q)1 (4A-1)

where b’ = (b, b,) is a vector relating to the probabilities that the process starts in state 1
and state 2 respectively. Since we do not allow the process to start in state 3, b, + b,= 1.
I is the identity matrix of order 2, Q is the probability transition matrix where the
elements associated with the absorbing state have been deleted, and 1is a 2 x 1 column

vector.

) el e ] ]
b, 01 Py Pxn 1

Prabhu, Montgomery, and Runger point out that b’ (I - Q)1 provides the mean
number of transitions in each state before the adaptive scheme signals. To account for
the variable time between samples of the VSSI scheme, 1 is replaced by the vector of

sampling intervals, t’ = [¢,, #/], in equation 4A -1 yielding
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ATS = b’ - Q)-It
(4A-2)

The choice of b’ is critical to determining the ATS of the process. This vector

represents the probability that the monitoring scheme will be in zone 1 or zone 2 (statel,
or state 2) when the process shift occurs. Naturally if the adaptive scheme happens to be
in zone 2 when the process shift occurs, there is a better chance of detecting the shift
immediately due to the larger sample size, s, used in this zone. Prabhu, Montgomery,
and Runger suggest reasonable choices for ; and b, as the proportion of time spent using
in zones 1 and 2 respectively while the process is on target. Hence b; = p11/(p11+p12) and
b2 = pul(pa1+p).

At this point the only information we need to compute the ATS are the transition
probabilities. As we are taking fractional samples from a process where any number of
the streams may be off-target, determining these probabilities can be quite involved.
However, the program used in Chapter 3 to determine probabilities of detection is easily
modified to obtain transition probabilities. This is the approach used to generate the
results shown in Chapter 4 and the tables given in Appendix 4B.

Allowing the sample fraction to vary, as well as the sampling interval, results in
an infinite number of possible combinations. Limiting the allowable values of ¢; to 0.25,
0.50, and 0.75 and incrementing s; and s; in steps of 10 percent of the total streams helps
somewhat, but still results in more tables of results than can be shown in this document.

In all cases, using values of 7; = 0.25 provides the best ATS results. This is not surprising
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as smaller values of t; result in larger values of t, and the spread between values is
maximized resulting in better ATS performance as suggested by Reynolds (1989) and
Reynolds and Amold (1989).

Generally, smaller values of s; together with values of s, approaching 100 percent
of the total streams provide better ATS values. Exceptions to this rule occur as the
number of streams shifting off-target increases. For example, if 4 streams are off-target
and s; = 2 streams, there is not as much opportunity to obtain off-target samples as if s;=
4 or more streams, especially as the shift sizes increase. Table 4A-1 shows an example of
this. Notice that while s, has increased for the larger shift sizes, s, has continued to

prefer its maximum value, 100 percent of the total streams.

TABLE 4A-1. ATS Results for Fractional VSSI (s,=16, ,=0.25)

So CH S2 t t2 w 0.0 0.5 1.0 15 20 2.5 3.0
16 2 18 0.25 6.25 0.16 |370.38 181.78 51.10 1485 532 261 1.73
16 2 20 025 3.63 028 |370.38 181.20 49.86 1399 4388 242 1.67
16 4 18 0.25 5.50 0.18 |370.38 18182 51.14 1487 532 2.60 1.72
16 4 20 0.25 3.25 032 |370.38 18132 4998 1404 489 241 1.65
16 6 18 0.25 475 021 |370.38 181.88 5120 1489 533 261 1.72
16 6 20 0.25 2.88 037 |370.38 18148 50.15 1411 491 242 1.65
8

16 18 0.25 4.00 025 [37038 18197 5129 1494 534 261 1.72
16 8 20 0.25 2.50 043 |37038 18171 5039 1423 495 243 1.64
16 10 18 0.25 3.25 032 137038 182.12 5146 1502 537 262 1.72
16 10 20 0.25 213 0.52 | 370.38 182.08 50.80 1444 503 245 1.65
16 12 18 0.25 250 043 |370.38 18245 5180 1519 545 264 1.72

16 12 20 0.25 1.75 0.67 |370.38 18278 51.57 1484 519 2,50 1.66
16 14 18 0.25 1.75 067 |370.38 18343 5285 1576 568 273 1.76

16 14 20 0.25 1.38 096 |370.38 18447 5348 1589 563 2.66 1.71

Table 4A-2 shows the average time to signal for the adaptive approach with an
average sample size of so = 20 bottles, compared with a fixed sample approach using n =

20 bottles. The ATS values for the adaptive method were obtained using s; =15 and s, =




30,¢;,=0.25 and 1, = 1.38, and w = 0.964 and are shown in bold on the left with the
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corresponding fixed sample results on the right. Results are shown for various numbers

of streams shifting by sizes ranging from 0.5¢ to 3o for each method.

TABLE 4A-2. ATS Results for Fractional VSSI (s1= 15, 52= 30, 50=20) vs.
Fixed Sample (» = 20) Schemes

Shift Size
# Off-target 0.5 1.0 1.5 2.0 2.5 3.0
12 148.0 160.5| 30.8 435 7.7 145 31 64| 19 36| 15 25
24 354 511 31 77 14 25 12 15 11 12| 1.0 11
36 80 192 14 26 11 12| 10 10 10 10 10 1.0
48 32 86/ 11 14 10 10/ 10 10 1.0 10 10 1.0
60 18 45 1.0 11 10 10/ 10 10 10 10/ 10 10




Appendix 4A. Tables are given here for processes with 40 streams and 80 streams.

ATS TABLES FOR 40 & 80 STREAM PROCESSES

APPENDIX 4B
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The tables shown in this appendix were derived using the Markov chain approach described in

40 Streams; 8 Streams Off-target; So = 8 Streams

So §1 Sz t1 tz w 0.0 0.5 1.0 1.5 20 25 3.0
8 4 12 025 1.75 | 067 |370.38 21886 71.97 2317 924 480 312
8 4 16 025 138 | 0.96 |370.38 21880 7022 2165 836 433 287
8 4 20 025 125 | 115 |370.38 21864 6863 2034 765 399 272
8 4 24 025 119 | 1.28 {37038 218.39 67.12 1918 7.07 375 264
8 4 28 025 115 | 1.38 |370.38 218.10 6568 18.13 659 358 260
8 4 32 025 113 | 146 |370.38 217.78 6430 1718 620 346 259
8 4 36 025 111 | 152 [370.38 21743 6297 1632 588 339 261
8 4 40 025 1.09 | 158 |370.38 217.08 6170 1554 562 336 264
40 Streams; 16 Streams Off-target; So = 8 Streams
So St S2 t t, w 0.0 0.5 1.0 1.5 2.0 2.5 3.0
8 4 12 025 175 | 067 |37038 9366 1256 332 1.84 144 129
8 4 16 025 138 | 096 [370.38 9033 1071 293 179 147 133
8 4 20 025 125 | 115 |[370.38 8732 940 274 180 152 1.38
8 4 24 025 119 | 128 [37038 8453 843 266 185 157 143
8 4 28 025 115 | 138 [370.38 8191 772 266 191 162 147
8 4 32 025 113 | 146 [37038 7944 719 269 197 167 150
8 4 36 025 111 | 152 (37038 7740 680 275 203 172 153
8 4 40 025 1.09 | 158 [37038 7489 652 282 209 176 156
40 Streams; 24 Streams Off-target; Sy = 8 Streams
S0 s s2 t t, w 0.0 05 1.0 1.5 2.0 25 30
8 4 12 025 175 | 067 [370.38 3758 342 152 122 113  1.08
8 4 16 025 138 | 096 |370.38 3341 294 153 127 117 112
8 4 20 025 125 | 115 [37038 3009 274 158 132 120 1.14
8 4 24 025 119 | 128 37038 2738 269 164 136 123 1.16
8 4 28 025 115 | 138 |37038 2512 270 170 140 125 117
8 4 32 025 113 | 146 [37038 2324 276 176 143 127 118
8 4 36 025 114 152 |370.38 2165 284 182 146 128 1.19
8 4 40 025 1.09 | 158 [370.38 2032 294 188 149 130 120
40 Streams; 36 Streams Off-target; s, = 8 Streams
So S Sz t t w 0.0 0.5 1.0 1.5 2.0 2.5 3.0
8 4 12 025 1.75 | 067 [37038 1539 174 118 1.08 1.04 102
8 4 16 025 138 | 096 [370.38 1255 169 123 1141 105 1.03
8 4 20 025 125 | 115 (37038 1067 173 127 1143 106 1.03
8 4 24 025 119 | 128 [37038. 940 1.80 1.31 115 107 1.04
8 4 28 025 115 | 138 |37038 852 188 135 116 1.08 1.04
8 4 32 025 113 | 146 [37038 791 196 138 117 108 1.04
8 4 36 025 111 | 152 37038 750 204 141 118 109 1.04
8 4 40 025 1.09 | 158 (37038 724 212 144 119 109 105




40 Streams; 8 Streams Off-talggt; Sp = 16 Streams
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So ) Sz t t w 0.0 0.5 1.0 1.5 2.0 25 3.0
16 4 20 025 325 | 032 [370.38 168.81 41.37 11.31 434 241 175
16 4 24 025 213 | 052 [370.38 16755 3919 1016 3.87 224 1.70
16 4 28 025 175 | 067 [370.38 16645 3728 922 352 214 169
16 4 32 025 156 | 0.79 [370.38 16542 3558 844 327 208 1.71
16 4 36 025 145 | 088 |370.38 16444 3402 778 309 207 174
16 4 40 025 138 | 096 |370.38 163.50 3259 722 296 207 1.78
16 8 20 025 250 | 043 |370.38 16928 41.76 1145 438 242 174
16 8 24 025 175 | 067 |370.38 168.59 40.05 1045 394 224 168
16 8 28 025 150 | 0.84 |370.38 167.98 3857 963 362 213 165
16 8 32 025 138 | 096 |370.38 16740 3722 893 337 206 165
16 8 36 025 130 | 1.06 |370.38 166.82 3597 832 318 203 166
16 8 40 025 125 | 115 |370.38 16624 3480 7.80 303 201 168
16 12 20 025 175 | 067 |370.38 17045 4279 1187 453 247 176
16 12 24 025 138 | 096 |370.38 170.75 4205 1126 422 233 170
16 12 28 025 125 | 115 [370.38 170.87 41.32 1070 395 223 167
16 12 32 025 119 | 128 | 37038 170.86 4058 1018 374 216 1.66
16 12 36 025 115 | 1.38 [370.38 170.77 3984 971 355 211 166
16 12 40 025 113 | 146 [370.38 17062 3911 926 340 208 167
40 Streams; 16 Streams Off-target; s, = 16 Streams
So S s t; ty W 00 05 1.0 15 20 25 30
16 4 20 025 325 | 032 [370.38 4782 473 168 127 115 110
16 4 24 025 213 | 052 [37038 4458 408 166 131 121 1.16
16 4 28 025 175 | 067 |370.38 4181 366 167 137 126 120
16 4 32 025 156 | 079 [37038 3937 338 170 142 131 124
16 4 35 025 145 | 088 |37038 3721 320 175 147 135 127
16 4 40 025 138 | 096 [37038 3526 309 180 152 139 1.30
16 8 20 025 250 | 043 |37038 4839 477 167 123 111 107
16 8 24 025 175 | 067 | 37038 4578 416 161 125 114 109
16 8 28 025 150 | 084 {37038 4353 375 160 127 117 1.1
16 8 32 625 138 | 096 37038 4152 346 160 130 119 1.13
16 8 36 025 130 | 106 [37038 3970 326 162 133 121 1.14
16 8 40 025 125 | 115 | 37038 3802 312 165 135 123 115
16 12 20 025 175 | 067 |370.38 4975 498 169 122 110 105
16 12 24 025 138 | 096 [37038 4842 451 163 122 111 1.06
16 12 28 025 125 | 115 | 37038 4715 416 160 124 112 107
16 12 32 025 119 | 128 |37038 4591 389 160 125 113 1.08
16 12 36 025 115 | 138 | 37038 4471 368 160 127 114 108
16 12 40 025 113 | 146 [37038 4355 353 162 129 115 1.09




40 Streams; 24 Streams Off-target; s, = 16 Streams
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S0 Y Sz t, t; W 0.0 0.5 1.0 1.5 2.0 2.5 3.0
16 4 20 025 325 | 032 [370.38 1397 167 117 1.08 1.05 1.04
16 4 24 025 213 | 052 |370.38 1200 164 122 113 109 1.06
16 4 28 0.25 1.75 0.67 |370.38 10.54 1.66 1.28 117 1.1 1.08
16 4 32 025 15 | 079 {37038 942 170 132 120 113 109
16 4 36 025 145 | 088 [370.38 855 175 137 123 115  1.11
16 4 40 0.25 1.38 0.96 |370.38 7.88 1.81 1.41 1.25 1.17 1.12
16 8 20 0.25 2.50 0.43 |370.38 14.19 1.65 1.13 1.05 1.02 1.01
16 8 24 0.25 1.75 0.67 | 37038 1243 1.59 1.15 1.07 1.03 1.02
16 8 28 0.25 1.50 0.84 | 37038 11.09 1.87 1.18 1.08 1.04 1.02
16 8 32 025 138 | 096 37038 1003 158 120 109 105 1.02
16 8 36 0256 130 | 106 [37038 919 160 122 110 1.05 1.03
16 8 40 025 125 | 115 | 37038 850 163 124  1.11 1.05  1.03
16 12 20 0.25 1.75 0.67 |370.38 14.88 1.66 1.12 1.03 1.01 1.00
16 12 24 025 138 | 096 {37038 1366 160 112 104 101  1.00
16 12 28 025 125 | 115 |37038 1264 157 114 104  1.01 1.00
16 12 32 0.25 1.19 1.28 | 370.38 11.76 1.57 1.15 1.05 1.02 1.01
16 12 36 0.25 1.15 1.38 |370.38 11.01 1.58 1.16 1.05 1.02 1.01
16 12 40 025 113 | 146 [37038 1037 160 117 106 1.02 1.01
40 Streams; 32 Streams Off-target; Sg = 16 Streams
So S s2 t t w 0.0 0.5 1.0 1.5 20 25 30
16 4 20 025 325 | 032 {37038 497 123 107 1.03 1.02  1.01
16 4 24 025 213 | 052 {37038 421 128 111 106 103 1.02
16 4 28 025 1.75 | 067 [37038 374 133 114 107 104 1.02
16 4 32 025 156 | 079 37038 345 138 117 109 104 102
16 4 36 025 145 | 088 (37038 328 143 120 110 105 103
16 4 40 025 138 | 096 37038 319 148 122 111 105 1.03
16 8 20 025 250 | 043 (37038 502 119 104 101 100 1.00
16 8 24 025 175 | 067 [37038 429 120 105 101 100 100
16 8 28 0.25 1.50 0.84 |370.38 3.82 1.23 1.07 1.02 1.00 1.00
16 8 32 025 138 | 096 37038 351 125 107 102 100 1.00
16 8 36 0.25 1.30 1.06 |370.38 3.31 1.27 1.08 1.02 1.01 1.00
16 8 40 0.25 125 115 (37038 3.18 1.30 1.09 1.02 1.01 1.00
16 12 20 025 175 | 067 37038 527 118 102 100 100 1.00
16 12 24 025 138 | 096 |37038 468 118 103 100 100 1.00
16 12 28 025 125 | 115 {37038 427 119 103 100 100 1.00
16 12 32 025 119 | 128 37038 397 120 103 100 100 1.00
16 12 36 025 115 | 138 |37038 375 122 104 100 100 1.00
16 12 40 025 113 | 146 [37038 360 123 104 100 100 100




40 Streams; 8 Streams Oﬁ-tﬂet; Sy = 24 Streams
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Sp S¢ S2 t1 tz w 0.0 0.5 1.0 1.5 20 2.5 3.0
24 4 28 025 475 | 021 [370.38 13552 27.01 6.70 267 167 135
24 4 32 025 288 | 037 |37038 133.97 2531 601 246 163 137
24 4 36 025 225 | 049 [370.38 13256 2381 545 231 162 140
24 4 40 025 194 | 059 [370.38 13125 2247 500 222 163 144
24 8 28 025 400 | 025 [370.38 13570 2710 672 267 166 133
24 8 32 025 250 | 043 [370.38 13438 2552 6.05 245 161 1.34
24 8 36 025 200 | 056 {37038 13321 2415 551 230 458 1.35
24 8 40 025 175 | 067 |370.38 13214 2292 507 220 158 1.38
24 12 28 025 325 | 032 |370.38 13595 2725 675 267 165 132
24 12 32 025 213 | 0.52 [370.38 13497 2587 614 246 160 132
24 12 36 025 175 | 067 |370.38 13413 2468 564 231 156 132
24 12 40 025 156 | 079 [370.38 13336 2362 522 220 155 1.33
24 16 28 025 250 | 043 |370.38 13640 2754 684 260 166 1.32
24 16 32 025 175 | 067 |37038 13597 2652 633 250 160  1.31
24 16 36 025 150 | 0.84 [370.38 13560 2564 590 236 156 130
24 16 40 025 138 | 096 |370.38 13524 2483 554 226 154 1.3
24 20 28 025 175 | 067 |370.38 13763 2839 714 278 168 132
24 20 32 025 138 | 096 |370.38 13820 2813 6587 266 164  1.31
24 20 36 025 125 | 115 |370.38 13853 27.80 661 255 161  1.31
24 20 40 025 119 | 128 [370.38 13869 2743 635 245 158  1.31
40 Streams; 16 Streams Oﬁ-hrgg Sy = 24 Streams
Sp Sy 8o tf t2 w 0.0 05 1.0 1.5 20 25 3.0
24 4 28 025 475 | 021 (37038 2906 271 132 113 108 1.06
24 4 32 025 288 | 037 |37038 2683 248 135 118 113 1.140
24 4 36 025 225 | 049 [37038 2493 234 139 123 118 1.14
24 4 40 025 194 | 059 (37038 2327 226 144 128 122 117
24 8 28 025 400 | 025 |370.38 2918 270 130 110 105 1.03
24 8 32 025 250 | 043 (37038 2711 247 131 113 108 106
24 8 36 025 200 | 056 |37038 2533 231 133 116 1141 1.07
24 8 40 625 175 | 067 [370.38 2378 221 135 119 113 1.09
24 12 28 025 325 | 032 (37038 2937 271 129 109 104 102
24 12 32 025 213 | 052 |370.38 2753 247 128 111 105 1.03
24 12 36 025 175 | 067 (37038 2596 231 129 1.42 107 1.04
24 12 40 025 156 | 079 |37038 2458 221 130 114 108 1.05
24 16 28 025 250 | 043 (37038 2973 273 128 108 103 1.0
24 16 32 025 175 | 067 (37038 2831 251 127 109 104 102
24 16 36 025 150 | 084 [37038 2709 236 127 110 104 102
24 16 40 025 138 | 096 (37038 2599 226 127 141 105 1.02
24 20 28 025 175 | 067 {37038 3072 283 128 107 102 1.0
24 20 32 025 138 | 096 (37038 3019 268 127 108 103 1.01
24 20 36 025 125 | 115 {37038 2961 256 127 108 103 1.01
24 20 40 025 119 | 128 |37038 2900 247 128 109 103 1.01




40 Streams; 24 Streams Off-target; s, = 24 Streams

160

3.0

so s sz ts t; w 00 05 1.0 1.5 20 25

24 4 28 | 025 475 | 021 (37038 727 132 109 105 103 1.02
24 4 32 | 025 288 | 037 {37038 636 135 114 109 106 1.04
24 4 36 | 025 225 | 049 [37038 568 139 148 112 108 106
24 4 40 | 025 194 | 059 |37038 518 144 123 115 110  1.07
24 8 28 | 025 400 | 025 [37038 728 129 1.06 1.02 101 1.0t
24 " 8 32 1 025 - 250 043 |37038 639 130 109 104 102 101
24 8 3 | 025 200 | 056 |37038 573 132 111 105 103 101
24 8 40 | 025 175 | 067 |37038 522 134 113 106 103 102
24 12 28 | 025 325 | 032 {37038 733 128 105 101 100 1.00
24 12 32 | 025 213 | 052 [37038 649 127 106 102 101  1.00
24 12 3 | 025 175 | 067 [37038 58 128 107 103 101 1.00
24 12 40 | 025 156 | 079 |370.38 537 129 109 1.03 101 1.00
24 16 28 | 025 250 | 043 |37038 744 127 104 101 100  1.00
24 16 322 | 025 175 | 067 (37038 672 126 105 1.01 100 1.00
24 16 3 | 025 150 | 0.84 (37038 616 126 105 1.01 100 1.00
24 16 40 | 025 138 | 096 {37038 571 126 106 101 100 1.00
24 20 28 | 025 175 | 067 |37038 782 127 103 100 100 1.00
24 20 32 | 025 138 | 096 [37038 7.38 126 104 100 100 1.00
24 20 3 | 025 125 | 115 |37038 699 126 104 101 100 1.00
24 20 40 | 025 119 | 128 [37038 664 126 104 101 100 1.00

40 Streams; 32 Streams Off-target; s, = 24 Streams

So s s ts t, w 00 05 1.0 15 20 25 30
24 4 28 | 025 475 | 021 37038 274 111 104 102 101 101
24 4 32 | 025 288 | 037 [37038 250 116 108 104 102 1.01
24 4 36 | 025 225 | 049 37038 236 121 110 105 103 101
24 4 40 | 025 194 | 059 (37038 229 126 1143 106 103 1.02
24 8 28 | 025 400 | 025 [37038 273 109 102 101 100 1.00
24 8 32 | 025 250 | 043 (37038 247 111 103 101 100 1.00
24 8 3 | 025 200 | 056 {37038 232 113 104 101 100 1.00
24 8 40 | 025 175 | 067 37038 222 1.46 105 101 100 1.00
24 12 28 | 025 325 | 032 {37038 273 107 101 100 100 1.00
24 12 32 | 025 213 | 052 [37038 247 109 102 100 1.00 1.00
24 12 36 | 025 175 | 067 |37038 231 110 102 100 100 1.00
24 12 40 | 025 156 | 079 |37038 221 141 102 100 100 100
24 16 28 | 025 250 | 043 [37038 275 106 100 100 100 100
24 16 32 | 025 175 | 067 [37038 252 107 101 100 100 1.00
24 16 36 | 025 150 | 084 37038 236 1.08 101 100 100 1.00
24 16 40 | 025 138 | 096 |37038 226 1.09 101 100 100 1.00
24 20 28 | 025 175 | 067 [37038 28 106 100 100 100 1.00
24 20 32 | 025 138 | 096 |37038 269 1.06 1.00 1.00 1.00 1.00
24 20 36 | 025 125 | 115 |37038 256 107 1.00 100 100 1.00
24 20 40 | 025 119 | 128 |37038 247 107 100 100 100 1.00




40 Streams; 8 Streams Off-target; s, = 32 Streams

161

Sp Sy S22 t1 tz w 0.0 0.5 1.0 1.5 20 2.5 3.0
32 4 36 025 625 | 0.16 [37038 111.74 1889 444 194 137 1.19
32 4 40 025 363 | 028 |370.38 11016 1762 403 185 138 122
32 8 36 025 550 | 0.48 |370.38 111.83 1892 444 193 136  1.17
32 8 40 025 325 | 032 |370.38 11038 1769 403 184 136 120
32 12 36 025 475 | 021 [37038 111.94 1896 444 193 135 117
32 12 40 025 288 | 037 |370.38 11064 1779 404 183 134 1.18
32 16 36 025 4.00 | 025 |370.38 11209 1902 445 193 134 1.16
32 16 40 025 250 | 043 [370.38 111.01 1795 407 183 133 117
32 20 36 025 325 | 032 |370.38 11232 1913 448 193 134 1.15
32 20 40 025 213 | 052 |370.38 11156 1822 413 183 132 1.15
32 24 36 025 250 | 043 |370.38 11276 1937 454 194 134 115
32 24 40 025 1.75 | 067 [370.38 11254 1874 426 185 132 1.15
32 28 36 025 175 | 067 |370.38 11402 2009 475 199 135 1.15
32 28 40 025 138 | 096 |370.38 11479 2007 463 193 133 1.15
40 Streams; 16 Streams Off-target; So = 32 Streams
So St Sz t tz w 0.0 0.5 1.0 1.5 2.0 2.5 3.0
32 4 36 025 625 | 0.16 [370.38 1935 194 118 108 105 104
32 4 40 025 363 | 028 [370.38 1784 18 122 113 110 1.08
32 8 36 025 550 | 0.8 |370.38 1938 193 116 106 1.03 1.02
32 8 40 025 325 | 032 |37038 1793 184 119 109 106 1.04
32 12 36 025 475 | 021 |370.38 1944 193 115 104 102 1.0
32 12 40 025 288 | 037 |37038 1804 183 117 106 104 102
32 16 36 025 400 | 025 {37038 1951 192 114 104 101 1.01
32 16 40 025 250 | 043 (37038 1822 18 1145 105 102 1.01
32 20 36 025 325 | 032 |37038 1964 192 114 103 101  1.00
32 20 40 025 213 | 052 [37038 1851 183 114 104 1.01 1.01
32 24 36 025 250 | 043 (37038 1990 193 114 103 101 1.00
32 24 40 025 175 | 067 |37038 1907 185 113 103 101 1.00
32 28 36 025 175 | 067 {37038 2067 198 114 102 100 1.00
32 28 40 025 138 | 096 [370.38 2050 193 113 103 101 100




40 Streams; 24 Streams Off-taﬂet; So = 32 Streams

162

So Sy S2 t t, w 0.0 0.5 1.0 1.5 2.0 2.5 3.0

32 4 36 025 625 | 0.16 |[37038 453 118 1.06 1.04 1.03  1.02
32 4 40 025 363 | 028 [37038 408 122 110 107 105 103
32 8 36 025 550 | 0.18 |37038 453 116 1.04 102 1.0 1.00
32 8 40 025 325 | 032 |37038 4.07 118 106 103 102 1.01
32 12 36 025 475 | 021 [37038 453 115 1.02  1.01 1.00 1.00
32 12 40 025 288 | 037 [37038 408 116 1.04 1.01 100 1.00
32 16 36 025 400 | 025 |[370.38 454 114 102 100 100  1.00
32 16 40 025 250 | 043 [37038 4.10 115 1.03  1.01 1.00  1.00
32 20 36 025 325 | 032 |[37038 45 114  1.01 1.00 100 1.00
32 20 40 025 213 | 052 [37038 416 114 102 1.00 1.00 1.00
32 24 36 025 250 | 043 |37038 463 1.13  1.01 100 100 1.00
32 24 40 025 175 | 067 37038 429 113  1.01 100 100 1.00
32 28 36 025 175 | 067 |[37038 4.85 113  1.01 1.00 100 1.00
32 28 40 025 138 | 096 ]370.38 469 113  1.01 100 100 1.00

40 Streams; 32 Streams Off-target; Sp = 32 Streams

So St Sz t; tz w 0.0 0.5 1.0 1.5 20 25 30

32 4 36 025 625 | 016 [37038 195 107 103 102 1.01 1.00
32 4 40 025 363 | 028 (37038 1.87 1.1 106 103 102 1.01
32 8 36 025 550 | 018 {37038 193 105 101 100 100 1.00
32 8 40 025 325 | 032 (37038 1585 1.07 103 1.01 100 1.00
32 12 36 025 475 | 021 {37038 193 1.04 1.01 100 100 1.00
32 12 40 025 288 | 037 [370.38 183 1.05 1.01 100 100 1.00
32 16 36 025 400 | 025 }37038 192 103 100 100 100 1.00
32 16 40 025 250 | 043 [37038 182 1.04 100 100 100 1.00
32 20 36 025 325 | 032 [37038 192 1.03 100 100 100 1.00
32 20 40 025 213 | 052 [37038 1582 1.03 100 100 100 1.00
32 24 36 025 250 | 043 |37038 193 102 100 100 100 1.00
32 24 40 025 175 | 067 {37038 184 103 100 100 100 1.00
32 28 36 025 175 | 067 (37038 198 1.02 100 100 100 1.00
32 28 40 025 138 | 096 {37038 193 102 100 100 100 1.00




80 Streams; 16 Streams Off-target; Sp = 16 Streams

163

Sp S S2 t1 tz w 0.0 0.5 1.0 1.5 20 2.5 3.0
16 8 24 025 175 | 067 |370.38 16256 3647 958 3.84 229 174
16 8 32 025 138 | 0.96 |370.38 160.98 3355 824 337 215 172
16 8 40 025 125 | 1.15 |370.38 15944 3111 729 311 211 174
16 8 48 025 119 | 128 [37038 157.92 2899 661 298 212 1.79
16 8 56 025 115 | 1.38 [370.38 15641 2713 610 293 216  1.85
16 -+ 8 64 -1 025 - 1:13:} 146 |370.38 15493 2550 574 292 222 1.90
16 8 72 025 111 | 152 [370.38 15346 2405 549 296 228 196
16 8 80 025 1.09 | 158 [370.38 15202 2276 531 301 235 202
80 Streams; 32 Streams Off-target; s, = 16 Streams
16 8 24 025 175 | 067 [37038 4409 410 164 127 115 110
16 8 32 025 138 | 096 [37038 3982 346 163 132 120 1.4
16 8 40 025 125 | 115 (37038 3633 316 167 137 124 116
16 8 48 025 119 | 128 [37038 3340 3.03 173 142 127 118
16 8 56 025 115 | 138 [37038 3090 301 180 146 129 120
16 8 64 025 113 | 146 [37038 2876 3.04 187 150 132 1.21
16 8 72 025 111 | 152 {37038 2692 3140 193 153 134 123
16 8 80 025 109 | 158 (37038 2533 319 200 157 135 124
80 Streams; 48 Streams Off-tﬂget; Sy = 16 Streams
So S sz ty t w 0.0 05 1.0 1.5 20 2.5 3.0
16 8 24 025 175 | 067 |37038 1220 160 116 1.07 1.03 1.02
16 8 32 025 138 | 096 37038 958 159 121 110 105 1.03
16 8 40 625 125 | 115 |[37038 839 164 125 112 106 1.03
16 8 48 025 119 | 128 {37038 743 171 128 113 106 1.03
16 8 56 025 115 | 138 [37038 680 178 131 114 107 1.04
16 8 64 025 113 | 146 37038 640 185 134 115 108 1.04
16 8 72 025 111 | 152 37038 615 192 137 116 108 1.04
16 8 80 025 109 | 158 [37038 6.01 199 139 117 108 1.04
80 Streams; 64 Streams Off-tal;get; Sy = 16 Streams
So Sy sz t, t w 0.0 05 1.0 1.5 20 25 30
16 8 24 025 175 | 067 |[37038 427 121 165 102 100 1.00
16 8 32 625 138 | 096 [37038 351 125 108 102 101 1.00
16 8 40 025 125 | 115 [37038 319 130 109 103 101 1.00
16 8 48 025 119 | 128 {37038 307 135 110 103 101 1.00
16 8 56 025 115 | 138 [37038 307 139 1141 103 101 100
16 8 64 025 113 | 146 (37038 313 143 112 103 101 1.00
16 8 72 025 141 | 152 [37038 322 146 113 103 101 1.00
16 8 80 025 109 | 158 (37038 333 149 113 103 101 1.00




164
80 Streams; 16 Streams Off-target; s, = 32 Streams
So S s, t t w 0.0 0.5 1.0 1.5 20 25 3.0
32 8 40 025 325 | 032 [37038 10363 1572 3.84 188 140 124
32 8 48 025 213 | 052 |370.38 10077 13.89 337 180 143 128
32 8 56 025 175 | 067 |370.38 9821 1245 307 179 147 135
32 8 64 025 156 | 079 [370.38 9585 1128 28 180 152 140
32 8 72 025 145 | 0.88 [370.38 9363 1032 277 184 158 145
32 8 80 025 138 | 096 |370.38 9154 953 271 188 163 150
32 16 40 025 250 | 043 |370.38 10432 1594 387 187 1.38 121
32 16 48 025 1.75 | 067 |370.38 10226 1435 342 177 137 123
32 16 56 025 150 | 0.84 |370.38 10042 13.07 312 173 139 125
32 16 64 025 138 | 096 [370.38 9871 1201 292 172 141 128
32 16 72 025 130 | 1.06 |[370.38 97.07 1112 278 173 144 131
32 16 80 025 125 | 115 [37038 9550 1035 270 175 147 134
32 24 40 025 175 | 067 |370.38 10587 1660 402 189 137 1.19
32 24 48 025 138 | 096 [370.38 10524 1558 367 180 136 1.20
32 24 56 025 125 | 1.15 [370.38 10454 1468 341 176 136 121
32 24 64 025 119 | 128 [37038 103.78 13.87 321 174 138 123
32 24 72 025 115 | 1.38 [370.38 102.97 1314 307 174 139 125
32 24 80 025 113 | 146 |370.38 10215 1248 297 174 141 126
80 Streams; 32 Streams Off-target; s, = 32 Streams
So §1 Sz t; tr w 0.0 0.5 1.0 1.5 20 2.5 3.0
32 8 40 025 325 | 032 (37038 1711 18 120 110 1.06.  1.04
32 8 48 025 213 | 052 (37038 1487 178 126 115 110 1.07
32 8 56 025 175 | 067 [37038 13145 177 131 119 113 109
32 8 64 025 156 | 079 (37038 1181 180 136 123 115 1.11
32 8 72 025 145 | 088 (37038 1074 18 141 126 117 112
32 8 80 025 138 | 09 [37038 988 190 146 129 119 113
32 16 40 025 250 | 043 (37038 1739 184 117 106 1.03 1.01
32 16 48 025 175 | 067 [37038 1541 174 119 108 104 1.02
32 16 56 025 150 | 0.84 (37038 138 170 121 110 1.05 1.03
32 16 64 025 138 | 096 [37038 1261 169 123 111 106 1.03
32 16 72 025 130 | 106 |[370.38 1158 171 126 113 1.06 1.03
32 16 80 025 125 | 115 (37038 1073 173 128 114 107 1.04
32 24 40 025 175 | 067 [37038 1819 186 115 1.04 101 1.00
32 24 48 025 138 | 096 (37038 168 177 116 105 1.02 1.01
32 24 56 025 125 | 115 (37038 1572 172 117 106 102 1.0
32 24 64 025 119 | 128 [37038 1473 171 118 106 102 1.01
32 24 72 625 115 | 1.38 {37038 1385 171 120 107 102 1.01
32 24 80 025 113 | 146 [37038 1308 172 121 107 103 101




165
80 Streams; 48 Streams Off-target; s, = 32 Streams

So Sy Sz t1 fz w 0.0 0.5 1.0 1.5 2.0 25 3.0

32 8 40 | 025 325 | 032 [37038 403 119 106 1.03 102 1.01
32 8 48 | 026 213 | 052 {37038 346 124 110 105 1.03  1.01
32 8 56 025 175 | 067 {37038 313 129 113 107 103 1.02
32 8 64 025 156 | 079 |370.38 294 134 1.6 108 104 1.02
32 8 72 | 025 145 | 088 /37038 285 139 118 109 1.04 102
32 8 80 | 025 138 | 096 |[370.38 281 144 120 110 105 1.03
32 16 40 | 025 250 | 043 (37038 406 145 103 101 100 1.00
32 16 48 | 026 175 | 067 [37038 350 117 104 101 100 1.00
32 16 56 025 150 | 0.84 (37038 316 119 105 1.0t 100 1.00
32 16 64 { 025 138 | 096 (37038 295 122 106 1.02 100 1.00
32 16 72 | 025 130 | 1.06 |370.38 282 124 107 102 100 1.00
32 16 80 025 125 | 115 {37038 274 126 107 102 100 1.00
32 24 40 | 025 175 | 067 [37038 425 114 102 100 100 1.00
32 24 48 | 026 138 | 096 (37038 379 114 102 1.00 100 1.00
32 24 56 025 125 | 1.15 | 37038 348 115 102 100 100 1.00
32 24 64 | 025 1.9 | 128 |37038 326 117 1.03 100 1.00 1.00
32 24 72 | 025 115 | 138 [37038 312 148 103 100 1.00 1.00
32 24 80 025 113 | 146 |[37038 3.02 119 103 100 100 1.00

80 Streams; 64 Streams Off-target; s, = 32 Streams

So Sy s ts t; w 0.0 05 1.0 1.5 20 25 3.0

32 8 40 | 025 325 | 032 |[37038 185 107 103 101 100 100
32 8 48 | 025 213 | 052 37038 177 112 104 101 100 1.00
32 8 56 | 025 175 | 067 (37038 177 145 105 102 100 1.00
32 8 64 | 026 156 | 079 |370.38 180 118 106 102 100 1.00
32 8 72 | 025 145 | 088 (37038 185 121 107 102 101 1.0
32 8 80 | 025 138 | 096 (37038 191 124 108 102 101 1.00
32 16 40 | 025 250 | 043 |37038 1.82 104 100 100 100 1.00
32 16 48 025 175 | 067 37038 172 106 101 100 100 1.00
32 16 56 | 025 150 | 0.84 (37038 168 107 101 100 1.00 1.0
32 16 64 | 025 138 | 096 |37038 167 109 1061 100 100 1.00
32 16 72 | 025 130 | 106 (37038 169 1.09 101 100 1.00 1.00
32 16 80 | 025 125 | 115 [37038 172 110 101 100 100 1.00
32 24 40 | 025 175 | 067 |37038 1585 103 100 100 100 1.00
32 24 48 | 025 138 | 096 [37038 175 103 100 1.00 100 1.00
32 24 56 | 025 125 | 1.15 (37038 170 104 100 100 100 1.00
32 24 64 | 025 119 | 128 |37038 169 104 100 100 100 1.00
32 24 72 | 025 115 | 138 {37038 169 105 100 100 100 1.00
32 24 80 | 025 113 | 146 [37038 171 105 100 100 100 1.00




80 Streams; 16 Streams Off-taLget; Sy = 48 Streams

166

So S S2 t1 tz w 0.0 0.5 1.0 1.5 2.0 2.5 3.0
48 8 56 025 475 | 021 [37038 7263 871 231 141 119 112
48 8 64 025 288 | 037 |370.38 7004 773 216 142 124 117
48 8 72 025 225 | 049 |[370.38 6770 695 207 145 129 123
48 8 80 025 194 | 059 [37038 6555 633 202 149 134 127
48 16 56 025 400 | 025 [370.38 7285 874 231 139 117  1.09
48 16 64 025 250 | 043 [37038 7053 778 214 138 120 1.12
48 16 72 025 200 | 056 |370.38 6846 7.03 204 139 122 1.15
48 16 80 025 175 | 067 37038 6655 643 197 141 125 1.18
48 24 56 025 325 | 032 [37038 7315 879 230 138 115 1.08
48 24 64 025 213 | 052 [37038 7122 791 214 136 117  1.09
48 24 72 025 175 | 067 |37038 6952 721 203 136 118  1.11
48 24 80 025 156 | 079 [37038 67.96 663 196 137 120 1.13
48 32 56 025 250 | 043 [370.38 7367 892 232 137 114  1.07
48 32 64 025 175 | 067 |[37038 7238 818 216 135 1.15 1.08
48 32 72 025 150 | 0.84 |37038 7124 758 205 134 116 1.09
48 32 80 025 138 | 096 |37038 70.16 707 198 134 117 110
48 40 56 025 175 | 067 [37038 7503 934 239 138 114 1.06
48 40 64 025 138 | 096 [37038 7494 893 228 136 1144  1.07
48 40 72 025 125 | 115 [370.38 7469 855 219 135 115  1.07
48 40 80 025 119 | 128 [370.38 7434 818 213 135 1.16 1.08

80 Streams; 32 Streams Off-target; s, = 48 Streams

) Sy Sz t ty w 00 0.5 1.0 1.5 20 2.5 30
48 8 56 025 475 | 021 |37038 902 140 110 106 1.04 103
48 8 64 025 288 | 037 |[37038 791 142 116 110 107 1.05
48 8 72 025 225 | 049 {37038 707 145 120 113 108 1.07
48 8 80 025 194 | 059 (37038 642 150 125 1.16 111 1.08
48 16 56 025 400 | 025 [37038 904 137 107 103 1.02 101
48 16 64 025 250 | 043 {37038 797 137 116 105 103 101
48 16 72 025 200 | 056 (37038 745 138 143 106 103 1.02
48 16 80 025 175 | 067 (37038 651 140 115 108 1.04 1.02
48 24 56 025 325 | 032 {37038 910 136 106 102 101 1.00
48 24 64 025 213 | 052 {37038 810 134 108 103 101 1.00
48 24 72 025 175 | 067 (37038 733 134 109 1.03 101 1.00
48 24 80 025 156 | 079 [37038 671 135 110 104 101  1.01
48 32 56 025 250 | 043 {37038 924 135 105 101 100 1.00
48 32 64 025 175 | 067 (37038 839 133 106 102 100 1.00
48 32 72 025 150 | 084 |37038 772 132 107 102 100 1.00
48 32 80 025 138 | 096 (37038 717 132 108 102 100 1.00
48 40 56 025 175 | 067 (37038 970 136 105 101 100 1.00
48 40 64 025 138 | 096 (37038 921 134 105 101 100 1.00
48 40 72 025 125 | 115 (37038 876 133 105 101 100 1.00
48 40 80 025 119 | 128 {37038 835 133 106 101 100 1.00




80 Streams; 48 Streams Off-target; s = 48 Streams

167

So s S t; ty w 0.0 0.5 1.0 1.5 2.0 25 3.0
48 8 56 025 475 | 021 [37038 233 1.10 1.04 1.02 101  1.01
48 8 64 025 288 | 037 |[37038 217 145 107 1.04 102 1.0
48 8 72 025 225 | 049 [37038 209 119 109 105 102 1.0
48 8 80 025 194 | 059 [37038 205 124 111 106 103 1.02
48 16 56 025 400 | 025 |370.38 231 107 102 100 100 1.00
48 16 64 025 250 | 043 37038 214 109 103 101 100 1.00
48 16 72 025 200 | 056 |37038 203 112 104 101 100 1.00
48 16 80 025 175 | 067 |37038 198 114 104 101 100 1.00
48 24 56 025 325 | 032 [37038 231 106 101 100 100 1.00
48 24 64 025 213 | 052 |370.38 213 107 1.0t 100 100 1.00
48 24 72 025 175 | 067 |370.38 202 108 102 1006 1.00 1.00
48 24 80 025 156 | 079 |370.38 195 110 102 100 100 1.00
48 32 56 025 250 | 043 |370.38 232 105 100 100 100 1.00
48 32 64 025 175 | 067 {37038 215 106 100 100 100 1.00
48 32 72 025 150 | 0.84 37038 204 106 101 100 100 1.00
48 32 80 025 138 | 096 |370.38 197 107 101 100 100 1.00
48 40 56 025 175 | 067 |37038 240 104 100 100 100 1.00
48 40 64 025 138 | 096 |[37038 228 105 100 100 1.00 1.00
48 40 72 025 125 | 1.15 |37038 219 105 100 100 100 1.00
48 40 80 025 119 | 1.28 {37038 212 105 100 100 100 1.00
80 Streams; 64 Streams Off-target; Sy = 48 Streams
So s s t t w 0.0 05 1.0 1.5 20 25 3.0
48 8 56 025 475 | 021 [37038 139 105 102 101 100 1.00
48 8 64 025 288 | 037 |37038 141 108 103 101 100 1.00
48 8 72 025 225 | 049 [37038 145 111 104 101 100 1.00
48 8 80 025 194 | 059 37038 150 1143 105 101 100 1.00
48 16 56 025 400 | 025 (37038 136 102 100 100 100 1.00
48 16 64 025 250 | 043 {37038 136 104 100 100 100 1.00
48 16 72 025 200 | 056 [370.38 137 105 101 100 100 1.00
48 16 80 025 175 | 067 |37038 139 106 101 100 100 1.00
48 24 56 025 325 | 032 {37038 135 101 100 100 100 1.00
48 24 64 025 213 | 052 {37038 133 102 100 100 100 1.00
48 24 72 025 175 | 067 |37038 133 102 100 100 100 1.00
48 24 80 025 156 | 079 [37038 133 103 100 100 1.00 1.00
48 32 56 025 250 | 043 ;37038 135 101 100 100 1.00 1.00
48 32 64 025 175 | 067 |37038 132 101 100 100 100 1.00
48 32 72 025 150 | 084 |37038 131 101 100 100 100 1.00
48 32 80 025 138 | 096 {37038 131 101 100 100 100 1.00
48 40 56 025 175 | 067 {37038 135 100 100 100 100 1.00
48 40 64 625 138 | 096 [37038 133 100 100 100 100 1.00
48 40 72 025 125 | 115 |37038 132 100 100 100 100 1.00
48 40 80 025 119 | 128 {37038 132 100 100 100 100 1.00




80 Streams; 16 Streams Off-target; Sp = 64 Streams

So S1 S ty tz w 0.0 05 1.0 1.5 20 2.5 3.0
64 8 72 025 625 | 0.16 | 37038 5379 554 173 123 111  1.07
64 8 80 025 363 | 028 (37038 5165 499 168 126 116 1.12
64 16 72 025 550 | 0.18 {37038 53890 554 172 121 109 1.05
64 16 80 025 325 | 032 [37038 5186 499 166 123 112 1.08
64 24 72 025 475 | 021 [37038 5400 555 171 120 108 1.04
64 24 80 0625 288 | 037 (37038 5213 501 165 121 110 1.06
64 32 72 025 400 | 025 |37038 5415 55 170 119 107 1.03
64 32 80 025 250 | 043 |37038 5249 505 164 119 108 1.04
64 40 72 025 325 | 032 [37038 5438 560 170 119 106 1.02
64 40 80 025 213 | 052 |370.38 5303 513 163 118 107 1.03
64 48 72 025 250 | 043 37038 5482 568 171 118 106 1.02
64 48 80 025 175 | 067 {37038 5399 530 165 1.18 106 1.03
64 56 72 025 175 | 067 |370.38 5603 59 174 119 106 1.02
64 56 80 025 1.38 | 0.96 [37038 5624 580 170 118 106 1.02
80 Streams; 32 Streams Off-target; Sg = 64 Streams
So S sz t ts w 0.0 05 1.0 1.5 20 25 30
64 8 72 625 625 | 0.6 37038 559 122 106 104 103 1.02
64 8 80 025 363 | 028 [37038 502 126 111 107 105 104
64 16 72 025 550 | 048 37038 559 121 104 102 101 101
64 16 80 025 325 | 032 (37038 502 122 107 104 102 1.01
64 24 72 025 475 | 021 [37038 560 119 103 101 100 1.00
64 24 80 025 288 | 037 {37038 503 120 105 102 1.01 1.00
64 32 72 025 400 | 025 (37038 561t 119 102 101 100 100
64 32 80 025 250 | 043 |37038 507 119 104 101 100 1.00
64 40 72 025 325 | 032 {37038 565 118 102 100 100 1.00
64 40 80 025 213 | 052 (37038 515 118 103 100 100 1.00
64 48 72 025 250 | 043 [37038 573 118 102 100 100 1.00
64 48 80 625 175 | 067 {37038 532 117 102 100 100 1.00
64 56 72 025 175 | 067 37038 602 118 10t 100 1.00 100
64 56 80 025 138 | 096 {37038 583 117 102 100 100 1.00




80 Streams; 48 Streams Off-target; Sp = 64 Streams
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So S s, t; t w 0.0 0.5 1.0 1.5 2.0 25 3.0
64 8 72 025 625 | 0.16 [37038 173 106 1.03 102 101 1.00
64 8 80 025 363 | 028 37038 169 111 105 103 101 1.09
64 16 72 025 550 | 018 |370.38 171 104 101 100 100 1.00
64 16 80 025 325 | 032 |37038 166 106 102 101 100 1.00
64 24 72 025 475 | 021 (37038 171 1.03 100 1.00 100 1.00
64 24 80 025 288 | 037 (37038 164 105 101 100 100 1.00
64 32 72 025 400 | 025 (37038 170 102 100 1.00 100 1.00
64 32 80 025 250 | 043 [37038 163 1.03 100 1.00 100 1.00
64 40 72 025 325 | 032 [37038 170 102 100 100 1.00 1.00
64 40 80 025 213 | 052 |37038 163 1.02 1060 1.00 100 1.00
64 48 72 025 250 | 043 37038 170 101 100 100 100 1.00
64 48 80 025 175 | 067 37038 164 102 100 100 100 1.00
64 56 72 025 175 | 067 |37038 174 101 100 100 1.00 1.00
64 56 80 025 138 | 096 |37038 170 101 100 1.00 1.00 1.00
80 Streams; 64 Streams Off-target; Sy = 64 Streams
So 81 S t1 tz w 0.0 0.5 1.0 1.5 20 25 30
64 8 72 025 625 | 0.16 {37038 122 103 101 100 100 1.00
64 8 80 025 363 | 028 [37038 126 106 102 101 100 1.00
64 16 72 025 550 | 018 |[37038 120 102 100 100 100 1.00
64 16 80 025 325 | 032 {37038 122 103 100 100 100 1.00
64 24 72 025 475 | 021 (37038 1149 101 100 100 100 1.00
64 24 80 025 288 | 037 [37038 120 101 100 100 100 1.00
64 32 72 025 400 | 025 (37038 1.8 100 100 100 100 1.00
64 32 80 025 250 | 043 (37038 148 101 100 100 100 1.00
64 40 72 025 325 | 032 {37038 118 100 100 100 100 1.00
64 40 80 025 213 | 052 (37038 117 100 100 100 100 1.00
64 48 72 025 250 | 043 37038 148 100 100 100 100 1.00
64 48 80 025 175 | 067 [37038 1147 100 100 100 100 1.00
64 56 72 025 175 | 067 [37038 148 100 100 100 100 1.00
64 56 80 025 138 | 096 [37038 117 100 100 100 100 1.00




CHAPTER 5

MULTIPLE STREAM FILLING OPERATIONS: A CASE STUDY

Introduction

In order to demonstrate the concepts of the previous chapters, and in the interest
of applying the theoretical results to an actual process, a case study is investigated. The
process considered in this chapter, is an actual manufacturing operation where data and
information has been gathered directly from the system in its present state. The
implementation of the concepts described in this chapter is hypothetical as the actual
process is not currently able to implement all suggestions.

Most of the assignable causes known at the facility impact all streams on a single
machine. Single stream issues also occur but are usually related to the failure of specific
valves. Situations causing subsets of valves to shift off-target could arise if parts used in
rebuilding the valves share a common faulty source (e.g. weak springs, etc.).

One of the issues generating the most concern is fill performance at machine start-
up when the line switches to a new product. The fill valves are not optimized for any
particular product and it is suspected that while the machines have been adjusted to
perform adequately, several streams may be off-target and could be tuned at the start of a
new product run to improve product yield.

Rapid detection of process shifts is desired as production runs are relatively short.
Small process shifts noticed near the end of a production run are not worth correcting as

the loss of production will greatly outweigh any potential gain of product yield at that
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point. For this reason shifts which impact a large number of the valves are more

important to detect than small shifts impacting only a few valves.

Background

The process considered is a high-speed beverage filling operation of a
local beverage bottler. The process consists of several “bottling lines” with high-speed
filling machines for cans (12 oz.), and plastic bottles (12 oz., 20 oz., 500 ml., 1000 ml.,
and 2000 ml.). Table 5-1 shows typical product lines including the size of the can or
bottle being filled, the number of valves on each filler, and the rate at which the filling
machines operate under normal conditions. The product flavor filled on each line
depends on current demand and varies from shift to shift. Each shift is 8 hours long and
filling operations continue 24 hours a day, 7 days a week, although Sunday is usually

reserved for routine equipment maintenance.

TABLE 5-1. Production Information for a Typical High-Speed Bottling Operation

Line Number Product Number of Valves Rate: product/min
1 12 oz cans 120 1600
2 12 oz cans 72 1200
3 500 ml bottles 72 600
4 1000 ml bottles 60 300
5 2000 ml bottles 52 260

The monitored response of interest in this study is fill volume as determined by
fill height and/or fill weight (tare weight). The tare weight is dependent on the product

being filled. Under-filling of product is a concern because of truth in advertising
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requirements. For example, if a can says 12 ounces on the label, there needs to be 12
ounces in the can. If the fill average of a 12-ounce product falls below 11.9 ounces, the
line will shut down. If any individual can is measured below 11.7 ounces it will be
scrapped. Over-filling is a concern because of lost revenue. For example, it is estimated
for the high-speed can lines that 1/20th of an ounce (0.05 oz.) of overfill costs the
company about $20,000 a month.

Before discussing the specifics involved in measuring fill volume, it is instructive
to have a basic understanding of the entire bottling process. Primary elements of a
typical filling operation are shown in Figure 5-1. Syrup is delivered to the company from
a single outside supplier. This syrup is stored in one of 9 syrup storage tanks depending
on flavor. Only single flavors are run on any given filling machine at one time. Usually
a single flavor is produced during a shift, although occasionally a flavor change will be

made during a shift.

Syrup Tanks i

Rotary Filler

Chiller

FIGURE 5-1. Typical Filling Operation Elements
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From the storage tanks, the syrup is mixed with carbonated water. As the product
is now carbonated, special handling is required. The product is chilled to reduce the
amount of carbon dioxide (CO,) evaporation. Carbonated liquids cannot be pumped
throughout the facility, therefore the product is moved under pressure of 50-60 pounds
per square inch (psi) during the bottling operation. The pressure also helps further reduce
CO, evaporation. There is a single primary delivery pipe from the chillers to each
bottling machine. At the filler, the pipe splits off into 4 secondary pipes that fill a

common bowl from which all valves draw.

FIGURE 5-2. Rotary-type Filling Machine

A representative, rotary-type, filling machine is shown in Figure 5-2. A rotary
filling system has fill valves arranged on a carousel that collects cans or bottles from a

conveyer. The entire bowl and valve assembly rotates about a central axis during the
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filling cycle. As empty containers enter the filling machine they are married up with a
fill valve and the container and valve rotate together during the filling process. The fill
usually takes about 200° of revolution, or just over one-half of a rotation, although the
can/bd&lé rema‘lins‘. wuhthe machme for about 320° of rotation. After filling, the full
container is released from the rotary filler and passes down a short conveyor to a
“capping” machine. The product then proceeds down the line to be packaged, stored, and
shipped.

While filling requires only a short amount of time, it is an important and
complicated procedure. A brief description of the process will help clarify some of the
assignable causes associated with filling problems. For purposes of this discussion, we
will only consider bottle-filling operations, although can filling is very similar. Numbers
used in this description refer to the valve cutaway drawing in Figure 5;3.

When a bottle enters the fill machine it is seated in a rubber seal (3) and
pressurized. This counter-pressure equalizes the pressure in the bottle with that in the fill
tank to prevent foaming. The valve is opened when the cam (1) strikes a plunger that
only deploys if a bottle is present. The liquid enters the bottle through the fill nozzles (6)
forcing the liquid to the sides of the bottle and filling occurs from the bottom, up. Since
the bottle and the liquid are under the same pressure, no filling occurs until pressure is
allowed to escape through the counter-pressure sleeve(4).

Filling continues until the ball check (5) is carried by the volume of the liquid to
the opening of the counter-pressure sleeve stopping the release of pressure and as a result,

stopping the fill. As the machine rotates, the valve is then closed via the cam. Before the




bottle comes off the filler, a tapered block makes contact with the snift button (2)
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allowing a controlled release of pressure to prevent foaming. The bottle then passes over

a short bridge to the capping machine where the product is sealed by screwing on twist-

off caps.
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FIGURE 5-3. Uniblend Filling Valve
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Product measurement is accomplished in four ways. The first is a visual
inspection by the fill machine operator who watches the bottles as they pass over the
bridge between the filler and the capper. The operator watches for the color changes that
indicate foaming problems, identifies pressure problems that cause the beverage spurt out
of the bottle with a geyser-like effect, and monitors fill height by sight.

Here the description of bottling and canning operations diverges. Since the
plastic bottle is transparent, the consumer can monitor fill height after a fashion while
selecting which bottle to purchase in the supermarket. In the canning process the lids are
sealed onto the cans using a crowning machine. After crowning, the cans pass through a
fill-detection machine which uses gamma rays to identify any can filled below 11.7
ounces. Low filled cans are literally “kicked out” of the system and scrapped. This low
fill detection method for canned products is not available for bottled products. The scrap
bins that collect the kicked out cans provide some measure of fill performance as
inordinate amounts of cans in the bin suggest a related problem with the filling machine.
The bottling lines require this information to be obtained via sampling methods.

All lines in the process are controlled/monitored by various means. Engineering
process control (EPC) plays a large part in the control process. Levels of CO,, sweetener
or BRIX, pressure, and temperature are all continuously adjusted to maintain an ideal
mix. In addition, samples are also taken from each line. Each fill machine is sampled
five minutes after process start-up, and then again once per hour until the product on that

line changes. The samples are weighed using tare weight to determine fill accuracy as
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well as being tested for carbonation, BRIX content, taste and the seal of the can lid or
bottle cap.

Most filling issues concern assignable causes which impact all, or most of the fill
valves. A newkisskl.l.e;t t.hAé. facﬂlty .ilas to do with the product being bottled on a particular
line. Recently the facility has begun bottling fruit juices containing pulp. Figure 5-4
shows how the product is transported to the bowl from which each valve draws while
filling. Pulp concentrations tend to vary from where each feeder line joins the bowl to
the areas situated directly between feeder lines. The pulp can begin to clog valves and

restrict product flow during filling operations.

FIGURE 5-4. Product Distribution to Filling Bowl and Pulp Concentrations
(Darker shaded areas indicate more pulp)
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Current Situation

For the purposes of this study we will consider line 5, the two-liter bottling line.
This line has a rotary-filling machine with 52 valves and a normal operating speed of
about 260 bottles filled per minute. One of the methods employed to ensure product
quality is to measure the fill volume of bottles sampled from the line using tare weight.
At present 5 bottles are sampled from the line 5 minutes into each flavor run and then
samples of 5 bottles are drawn once an hour for the remainder of the flavor run.

The current monitoring approach assumes any assignable cause impacts all valves
equally and all streams are independent and identically distributed following an
approximate normal distribution. The target value for each stream is 2000 milliliters
(ml.) and each stream is known to have a constant standard deviation of 10 ml. when the
process is on-target. Under these assumptions, the system is thought to be monitored

with the protection shown in Table 5-2.

TABLE 5-2. ARL Values for an X Chart with n =5 Bottles

5
Shift ARL
0.0 370.38
0.5 33.40
1.0 4.50
1.5 1.57
2.0 1.08
2.5 1.00
3.0 1.00

Using Table 5-2 and knowing that assignable causes are desired to be detected

early in the process operation, it can be assumed that shifts of 1.5¢ and greater are
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generally noticed in time to adjust the process. Meanwhile, shifts of 1.0c and less are not
caught in time to do anything about them. Recall that the ARL is a measure of the
number of samples taken before the chart signals. Since the first sample occurs 5 minutes
after process start up, an ARL of 1.57 equates to about 0.65 hours of operation before a
chart signals, on average. Naturally, since samples are taken at hourly intervals after the
5-minute check, the signals actually occur at either the 5-minute check or at the first
hourly sample for shifts of 1.56.

Since this is a multiple stream process and it is suspected that some assignable
causes are impacting several, but not all process streams, the actual protection afforded
with the current sampling plan is somewhat different. Table 5-3 shows the actual
protection obtained by monitoring the multiple stream process with the current sampling
plan. The last row shows how the X chart will behave if all valves shift and corresponds
to the values given earlier in Table 5-2. Recall that the ARL measures the average
number of plotted points until a chart signals. Since the first sample is taken 5 minutes
into the production run, the ARL values can be converted to ATS values by subtracting
55 minutes, or 0.92 hours from the ARL values in Table 5-2. Notice under these
conditions, if half the valves shift by 1.5¢ the chart will not signal until the 7.03 samples
have been taken on average. Converting this to an ATS works out to about 6.11 hours of

production time.
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TABLE 5-3. ARL Values for Sampling 5 bottles from 52 Streams

# Streams
Off-target 0.5 1.0 1.5 2.0 2.5 3.0
1 361.60 33542 29358 241.58 188.00 140.52
2 351.77 300.17 22998 161.70 108.88  73.24
5 317.64 20664 113.88 61.24 3511 22.06
10 255.06 109.20 4417 20.66 1154 748
13 219.49 76.65 28.09 12.88 733 4.90
26 110.25 22.23 7.03 342 2.23 1.73
39 58.30 9.04 2.90 1.63 1.26 1.12
52 33.40 4.50 1.57 1.08 1.00 1.00

To put things in perspective, consider how much waste would be associated with

a shift above target. With a standard deviation of 10 ml. and operating speeds of 260
bottles per minute, a shift of 1.5¢ on half the valves will result in an average waste
equaling over 350 two-liter bottles before generating a signal on a monitoring chart. This

works out to nearly 1 bottle a minute for over 6 hours of operating time.

Alternative Monitoring Schemes

Increased Sample Size. A quick way to improve the monitoring

performance of the process is evident from watching the way in which samples are
collected. In addition to the S bottles used for fill height sampling, 9 other bottles are
also pulled from the line at the same time for a total of 14 bottles. Destructive testing
requires 2 of the bottles, 1 for carbonation testing and the other for BRIX testing. The
remaining 12 bottles are needed for testing the seal of the bottle capping machine. Figure
5-6 shows the bottling operation to include the capping machine. This capping machine

is made up of 12 heads which screw caps on the bottles using a small rotary-type
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machine. Taking samples of size 14 enables the analyst to conduct the necessary

destructive tests and test all 12 capping heads using a torque test.

Full, Capped
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FIGURE 5-6. Rotary Filling and Capping Processes

By taking advantage of these extra bottles, it should be possible to sample the fill
height of at least 13 bottles during each sample time. This number was chosen as it
conveniently represents 25% of the total valves and allows for 1 of the destructive tests to

begin immediately if necessary. (The second destructive test would merely have to wait
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until 1 bottle was measured using tare weight, a process that takes less than 10 seconds.)

Table 5-4 shows average run length results if 13 bottles are used at each sample point.

TABLE 5-4. ARL Values for Sampling 13 bottles from 52 Streams

#
Off-target | 0.5 1.0 15 2.0 2.5
1 361.73 33721 30073 25764 21335
2 34951 29550 227.88 164.61 114.70
5 29797 173.64 8922 4620 2568
10 201.50 6657 2398  10.72 5.91
13 15409 3969  13.05 5.88 3.42
26 49.40 733 2.49 1.48 1.18
39 18.98 2.55 1.22 1.03 1.00
52 8.65 1.37 1.01 1.00 1.00

Notice under these new conditions, if half the valves shift by 1.5c, the chart will,
on average, signal before the second hour (2.49 ARL = 1.57 hours ATS). Using the
previous example, again consider the waste associated with a shift above target of 1.5¢
on half the valves. This time the waste equals just over 91 two-liter bottles before a

signal is generated.

Adaptive Alternatives. To further improve the process monitoring

performance a fractional sample adaptive approach is implemented. Selecting a
reasonable large sample size, s,, will be an important consideration. In observing various
analysts collect samples it was noted that some analysts would take 12 bottles for the cap-
seal torque test, plus 2 bottles for destructive testing, plus 5 additional bottles for fill
height monitoring. Since 17 bottles were being collected using this particular approach,

an upper sample size limit of 20 bottles seems reasonable. To keep the larger sample size
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an integer multiple of the smaller, s; was established at 10 bottles. Letting sp = 13 bottles

for comparison with the previous method and choosing ¢; = 0.25 hours, or 15 minutes,

established a threshold value and upper sampling interval of w = 1.03, and 7, = 1.32 hours

respectively. The ARL results for this monitoring scheme are shown in Table 5-5.

TABLE 5-5. ATS Values for VSSI Sampling 52 Streams
Using s; =10, 5, =20,50=13,4=0.25,,=1.32,and w=1.03

#
Off-target 0.5 1.0 1.5 2.0 2.5

1 361.29 33551 297.16 25202 206.02
2 34847 29187 22154 156.72 106.69
5 29429 16457 79.13 37.87 19.47
10 192.20 54.06 15.81 6.08 3.23
13 141.82 28.05 7.10 2.98 1.90
26 34.07 3.06 141 1.15 1.07
39 8.74 1.37 1.07 1.02 1.00
52 3.11 1.10 1.01 1.00 1.00

It is important to remember that the VSSI results are reported in terms of average

time to signal. Using the adaptive approach when half the valves shift by 1.5c results in

a signal after 1.41 hours of operation on average. Using the same example as before (1/2

the valves shifting above target by 1.56), the waste only decreases a modest amount to

about 82 two-liter bottles before a signal is generated. This seems like a small gain for a

rather involved change in operating procedures; however, the ATS values in Table 5-5

are computed assuming the shift occurs at a random point in time. If the off-target valves

are assumed to be present at process start-up, the values in Table 5-5 should be adjusted

by subtracting 0.17 hours. For the previous example the signal time be reduced to 1.24

hours resulting in a waste of about 72 bottles — a slight improvement.




184

An even larger improvement can be made if we are going to assume an off-target
condition present at start up. Recall that the b’ vector used to determine the ATS uses
values of &, and b, that represent the average proportion of time spent in zones 1 and 2
when the process is under control. Dramatically different results are obtained if the
process is assumed to be in zone 2 when the shift occurs. The reason for this is that the
adaptive scheme now has a “head start” toward catching the off-target condition. This is
why the fast initial response (FIR) is recommended at start-up. Since off-target
conditions present at start-up are known to be an issue and should be detected quickly to
enable the maximum improvement in process yield, it is worth considering how the
adaptive scheme performs using the FIR option when the process is off-target at process
start-up. To generate ATS values in this situation, change the initial probabilities to of b,
=0, and b, =1. Table 5-6 shows the FIR ATS results assuming some valves are off-target

at start-up and the first sample occurs 5 minutes into production.

TABLE 5-6. FIR ATS Values for VSSI Sampling 52 Streams
Using s; = 10, 5, =20, 50=13,£=0.25,,= 132, and w = 1.03

4
Off-target | 0.5 1.0 13 2.0 2.5

1 36037 33459 29624 251.12 205.14
2 347.54 29093 220.59 15577 105.74
5 29331 16350 7799 3671 1829
10 19108 5277  14.49 478 1.97
13 140.62  26.68 5.76 1.71 0.70
26 32.63 176 028 0.12 0.09
39 731 026 -~ 0.09 0.08 0.08
52 1.79 010 0.8 0.08 0.08
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Now if half the valves are off-target by 15 ml. (1.5c) at start-up, the adaptive

scheme will generate a signal, on average, in 17 minutes (0.28 hours). This amounts to
only about 16 bottles of waste. This is a 95 percent reduction in waste from the original
5-bottle sample scheme and an 82 percent reduction from the 13 bottle, fixed sample
plan, for this scenario. Furthermore, notice from Table 5-6 that when all the streams shift
by any size larger than 0.5c, the adaptive scheme usually signals during the 5-minute
check. This provides an excellent opportunity to make necessary corrections early and
have the system running with minimal waste (maximum yield) for most of the flavor run.
Finally, note that with a threshold value of 1.03, the adaptive monitoring scheme will
operate in zone 1 approximately 70% of the time while the process is on-target. This

means most samples for an on-target process will be of size s; = 10, 1.32 hours apart.

Summary

This case study shows that a process with a large number of streams can be
effectively monitored by sampling only a fraction of the total streams. For the specific
process studied in this chapter, a minimum recommendation would be to measure the fill

height for as many bottles as possible. If 14 bottles are being pulled from the production

line every hour, the fill height sample size should not be limited to only a 5-bottle sample.

Furthermore, if the process is flexible enough to allow it, an adaptive approach enabling

the advantages of the FIR technique ought to be implement.




CHAPTER 6

SUMMARY AND CONCLUSIONS

Contributions

This research builds on the work presented in the literature for moderate numbers
of streams, average run length determination, adaptive monitoring methods, and
associated techniques for determining adaptive chart performance. Original contributions
are produced for multiple stream processes with large numbers of streams where it is
possible to monitor only a fraction of the total streams at a given time. This is the first
presentation of issues surrounding fractionally sampled multiple stream processes. This
situation is of interest in those processes where the speed of production is great and
includes a large number of streams, but the ability to monitor the process is not fully
automated and unable to keep up with the speed of production.

A probability model for determining detection probabilities in fractionally
sampled multiple stream processes was developed. This model measures the likelihood
that an X chart for a fractionally sampled system will signal an off-target condition when
any fraction of the streams shift. In addition to the mathematics involved in computing
this detection probability, a computer program was given which automates the process
and quickly gives a result for a process with any number of streams and allows an infinite
number of combinations of stream shift scenarios to be examined. Results from several

of these scenarios have been tabulated and graphed.
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Adaptive approaches to system monitoring were applied to multiple stream
processes in general and the fractional sampling problem specifically. While a recent,
thorough survey of available adaptive techniques is presented by Tagaras (1998), this
study represents the first integration of adaptive techniques and multiple stream
processes. Another original contribution of this study is the construction of a Markov
chain method that incorporates the new probability model to measure the performance of
adaptive schemes of monitoring fractionally sampled multiple stream processes. This
procedure relies on the probability of detection algorithm presented earlier to establish
the transition probability matrix. The ATS results were used to identify promising
adaptive sampling schemes for monitoring a MSP using fractional samples. It was shown
that the adaptive fraction approach gave superior results to the fixed fraction scheme and
often yielded results nearly as good as those obtained by sampling all the streams
involved in a process.

Finally an in depth example was provided by means of a case study where the

methods described in this study were applied.

Suggestions for Additional Research

Avenues for future research addressing the issues of multiple stream processes
abound. This area will remain diverse as multiple stream issues continue to involve
processes with small to moderate numbers of streams and increasingly large numbers of
streams and high rates of production. As the rates of production skyrocket, the need for

low false alarm rates will be increasingly important, while at the same time, system shifts
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will need to be signaled faster than ever. Automated monitoring methods introduce their
own problems in both data correlation and sheer volume of available data.

One interesting problem involves how to monitor a MSP when the streams arise
from diéfé:ri-ng dlstnbutlons An e;ample might be where the streams near the edge, that
is the first few streams and the last few streams, behave differently than the middle
streams. This situation might occur in a web-type process such as in paper production, or
tape manufacture. Figure 6-1 shows a cross section of the streams in such a system and
how the edges appear different than the center. One possible approach might be to
develop a multiple stream charting procedure based on model-free techniques. This
approach seems a natural fit for any process complicated by streams from varying
distributions. Furthermore, this technique has been used to successfully address

autocorrelation issues in the univariate case.

Lt 1t [P 8 1 T 1.1

FIGURE 6-1. Web Process with Different Distributions for Middle- and End-Streams

Correlation within multiple stream processes is an issue that needs attention. The
ability of some processes to monitor all items produced has led to correlated data
situations where data independence had been previously assumed. Application of current
techniques for dealing with correlated data in single stream and multivariate situations

might be pursued. One possible approach would be to represent the process using a time
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series model and chart the residuals. In a multiple stream environment, a time series
model might be required for each stream and then apply existing MSP techniques to the
residuals. Perhaps a single value, such as the maximum value across all streams, could
be modeled in a time series fashion. Another approach might consider the streams in a p
stream process as months within a p-month long year and use a seasonal time series
model to monitor the system.

Statistical pattern recognition algorithms might be developed. The very large
number of multiple streams problem may benefit by allocating each stream to a
“bandwidth” and setting a desired pattern for the process as a whole. In the bottling
example, if the desired fill height across all containers is equal, say 12 ounces, then the
target distribution across all streams at a given time would be the uniform distribution.
Deviations from the target pattern could be detected by the failure to fit a recognized
pattern within statistical tolerances. Allowances for non-identical streams might
incorporate maximum flexibility into allowable pattern definitions. In this case, the
problem of massive data sets becomes a benefit as they allow more hearly continuous
pattern monitoring.

While this approach is probably the most complex, it offers some interesting
possibilities. For example, genetic algorithms might be used to generate new off-target
templates thereby allowing the monitoring process to detect new assignable causes.
Specific patterns could also be established for known assignable causes and then a
control chart signal would also immediately narrow down the interpretation issue. Even

if a full pattern recognition scheme is not implemented, the concept of artificial
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intelligence (AI) might be exploited. Patrick and Fattu (1986) define Al saying rather
than providing help in generating decision rules, artificial intelligence instead provides
procedures for interpreting given patterns and general bookkeeping strategies. With
high-speed automated processes, it seems natural to try and implement some form of

automated control chart scheme.

Conclusion

This study has shown that multiple stream processes can be effectively monitored
when only a fraction of the total streams are sampled at a given time. Performance
measures have been presented to help determine the risk associated with a fractional
sampling scheme and a technique for applying adaptive sampling methods have been
given. These results show that several alternative approaches to sampling only a portion
of the total streams are available. In addition, some processes that are able to monitor all
streams, may be able to benefit by occasionally using a fractional sample along with full
samples. Furthermore, for systems that are able to withstand minor shifts and desire to
catch moderate, or larger shifts, a fractional approach may present some new monitoring
alternatives. Finally, any process which is upsizing need not fear outgrowing their ability
to sample from all streams as fractional sampling methods could be used until such time
as they may decide to also upsize their sampling ability.

While several new ideas have been presented for the multiple stream problem,

they are by no means exhaustive. The earlier discussion of potential future research
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shows a veritable cornucopia of opportunities are available for further study in the large

number of streams problem as well as the multiple stream process problem in general.
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