An Electrolyte for Low-Temperature Applications of Lithium and Lithium-Ion Batteries

Wishvender K. Behl and Edward J. Plichta

ARL-TR-1705
September 1998

Approved for public release; distribution unlimited.
The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
An Electrolyte for Low-Temperature Applications of Lithium and Lithium-Ion Batteries

Wishvender K. Behl
Sensors and Electron Devices Directorate, ARL

Edward J. Plichta
CECOM, Fort Monmouth

Approved for public release; distribution unlimited.
Abstract

An electrolyte consisting of a 1.0-molar solution of lithium hexafluorophosphate (LiPF₆) in 1:1:1 ethylene carbonate (EC)-dimethyl carbonate (DMC)-ethyl methyl carbonate (EMC) is proposed for low-temperature applications. The new electrolyte has good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to -40 °C.
Contents

Introduction ... 1
Experimental Procedure .. 1
Results and Discussion ... 2
Conclusions .. 6
Distribution .. 7
Report Documentation Page... 9

Figures

1. Conductivities of 1.0-molar solutions of LiPF$_6$ in ternary solvent mixture
 EC-DMC-EMC as function of percentage volume of EMC at 25 °C 2
2. Conductivities of 1.0-molar solutions of LiPF$_6$ in EMC, 1:1 EC-DMC,
 and 1:1:1 EC-DMC-EMC as function of temperature .. 3
3. Linear sweep voltammograms obtained at glassy carbon electrode at scan rate
 of 20 mV/s in 1.0-molar solutions of LiPF$_6$ in EMC, 1:1 EC-DMC,
 and 1:1:1 EC-DMC-EMC ... 3
4. Typical voltage-time curve for cell I for first discharge and following
 charge-discharge cycle at constant current of 1 mA using 1.0-molar solution
 of LiPF$_6$ in 1:1:1 EC-DMC-EMC as electrolyte .. 4
5. Typical discharge curves for cell II at constant current of 1 mA at various
 temperatures using 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC
 as electrolyte .. 5
6. Typical discharge curves for cell III at constant current of 1 mA at various
 temperatures using 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC
 as electrolyte .. 5
Introduction

Various Army missions require lithium and lithium-ion batteries that can operate at temperatures down to -40 °C. Because the electrolytes presently used in commercial lithium-ion batteries freeze at about -30 °C, considerable attention is being given to finding cosolvents for these electrolytes to increase their liquidus range. Recently, ethyl methyl carbonate (EMC) was found to be a useful cosolvent in binary solutions with propylene carbonate (PC) andethylene carbonate (EC), because of its low freezing point (-55 °C). In this study, we used EMC as a cosolvent with EC and dimethyl carbonate (DMC) in ternary solutions to increase the liquidus range of the lithium-ion battery electrolyte. Thus, Li/LiCoO₂ and graphite/LiCoO₂ button cells that use a 1.0-molar solution of lithium hexafluorophosphate (LiPF₆) in 1:1:1 EC-DMC-EMC as the electrolyte were found to be operable at temperatures down to -40 °C. Further, the new electrolyte was found to have good conductivity, as well as good electrochemical stability. The results are summarized in this report.

Experimental Procedure

LiPF₆ (from Hashimoto, Japan) and SFG-44 graphite (from Timcal) were used as received. EC, DMC, and EMC (all from Grant Chemicals) were dried over molecular sieves before use. Lithium foil (20 mil thick, from the Cypress-Foote Mineral Company), packed over argon, was opened in an argon-filled dry box (from the Vacuum Atmosphere Company) with a moisture content of less than 0.5 ppm.

The electrolyte conductivities were measured with a Wayne Kerr model 6425 precision bridge at a frequency of 1 kHz in sealed Jones-type conductivity cells. Cell constants were determined by a standard KCl solution. An environmental chamber (manufactured by Tenney, Jr.) controlled the temperature for the conductivity and cell studies.

We fabricated lithium and lithium-ion cells using a 1.0-molar solution of LiPF₆ in 1:1:1 EC-DMC-EMC in a button cell configuration. The cell component specifications and button cell assembly details have been described previously. All electrode disks were 0.51 mm thick and 15.7 mm in diameter. Lithium electrodes were cut from a lithium foil and pressed onto nickel screen (Exmet 5 Ni 6-3/0A). Graphite electrodes with a theoretical capacity of 24 mAh were fabricated with the use of 10 wt.%

PTFE (Teflon) binder. The electrode mixture was spread on a copper foil current collector. We made lithium cobalt oxide electrodes with a theoretical capacity of 42 mAh by mixing 80 wt.% LiCoO₂ with 10 wt.% Vulcan CX-72R carbon and 10 wt.% PTFE and spreading the paste on an aluminium screen current collector. The cells were fabricated with a Celgard 2402 separator (0.05 mm thick and 1.9 cm in diameter). The cells were cycled by an Amel model 546 galvanostat/electrometer, and the currents applied to the cell were verified with a Fluke model 8640A digital multimeter. We performed voltammetric scans using an EG&G PAR potentiostat/galvanostat (model 273). The experiments were computer-controlled with the use of EG&G PAR electrochemical analysis software (model 270).

Results and Discussion

The electrolyte in commercial lithium-ion cells generally consists of a 1.0-molar solution of LiPF₆ in 1:1 EC-DMC (50:50 vol.%). The electrolyte freezes at about −30 °C, so the commercial lithium-ion cells cannot be used in several military applications that require operation at lower temperatures. We have, therefore, employed EMC as a cosolvent to increase the liquidus range of the electrolyte used in commercial cells.

The conductivities of 1.0-molar solutions of LiPF₆ in 1:1 EC-DMC containing 0 to 100 vol.% EMC were measured at 25 °C, and the data are plotted in figure 1. It is seen that the electrolyte conductivity decreases from −0.011 to −0.004 S/cm as the concentration of EMC is increased from 0 to 100 vol.%. However, the decrease in electrolyte conductivity is only minimal in the initial stages, and the conductivity of a 1.0-molar solution of LiPF₆ in 1:1 EC-DMC-EMC is close to the conductivity in a 1:1 EC-DMC solution.

We found the freezing point of a 1.0-molar solution of LiPF₆ in 1:1:1 EC-DMC-EMC to be approximately −50 °C compared to the freezing point of approximately −30 °C for the electrolyte using a 1:1 EC-DMC, binary solvent mixture. The conductivities of 1.0-molar solutions of LiPF₆ in EMC, 1:1 EC-DMC, and 1:1:1 EC-DMC-EMC were also measured in the

![Figure 1. Conductivities of 1.0-molar solutions of LiPF₆ in ternary solvent mixture EC-DMC-EMC as function of percentage volume of EMC at 25 °C.](image)
temperature range of -40 °C to 55 °C. The data are plotted in figure 2 as a function of temperature.

The conductivities of the EMC solutions at all temperatures are too low to consider these solutions as electrolytes for lithium or lithium-ion batteries. However, EMC can be used as a cosolvent for the commercial electrolyte consisting of a 1.0-molar solution of LiPF$_6$ in 1:1 EC-DMC to increase its liquidus range. The conductivities of the electrolyte using the ternary solvent mixture are, however, slightly lower at temperatures above -20 °C (fig. 2) compared to the conductivities of electrolytes using the binary solvent mixture.

The electrochemical stabilities of solutions of LiPF$_6$ in EMC, 1:1 EC-DMC, and 1:1:1 EC-DMC-EMC were examined by recording linear sweep voltammograms at smooth glassy carbon electrodes (electrode area: 0.0792 cm2). Typical voltammograms obtained at a scan rate of 20 mV/s are presented in figure 3. It is seen that all three solutions are electrochemically stable up to a potential of about 4.5 V, although the anodic currents in EMC solutions are much smaller than those observed in the EC-DMC and EC-DMC-EMC solutions.

Figure 2. Conductivities of 1.0-molar solutions of LiPF$_6$ in EMC (△), 1:1 EC-DMC (○), and 1:1:1 EC-DMC-EMC (□) as function of temperature.

Figure 3. Linear sweep voltammograms obtained at glassy carbon electrode at scan rate of 20 mV/s in 1.0-molar solutions of LiPF$_6$ in EMC (○), 1:1 EC-DMC (△), and 1:1:1 EC-DMC-EMC (□).
The new electrolyte was evaluated in the following cells:

Li/electrolyte/SFG-44 graphite (I)
Li/electrolyte/LiCoO$_2$ (II)
SFG-44 graphite/electrolyte/LiCoO$_2$ (III)

Cell I was used to determine the reversible and irreversible capacity of the graphite electrode in button cells. The cell was discharged at a constant current of 1 mA to 0.01 V, which resulted in the intercalation of lithium into graphite. The total cell reaction may be represented as

$$x \text{Li} + 6\text{C} \leftrightarrow \text{Li}_x\text{C}_6$$

The cell was then cycled between the voltage limits of 0.01 and 1.5 V, and the voltage-time plots for the first discharge and the following charge-discharge cycle are shown in figure 4. This plot is similar to plots observed by other workers for lithium/graphite cells using nonaqueous electrolytes.3,5 The capacities of the graphite electrode during the initial discharge and the following charge-discharge cycle were found to be 354.4, 322.7, and 323.9 mAh/g, respectively. Thus, the irreversible capacity during the first discharge was ~31.7 mAh/g. After the initial discharge, the capacity of the graphite electrode was found to be approximately the same for the charge and discharge cycles.

The reversible capacity of ~323 mAh/g for the graphite electrode was found to be comparable to the capacity reported by other workers5 for graphite electrodes.

Figure 4. Typical voltage-time curve for cell I for first discharge and following charge-discharge cycle at constant current of 1 mA using 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC as electrolyte.

Cells II and III were used to study the performance of the lithium and lithium-ion cells at different temperatures using a 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC as the new electrolyte. The cell reactions in cells II and III, respectively, may be represented as

\[
x \text{Li} + \text{Li}_1 - x \text{CoO}_2 \leftrightarrow \text{LiCoO}_2, \quad \text{(2)}
\]

\[
\text{Li}_x \text{C}_6 + \text{Li}_1 - x \text{CoO}_2 \leftrightarrow 6\text{C} + \text{LiCoO}_2. \quad \text{(3)}
\]

Both cells II and III were assembled in the discharged state and were first charged to a voltage of 4.15 V at a constant current of 1 mA. The discharge curves obtained at 25 °C, -20 °C, and -40 °C at a constant discharge current of 1 mA for cells II and III are presented in figures 5 and 6.

It can be seen that both cells II and III are operable at temperatures down to -40 °C. The capacity of the lithium-ion cell (fig. 6) at -40 °C was, however, found to be only a fraction of the capacity obtained at 25 °C. This may be attributed to the poor performance of the graphite-lithium anode at -40 °C, since the capacity of the lithium cell (fig. 5) at the same temperature was found to be about 52 percent of the capacity obtained at 25 °C.

Figure 5. Typical discharge curves for cell II at constant current of 1 mA at various temperatures using 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC as electrolyte.

Figure 6. Typical discharge curves for cell III at constant current of 1 mA at various temperatures using 1.0-molar solution of LiPF$_6$ in 1:1:1 EC-DMC-EMC as electrolyte.
Conclusions

Ethyl methyl carbonate was found to be a useful cosolvent to increase the liquidus range of the LiPF₆ solutions in 1:1 EC-DMC at low temperatures. Thus, a 1.0-molar solution of LiPF₆ in 1:1:1 EC-DMC-EMC was found to possess good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to -40 °C.
Distribution

Admnstr
Defns Techl Info Ctr
Attn DTIC-OCP
8725 John J Kingman Rd Ste 0944
FT Belvoir VA 22060-6218

Ofc of the Dir Rsrch and Engrg
Attn R Menz
Pentagon Rm 3E1089
Washington DC 20301-3080

Ofc of the Secy of Defns
Attn ODDRE (R&AT) G Singley
Attn ODDRE (R&AT) S Gontarek
The Pentagon
Washington DC 20301-3080

OSD
Attn OUSD(A&T)/ODDDR&E(R) R Trew
Washington DC 20301-7100

Commander
Army Materiel Cmnd
Attn AMCDE-SC
5001 Eisenhower Ave
Alexandria VA 22333-0001

CECOM
Attn PM GPS COL S Young
FT Monmouth NJ 07703

CECOM Night Vsn/Elect Sensors Dirctr
Attn AMSEL-RD-NV-D
FT Belvoir VA 22060-5806

Commander
CECOM R&D
Attn AMSEL-IM-BM-I-L-R Techl Lib
Attn AMSEL-IM-BM-I-L-R Stinfo Ofc
(3 copies)
FT Monmouth NJ 07703-5703

CECOM RDEC Elect System Div Dir
Attn J Niemela
FT Monmouth NJ 07703

CECOM
Sp & Terrestrial Commctn Div
Attn AMSEL-RD-ST-MC-M H Soicher
FT Monmouth NJ 07703-5203

Deputy for Sci & Techlgy
Attn Ofc, Asst Sec Army (R&D)
Washington DC 30210

Dir ARL Battlefield Envir Dirctr
Attn AMSRL-BE
White Sands Missile Range NM 88002-5501

Hdqtrs
Attn DAMA-ARZ-D F D Verderame
Washington DC 20310

Hdqtrs Dept of the Army
Attn DAMO-FDT D Schmidt
400 Army Pentagon Rm 3C514
Washington DC 20301-0460

MICOM RDEC
Attn AMSMI-RD W C McCorkle
Redstone Arsenal AL 35898-5240

US Army Avn Rsrch, Dev, & Engrg Ctr
Attn T L House
4300 Goodfellow Blvd
St Louis MO 63120-1798

Dir US Army CECOM Rsrch, Dev, & Engrg
FT Monmouth NJ 07703-5201

US Army Edgewood Rsrch, Dev, & Engrg Ctr
Attn SCBRD-TD J Vervier
Aberdeen Proving Ground MD 21010-5423

US Army Info Sys Engrg Cmmd
Attn ASQB-OTD F Jenia
FT Huachuca AZ 85613-5300

US Army Materiel Sys Analysis Agency
Attn AMXSY-D J McCarthy
Aberdeen Proving Ground MD 21005-5071

US Army Natick Rsrch, Dev, & Engrg Ctr
Acting Techl Dir
Attn SSCNC-T P Brandler
Natick MA 01760-5002

Dir US Army Rsrch Ofc
4300 S Miami Blvd
Research Triangle Park NC 27709
Distribution (cont’d)

US Army Rsrch Ofc
Attn AMXRO-ICA B Mann
PO Box 12211
Research Triangle Park NC 27709-2211

US Army Simulation, Train, & Instrmntn Cmnd
Attn J Stahl
12350 Research Parkway
Orlando FL 32826-3726

US Army Tank-Automtv & Armaments Cmnd
Attn AMSTA-AR-TD C Spinelli
Bldg 1
Picatinny Arsenal NJ 07806-5000

US Army Tank-Automtv Cmnd Rsrch, Dev, & Engrg Ctr
Attn AMSTA-TA J Chapin
Warren MI 48397-5000

US Army Test & Eval Cmnd
Attn R G Pollard III
Aberdeen Proving Ground MD 21005-5055

US Army Train & Doctrine Cmnd
Battle Lab Integration & Techl Dirctrt
Attn ATCD-B J A Klevecz
FT Monroe VA 23651-5850

US Military Academy
Dept of Mathematical Sci
Attn MAJ D Engen
West Point NY 10996

Nav Rsrch Lab
Attn Code 2627
Washington DC 20375-5000

Nav Surface Warfare Ctr
Attn Code B07 J Pennella
17320 Dahlgren Rd Bldg 1470 Rm 1101
Dahlgren VA 22448-5100

GPS Joint Prog Ofc Dir
Attn COL J Clay
2435 Vela Way Ste 1613
Los Angeles AFB CA 90245-5500

Marine Corps Liaison Ofc
Attn AMSEL-LN-MC
FT Monmouth NJ 07703-5033

USAF Rome Lab Tech
Attn Corridor W Ste 262 RL SUL
26 Electr Pkwy Bldg 106
Griffiss AFB NY 13441-4514

DARPA
Attn B Kaspar
Attn L Stotts
3701 N Fairfax Dr
Arlington VA 22203-1714

Advry Grp on Elect Devices
Attn Documents (2 copies)
Crystal Sq 4
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202

ARL Electromag Group
Attn Campus Mail Code F0250 A Tucker
University of Texas
Austin TX 78712

Dir for MANPRINT
Ofc of the Deputy Chief of Staff for Prsnnl
Attn J Hiller
The Pentagon Rm 2C733
Washington DC 20301-0300

Palisades Instit for Rsrch Svc Inc
Attn E Carr
1745 Jefferson Davis Hwy Ste 500
Arlington VA 22202-3402

US Army Rsrch Lab
Attn AMSRL-CI-LL Techl Lib (3 copies)
Attn AMSRL-CS-AL-TA Mail & Records Mgmt
Attn AMSRL-CS-AL-TP Techl Pub (3 copies)
Attn AMSRL-DD COL T A Dunn
Attn AMSRL-SE-DC W Behl (25 copies)
Adelphi MD 20783-1197
ABSTRACT
An electrolyte consisting of a 1.0-molar solution of lithium hexafluorophosphate (LiPF₆) in 1:1:1 ethylene carbonate (EC)-dimethyl carbonate (DMC)-ethyl methyl carbonate (EMC) is proposed for low-temperature applications. The new electrolyte has good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to −40 °C.