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An Iterative Technique to Correct Probe Position Errors 
in Planar Near-Field to Far-Field Transformations 

by 

Lorant A. Muth and Richard L. Lewis 

We have developed a general theoretical procedure to take into ac- 
count probe position errors when planar near-field data are transformed 
to the far field. If the probe position errors are known, we can represent 
the measured data as a Taylor series, whose terms contain the error func- 
tion and the ideal spectrum of the antenna. Then we can solve for the 
ideal spectrum in terms of the measured data and the measured position 
errors by inverting the Taylor series. This is complicated by the fact that 
the derivatives of the ideal data are unknown; that is, they can only be 
approximated by the derivatives of the measured data. This introduces 
additional computational errors, which must be properly taken into ac- 
count. We have shown that the first few terms of the inversion can be 
easily obtained by simple approximation techniques, where the order of 
the approximation is easily specified. A more general solution can also 
be written by formulating the problem as an integral equation and using 
the method of successive approximations to obtain a general solution. 
An important criterion that emerges from the condition of convergence 
of the solution to the integral equation is that the total averaged position 
error must be less than some fraction of the sampling criterion for the 
antenna under test. 

Key words: error-contaminated spectrum; ideal spectrum; integral equa- 
tion; inversion of Taylor series; method of successive approximations; 
probe position errors; Taylor series expansion 

1. Introduction 

In planar near-field scanning a probe antenna scans the field radiated by 
the antenna-under-test in a plane that is located a distance ZQ away from the test 
antenna. Ideally, measurements are made on a regularly space grid along the x and 
y directions, and at a fixed distance of separation ZQ between the antennas along 
the z-direction. Naturally, the ideal measurement grid can only be approximated 
in practice, that is, position errors in all the coordinate directions are inevitable, z 
position errors have the most significant effect on the far field when the main beam 
is along the z axis [1,2]. More generally, position errors in the direction of the main 
beam are most significant, because they introduce errors that are proportional to 
kSz, whereas displacements in the orthogonal directions introduce errors that are 
proportional to 1//, where / is the characteristic scale of the near field of the 
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antenna. Usually Z >• A. Consequently, first-order corrections of phase errors 
in near-field data is the most significant step we can take to improve accuracy 
of far-field features, such as gain, sidelobe levels, cross polarization, boresight 
direction and position of nulls. For example, the relevant phase error parameter 
for millimeter wave antennas is as follows: the number of near-field points needed 
is very large, since the sampling theorem demands data points at A/2 spacing 
for complete characterization of the far field. At 60 GHz the data spacing is 
2.5 mm, and the maximum position error on our near-field range, for example, 
is approximately 0.2 mm, (which can be reduced to 0.025 mm, if the range is 
carefully realigned). Such a position error represents a maximum phase error of 
ATT/X = 14.4° in the main beam direction. Since the near field is a superposition 
of an infinite number of plane waves, the actual phase error at any point could be 
significantly different from the main beam contribution. We would like to be able 
to correct such phase errors in the near field. Furthermore, second- order phase 
and amplitude corrections might also be necessary to achieve high accuracy in the 
far field. 

In the rest of this report we look at the theoretical error expressions that 
will be used in the computer simulation study (Section 2); then we discuss the 
computer simulation techniques and some preliminary results that show that the 
major error correction technique of inverting the Taylor series approximation of 
the ideal data is feasible (Section 3), and give some further suggestions for studies 
to improve performance assessments of millimeter wave antennas (Section 4). 

2. Analytical Error Expressions 

The field radiated by an antenna can be described as the superposition of an 
infinite number of plane waves whose wavenumbers k are constant [3]. We can 

write that k = (K,j), where k • fc=constant, K = (kx,ky), and •y2 = k2 — K2 

gives the z component of the propagation vector. The received near-field signal b'Q 

measured by a probe whose receiving coefficients are S'02(K) is 

6'0(x, y, z) = F'a0 II f10(K) ■ S'Q2(K) e^ eiR'pdkx dky (1) 

where F' = 1/(1 — TiTp), T/ and Tp are reflection coefficients for the load and 

probe, respectively, TIQ(K) are the transmission coefficients of the antenna under 
test, ao is the amplitude of the incident wave produced by the generator at the 
terminal surface So, and z is the distance of the near-field scan plane from Si, 
a plane situated in front of the antenna defining 2 = 0, and the position vector 
P = {x\X,X2y), where x and y are unit vectors. Equation (1) assumes that 
multiple reflections are negligible; the presence of multiple reflections in a real 
measurement range is minimized by judiciously choosing the position of the plane 
of measurement and the size and design of the probe. 

Since eq (1) is a Fourier transform, the quantity 

D{K) = 4^a0F'T10(K) ■ S'02(K) (2) 



can be immediately written in terms of the near field. Thus, 

D(K) = JJ b'0(P, z)e~it2dx dy, (3) 

where x = (xi,X2,xs) = P + x$z. 
Since the z dependence of the near-field quantity b'0 in eq (1) appears only in 

the exponential, we can immediately write that 

[ f DWje't'e^dkxdky (4) 

and 

db'0 

dz 

i 
4^2 

dnb'0 in 

j£=-BIS D{K] 7" ^^R'p dkx dk*-        (5) 

Similarly, the partial derivatives with respect to Xj for j = 1,2 are given by 

dnb' 
^ = BIIDWk?ehZeiRPdk*dky- (6) 

If these expressions can be evaluated, then first- order corrections can be intro- 
duced into the data. We assume that the probe's position is known accurately and 
is given by 

x + 8x(x), (7) 

where x is the position of the probe on an ideal near-field range, where measure- 
ments are made on a regularly spaced (x\, x%) grid, and Sx(x) is the deviation in 
the probe's position from the ideal grid. A thorough discussion of the effects of 
such displacement errors on the far-field pattern has been presented in [2]. Some 
of the basic considerations relevant to the current subject are included here. 

The near-field quantity b'0(x + Sx(x)) is measured at the locations given by eq 
(7). However, this function is assumed to be defined on the regular grid x when 
the spectrum is obtained numerically using Fourier techniques. We can write the 
Taylor expansion at x, 

b'0(x + Sx(x)) EE b'0(x) + ^Sxj + l^&SxiSxj + ■ ■ ■, (8) 

which defines the measured data on the left in terms of the unknown field quantities 
on the right. If we write b'Q = aexp(i(f>), where a is the amplitude and </> is the 
phase of 6'0, then 

Sb'0 = e'* ^-8xj + iaj* ^-8xj (9) 

holds. If we assume that a~1da/dxj <C d<f>/dxj, then eq (9) can be immediately 
integrated to give 

b'0(x + 6x) = b'0(x)eifc6x\ (10) 



where KJ = d<f>/dxj is the j component of the local wave-vector. In realistic 
near-field data of antennas the inequality above is satisfied for variations in the z 
direction. The wavenumber in the z direction can be expanded for small K as 

*,=7 = fc[l _!(£)> + ...] (11) 

Also, for a plane wave d(j)/dz = kz. Substituting this into eq (10), we obtain, to 
zeroth order in (K/k), that 

b'Q(x + 6x) = b(x)eik6z (12) 

which is a zeroth order correction for probe displacement errors in the near field. 
This plane-wave model correction technique has been applied to real data for some 
time now [4]. To evaluate eq (10) more exactly, we would need to know KJ along 
the path of integration, or at least at the end points of the path, since KJ = d<f>/dxj 
is an exact differential. By the mean value theorem, the integral in eq (10) can 
be written as KJAXJ, where KJ is some value of KJ in the interval of integration. 
Thus, the accuracy of b'0(x) will depend on the accuracy with which KJ is specified. 

For higher order corrections we need to develop a more thorough analysis. 
We can write, as in eq (3), the error-contaminated spectrum De(K) in terms of 
the measured data as 

De(K)= flb'Q{x + 8x{x))e-asdxdy. (13) 

Using expansion (8) and the transform relation (3), we can write that 

De(K) = D(K) + lj[dh'^Sxj + higher order terms^"^'* dx dy.        (14) 

Here j = 1,2,3 and the Einstein summation convention on repeated indexes is 
understood. In eq (14) D{K) and db'Q/dxj are unknown. We do, however, know 
db'0(x + 8x(x))/dxj through the relationships (4)-(6). We can differentiate eq (8) 
with respect to xt, £ = 1,2,3, so that 

b0(x + 6x(x)) = —-—- + 7~(-7 6xj) + ---, (15) 
dxt dxe       dxt    dxj 

which shows that eq (14) can also be written as 

De(K) = D(K) + IJf^Q^^Sxj + OtfxiSxjJler*-3 dx dy.        (16) 

We now have a first-order expression that gives the true spectrum in terms of the 
error-contaminated spectrum and the measured near-field data.   A second-order 



correction can be obtained in a similar manner. Equation (15) can be differentiated 
again, which immediately yields that 

-b>0(x + 6x(x)) = ^p- + O(8x). (17) 
dxidxj dxidxj 

The second-order term in eq (8) can now be written in terms of the known quantity 
b'0(x+8x(x)). However, the second-order terms neglected in the first-order approx- 
imation must now be included. These are the second and third terms appearing 
in eq (15). After replacing the quantities b'0(x) with their first-order approxima- 
tions, the second-order approximation of the known error-contaminated spectrum 
in terms of the true spectrum and the known displacement error function can be 
written as 

De(K) = D(K) + 

«|±^    + !*&* + £*) _   a    ^ + *«) 
oxj 2     dxidxj J     ox( oxj J 

0(8xi6Xj8xt)]e-il:sdxdy. (18) 

//' 

There is a general procedure for writing the nth-order approximation to D(K). 
Equation (8) can be rewritten as [2] 

De(K) = (D{K') j <?&-*>•*<&■**& d2xdk'x dk'y. (19) 

This expression can be recast into the form of an inhomogeneous integral equation, 
which, under certain conditions, has an iterative solution [5]. Some aspects of this 
are detailed in Appendix A. 

3. Computer Simulations 

Simulation Techniques 

To study the effects of probe errors using computer simulations an error-free 
data set is assumed in a plane of measurement, denoted by ZQ. An error-free spec- 
trum can then be obtained using standard Fourier transform techniques. An in- 
verse Fourier transform then can yield error-free near-field data at any z,=const ant 
plane. If a large set of near-field data is obtained at many different Z{, then a set 
of error-contaminated data can be constructed on the mathematical plane ZQ , ac- 
cording to an arbitrary error displacement function in the z direction. The error- 
contaminated data then yield an error-contaminated far-field pattern, which can 
then be compared to the original error-free spectrum. The same technique can be 
used to introduce displacement errors in the xy plane, which then can be studied 
similarly. 



A number of error correction schemes can be studied with this technique 
since both error-free and error-contaminated data can be generated in a prescribed 
manner. The following error correction schemes are worthy of consideration: 

1. First order phase-error corrections in the main beam direction only. 

2. First order phase-error corrections taking into account the contributions of 
plane waves in the off-axis directions. 

3. Second order phase-error correction. 

4. General second order complex error corrections for x,y and z displacement 
errors. 

5. General higher order complex error corrections for x,y and z displacement 
errors. 

Numerical Feasibility Study 

In order to execute the numerical studies suggested above, the feasibilty of the 
general error correction techniques has to be ascertained; that is, the convergence 
of the Taylor series has to be demonstrated in a simple test case. For this purpose, 
an actual near field of an array antenna radiating at 3.3 GHz was transformed 
from zo, the original plane of measurement, to z\ = ZQ + 0.02A. This separation 
distance was chosen to scale the limits of displacement errors in a well aligned 
near-field range at 60 GHz, where these error correction techniques are essential 
to obtain acceptable far-field patterns from near-field data. The data set chosen 
for this study has no special significance other than it was easily available; data 
sets at higher frequencies were not available at the time of this study. 

In Table 1, the near-field values at two different z positions separated by 
Sz = 0.02A are listed as a function of the vertical y-direction in the center of 
the near-field scan plane (a; = 0). In Table 2 the differences in amplitudes of 
the first, second and third order Taylor series expansions of the near-field data 
around z0 (which approximate the function at Z\) and the near-field data at z\ are 
shown. We can easily ascertain form these amplitude differences that the Taylor 
series converges to the correct value to an improved order of magnitude with each 
successive approximation. In Table 3 the phase differences between the phases 
obtained in the first, second and third order approximations and the exact phases 
are shown. Again, convergence in easily observed. 

4. Conclusions and Suggestions for Further Study 

We have developed a theoretical procedure which, in principle, can correct 
for probe position errors present in near-field data. The question of numerical 
convergence has been addressed on a simple but basic level. The result of this 
small study is significant in that it establishes the feasibility of obtaining correc- 
tions to error-contaminated near-field data, where the error is due to the faulty 
positioning of the probe. Since the feasibility of our techniques has been estab- 
lished a full implementation of the techniques is recommended as the next phase 
of this study. After successful completion of this phase, a full implementation of 

6 



the study at higher frequencies is recommended. At such higher frequencies the 
additional problem of an increased number of data points will have to be handled 
computationally; this, however, will not present fundamentally new difficulties. 
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and phase of the neai •-field data at ZQ (the first two columns) and 
and fourth columns). z0 = 380 cm and the frequency is 3.3 GHz 

-0.77406448E+02 0.71044020E-01 -0.71065971E+02 
-0.77066040E+02 0.69043353E-01 -0.70638588E+02 
-0.76955162E+02 0.66348597E-01 -0.70416214E+02 
-0.77103645E+02 0.63171484E-01 -0.70429436E+02                          ] 
-0.77551033E+02 0.59753377E-01 -0.70720047E+02 
-0.78342728E+02 0.56350138E-01 -0.71338348E+02 

■ 

-0.79519890E+02 0.53216860E-01 -0.72334320E+02 
-0.81101540E+02 0.50592951E-01 -0.73740471E+02 
-0.83061073E+02 0.48687033E-01 -0.75548035E+02 
-0.85307442E+02 0.47661930E-01 -0.77684982E+02 
-0.87686134E+02 0.47619943E-01 -0.80011765E+02 
-0.90009270E+02 0.48591554E-01 -0.82346024E+02 
-0.92103424E+02 0.50531447E-01 -0.84508301E+02 
-0.93848976E+02 0.53323638E-01 -0.86364479E+02 
-0.95192131E+02 0.56793861E-01 -0.87842964E+02 
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-0.94839607E+02 0.80871642E-01 -0.88180779E+02 
-0.93579697E+02 0.81983767E-01 -0.86925827E+02 
-0.91993576E+02 0.82293473E-01 -0.85316986E+02 
-0.90063461E+02 0.81896998E-01 -0.83337311E+02                           j 
-0.87782776E+02 0.80957592E-01 -0.80982773E+02 
-0.85168304E+02 0.79690382E-01 -0.78275276E+02 
-0.82274063E+02 0.78338675E-01 -0.75277008E+02 
-0.79202957E+02 0.77143587E-01 -0.72101707E+02 
-0.76109612E+02 0.76311313E-01 -0.68915894E+02 
-0.73187904E+02 0.75986728E-01 -0.65923607E+02 
-0.70642082E+02 0.76240897E-01 -0.63335045E+02 
-0.68648933E+02 0.77076137E-01 -0.61328175E+02 
-0.67324738E+02 0.78444391E-01 -0.60016930E+02 
-0.66707481E+02 0.80268413E-01 -0.59435833E+02 
-0.66757774E+02 0.82456067E-01 -0.59542557E+02                          j 
-0.67374077E+02 0.84902853E-01 -0.60233273E+02 
-0.68415756E+02 0.87485127E-01 -0.61364899E+02 
-0.69726944E+02 0.90050764E-01 -0.62778072E+02 
-0.71157341E+02 0.92413932E-01 -0.64317627E+02 
-0.72575905E+02 0.94359033E-01 
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Table 2. The differences between the amplitude of the near-field data at z\ and the ampli- 
tudes of the first, second and third-order Taylor series approximations of these near-field 
values 

-0.45118481E-03 
-0.44924021E-03 
-0.44508278E-03 
-0.43936074E-03 
-0.43277442E-03 
-0.42614713E-03 
-0.42039528E-03 
-0.41628256E-03 
-0.41457266E-03 
-0.41580573E-03 
-0.42020157E-03 
-0.42781979E-03 
-0.43842569E-03 
-0.45155734E-03 
-0.46665967E-03 
-0.48295408E-03 
-0.49973279E-03 
-0.51622093E-03 
-0.53173304E-03 
-0.54571778E-03 
-0.55778027E-03 
-0.56769699E-03 
-0.57550520E-03 
-0.58130920E-03 
-0.58547407E-03 
-0.58839470E-03 
-0.59053302E-03 
-0.59235841E-03 
-0.59417635E-03 
-0.59643388E-03 
-0.59945136E-03 
-0.60362369E-03 
-0.60918182E-03 
-0.61618537E-03 
-0.62443316E-03 
-0.63331425E-03 
-0.64200163E-03 
-0.64958632E-03 
-0.65503269E-03 
-0.65743923E-03 
-0.65617263E-03 

-0.30323863E-05 
-0.31217933E-05 
-0.31739473E-05 
-0.32261014E-05 
-0.32335520E-05 
-0.32037497E-05 
-0.31515956E-05 
-0.30025840E-05 
-0.28051436E-05 
-0.25555491E-05 
-0.22388995E-05 
-0.19259751E-05 
-0.16354024E-05 
-0.13858080E-05 
-0.11883676E-05 
-0.10319054E-05 
-0.91642141E-06 
-0.82701445E-06 
-0.75995922E-06 
-0.70780516E-06 
-0.66310167E-06 
-0.67055225E-06 
-0.73015690E-06 
-0.86426735E-06 
-0.10877848E-05 
-0.14156103E-05 
-0.18551946E-05 
-0.24512410E-05 
-0.30845404E-05 
-0.37848949E-05 
-0.44405460E-05 
-0.50142407E-05 
-0.54091215E-05 
-0.55581331E-05 
-0.54985285E-05 
-0.51930547E-05 
-0.46640635E-05 
-0.40382147E-05 
-0.33155084E-05 
-0.25480986E-05 
-0.18253922E-05 

0.54389238E-06 
0.54389238E-06 
0.55134296E-06 
0.54389238E-06 
0.54761767E-06 
0.55879354E-06 
0.54389238E-06 
0.56251884E-06 
0.56996942E-06 
0.56251884E-06 
0.58859587E-06 
0.59977174E-06 
0.60349703E-06 
0.61839819E-06 
0.62584877E-06 
0.64447522E-06 
0.65565109E-06 
0.66310167E-06 
0.67800283E-06 
0.68545341E-06 
0.70035458E-06 
0.71525574E-06 
0.71525574E-06 
0.72270632E-06 
0.73015690E-06 
0.74505806E-06 
0.76740980E-06 
0.74505806E-06 
0.78231096E-06 
0.78231096E-06 
0.80466270E-06 
0.79721212E-06 
0.80466270E-06 
0.81956387E-06 
0.81956387E-06 
0.81956387E-06 
0.84191561E-06 
0.81211329E-06 
0.78976154E-06 
0.79721212E-06 
0.78231096E-06 



Table 3.   The differences between the near-field phase at z\ and the phases of the first, 
second and third-order Taylor series approximations to these near-field values 

0.47615051E-01 
0.49217224E-01 
0.51124573E-01 
0.53321838E-01 
0.55770874E-01 
0.58174133E-01 
0.60035706E-01 
0.60745239E-01 
0.59631348E-01 
0.56427002E-01 
0.51422119E-01 
0.45364380E-01 
0.39352417E-01 
0.33981323E-01 
0.29586792E-01 
0.26054382E-01 
0.23193359E-01 
0.20782471E-01 
0.18684387E-01 
0.16906738E-01 
0.15472412E-01 
0.14572144E-01 
0.14411926E-01 
0.15319824E-01 
0.17639160E-01 
0.21736145E-01 
0.27877808E-01 
0.36117554E-01 
0.46089172E-01 
0.56945801E-01 
0.67359924E-01 
0.75893402E-01 
0.81283569E-01 
0.82736969E-01 
0.80207825E-01 
0.74066162E-01 
0.65208435E-01 
0.54622650E-01 
0.43506622E-01 
0.32730103E-01 
0.23017883E-01 

-0.14038086E-01 
-0.14480591E-01 
-0.15060425E-01 
-0.15800476E-01 
-0.16654968E-01 
-0.17593384E-01 
-0.18615723E-01 
-0.19592285E-01 
-0.20484924E-01 
-0.21118164E-01 
-0.21423340E-01 
-0.21400452E-01 
-0.20996094E-01 
-0.20370483E-01 
-0.19615173E-01 
-0.18836975E-01 
-0.18096924E-01 
-0.17448425E-01 
-0.16914368E-01 
-0.16502380E-01 
-0.16242981E-01 
-0.16105652E-01 
-0.16113281E-01 
-0.16242981E-01 
-0.16479492E-01 
-0.16799927E-01 
-0.17196655E-01 
-0.17593384E-01 
-0.17951965E-01 
-0.18226624E-01 
-0.18394470E-01 
-0.18409729E-01 
-0.18318176E-01 
-0.18154144E-01 
-0.17887115E-01 
-0.17581940E-01 
-0.17219543E-01 
-0.16838074E-01 
-0.16395569E-01 
-0.15945435E-01 
-0.15502930E-01 

0.22888184E-03 
0.22888184E-03 
0.23651123E-03 
0.22125244E-03 
0.22125244E-03 
0.23651123E-03 
0.22888184E-03 
0.25939941E-03 
0.25939941E-03 
0.27465820E-03 
0.30517578E-03 
0.28991699E-03 
0.32806396E-03 
0.33569336E-03 
0.34332275E-03 
0.33569336E-03 
0.33569336E-03 
0.32806396E-03 
0.32806396E-03 
0.33569336E-03 
0.32806396E-03 
0.33569336E-03 
0.32043457E-03 
0.32043457E-03 
0.31280518E-03 
0.31280518E-03 
0.29754639E-03 
0.28991699E-03 
0.27465820E-03 
0.26702881E-03 
0.24414063E-03 
0.23651123E-03 
0.23651123E-03 
0.21743774E-03 
0.23651123E-03 
0.24032593E-03 
0.25939941E-03 
0.24795532E-03 
0.28228760E-03 
0.29754639E-03 
0.30517578E-03 
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Appendix 

The True Spectrum as a Solution to an Inhomogeneous Integral Equation 

Equation (19) of the main text can rewritten as 

D(K) = De(K) + -^ [[D(K') [[(l-eii,'sgW)ei&-*>-*dxdydVxdk'll. (al) 

Here we have used the definition of the ^-function 

8(k' _ fc) = JL  / ! jP-**-* dx dy. (a2) 

Equation (al) is of the form of the Fredholm integral equation [5], which in two 
dimensions, is written as 

f(x,y)=g(x,y)+       M(x,y;x',y')f(x',y')dx'dy'. (a3) 
Ja 

Symbolically this is / = g + Mf. If we compare eq (al) and eq (a3) a straightfor- 
ward identification of terms is easily done. 

A solution of the general integral equation (a3) can be obtained by the method 
of successive approximation (Neumann series) [5]. Symbolically, the nth-order 
solution is given by 

fn = g + Mfn-1=(l+M + M2 + ... + Mn-1)g. (a4) 

This solution is unique if the series in eq (a4) converges uniformly [6]. The condi- 
tion for convergence is that the integral operator M be bounded so that its least 
upper bound or norm, ||M||, is less than 1. An alternate condition is that the 
product of the range of integration and of the maximum value of the kernel is less 
than 1 [6]. An estimate of the norm is given by 

||M||2 < JJ\M{x,y-x\y')\2dxdydx'dy', (ab) 

and the kernel is, in our example, 

M(K,K') = -^ //(l - eiW-SiW)ei&-S)-sldxdy. (a6) 

The maximum value of the kernel occurs at k = fc', where its first-order approxi- 
mation can be written as 

\M(1\K,K)\ = -^\ f fk-6xdxdy\. (al) 
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Thus, 

\M^\K,K)\ < ^\JJsxdxdy\ = ^[Sx] (a8) 

where [Sx] is the average of the error displacement function in the scan plane. 
Since the range of integration is Ak = 2k,, where k = 2ir/X, the second condition 
of convergence stated above can be written, to first order, as 

^Vi < i. 

(A/2) < jr     A    ■ {    ' 

If the near field is sampled at A/2 intervals, then the ratio on the right side 
above is essentially the inverse of the number of measurement points N. Then the 
inequality (a9) becomes 

N[6x\ < -(A/2) (alO) 
7T 

which states that the total averaged displacement error has to be less than a frac- 
tion of the grid spacing A/2. This is a rather stringent condition on the size of 
displacement errors one can accept in a near-field measurement range, if we want 
to recover the true spectrum from error-contaminated near-field data. The condi- 
tion essentially means that the displacement errors must be small enough so that 
the sampling criterion, according to the sampling theorem [7], is not violated in 
an average sense. Thus, only displacement-error functions that average to close to 
0, or of very small magnitude, will satisfy this criterion. 

If [Sx\ = 0 then the second order approximation of the kernel must be exam- 
ined. This is 

\MW(K,K)\ = ^\jj(k-8x)2dxdy\, (all) 

which yields an upper bound of 

|M<W)|<iL|//W.^|. (ol2) 

In deriving expression (al2) we have assumed that the components of 6x are uncor- 
related, so that mixed terms average to 0. Under these conditions, the smallness 
of the second order kernel depends entirely on the smallness of the amplitude of 
8x. Now the condition of convergence of the method of successive approximations 
is 

k4 

—zA[6x-6x\<l (al3) 
2ir* 

or 

N[6x-6x\ < -^(A/2)2. (al4) 
7T2 
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The interpretation of this expression is similar to the one given expression (alO) 
above. In general, both conditions (alO) and (al4) have to be satisfied to guarantee 
convergence. 

To facilitate evaluation of the integrals in eq (ßl), we expand the exponential 
term containing 8x to second order, and write the second-order iterative solution 
of eq (al) as (using the abbreviations dx = dx dy and dK = dkx dky) 

D{K) = De(K) - -^ ffsxje-^l ffk'jD.iK^'^dK'} dx 

+ -^ fföxjSxee-^^l [[k'jk'eDe(K')eiPsdK'} dx 

-^(fdxUxje-^lfdK'^^'tffdx'U^ 

(alb) 

Higher-order iterations can be readily obtained, but we will not do so here. Each 
iterated integral above is a Fourier transform; hence, these integrals can be eval- 
uated with FFT codes. 
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