GRANT NUMBER DAMD17-96-1-6206

TITLE: Acquired Secondary Events in the Pathogenesis of Hereditary Breast Cancer

PRINCIPAL INVESTIGATOR: Gail E. Tomlinson, M.D., Ph.D.

CONTRACTING ORGANIZATION: The University of Texas Southwestern Medical Center at Dallas
Dallas, Texas 75284-1753

REPORT DATE: September 1997

TYPE OF REPORT: Annual

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Mutation of the *BRCA1* gene accounts for most families with an inherited predisposition to breast and ovarian cancer and many families with multiple cases of breast cancer only. The inheritance of a germline mutation of the *BRCA1* gene, although associated with a markedly increased incidence of breast cancer, is not solely responsible for the development of breast cancer in predisposed women and multiple other acquired steps appear to be required for the development of breast tumors in predisposed women. In this study we have identified a number of women with *BRCA1* mutations for which tumor tissue is available for study. No models currently exist for the study of breast cancers associated with *BRCA1* mutations. No breast cancer cell lines have been reported to date which derive from a *BRCA1* predisposed individual. Reported here is the characterization of a breast cancer cell line mutant for *BRCA1* which will be useful not only for studying secondary acquired changes in *BRCA1* carriers, but will also be useful for studying the function of *BRCA1*.
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.
Acquired Secondary Events in the Pathogenesis of Hereditary Breast Cancer

DAMD17-96-1-6206

Gail E. Tomlinson, M.D., Ph.D.

TABLE OF CONTENTS

INTRODUCTION 2

BODY 3

CONCLUSION 5

REFERENCES 6
INTRODUCTION: Mutation of the BRCA1 gene accounts for most families with an inherited predisposition to breast and ovarian cancer, approximately half of families with multiple cases of breast cancer only and approximately 8-10% of women with early-onset breast cancer unselected for family history. (1-3) These observations suggest that inherited BRCA1 mutations may account for approximately 8-10,000 new cases of breast cancer in the U.S.A. each year. The inheritance of a germline mutation of the BRCA1 gene, although associated with a markedly increased incidence of breast cancer, is not solely responsible for the development of breast cancer in predisposed women and multiple other acquired steps appear to be required for the development of breast tumors in predisposed women. Some of these observed acquired changes have been described. (4)

Although the function of the BRCA1 protein is not yet clearly determined, evidence suggests that BRCA1 may play a role in DNA repair, may function as a transcription factor or may possibly exist as a secreted granin-like molecule. (5-7) If BRCA1 indeed functions in DNA repair, then one would expect an accelerated accumulation of other genetic aberrations in tumors derived from BRCA1 mutation carriers. In this project we have identified and begun to characterize BRCA1 associated tumors derived from BRCA1 carriers.

No models currently exist for the study of breast cancers associated with BRCA1 mutations. Somatic mutation of the BRCA1 is thought not to occur in sporadic breast tumors. (8) Although a modest number of breast cancer cell lines have been established, no breast cancer cell lines have been reported to date which derive from a BRCA1 predisposed individual. The establishment of such a cell line could not only provide the means of study of the secondary changes which develop during tumor development, tumor growth characteristics conferred by BRCA1, and could conceivably serve as a substrate for genetic transfection studies. The work described here has resulted in the characterization of a breast cancer cell line mutant for BRCA1.
BODY:

TASK 1

Patient Selection: Patients have been selected from Registry families for BRCA1 and TP53 mutation screening. Families are screened for germline mutation of BRCA1 if breast and ovarian cancers are observed in first degree relatives or in the same individual or if five or more members of the family have had breast cancer. We have also screened our Registry members who have developed very early onset breast cancer (less than 30 years of age) for both TP53 and BRCA1.

Mutation analysis: SSCP analysis for exons 5 through 9 of the TP53 gene and exons 2 and 20 of the BRCA1 gene was performed as a modification of the technique as described by Orita et al (9). Specific genes known to be involved in the pathogenesis of breast cancer were examined as possible secondary acquired changes in the cell line. Coding regions of exons 5 through 11 of the TP53 gene, the CDKN2A gene and the PTEN gene and exons 2, 11 and 20 of the BRCA1 gene were analyzed. (10-14). Primers were designed so as to amplify fragments 150-200 base pairs in length.

Sequence analysis of DNA fragments demonstrating abnormal mobility on SSCP gels was performed by cloning amplified PCR fragments into pCMV5 vectors and sequencing using Sequenase according to the manufacturer's instructions. 35S-labeled reactions were electrophoresed on 6% acrylamide gels. A minimum of 8 clones were sequenced for each region of interest.

Direct sequence analysis of the entire coding region of the BRCA1 gene was done in six individuals thought to be at high-risk of carrying a mutation was done by Myriad Genetics (Salt Lake City, Utah).

During this year we identified only one new family with a TP53 mutation out of eleven families screened, however we determined mutations of BRCA1 in seventeen new families. These are in addition to four previously BRCA1 families previously documented.
Our known BRCA1 families are listed, along with their mutations below:

<table>
<thead>
<tr>
<th>Family ID</th>
<th>BRCA1 Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC73</td>
<td>PTT conf pnd</td>
</tr>
<tr>
<td>BC92</td>
<td>3549 C -> T (Term)</td>
</tr>
<tr>
<td>BC98</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC110</td>
<td>3450del4</td>
</tr>
<tr>
<td>BC113</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC129</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC130</td>
<td>3600del11</td>
</tr>
<tr>
<td>BC131</td>
<td>3888delGA</td>
</tr>
<tr>
<td>BC132</td>
<td>185insA</td>
</tr>
<tr>
<td>BC144</td>
<td>PTT con pnd</td>
</tr>
<tr>
<td>BC151</td>
<td>conf pnd</td>
</tr>
<tr>
<td>BC201</td>
<td>PTT -conf pnd</td>
</tr>
<tr>
<td>BC211</td>
<td>int5spl</td>
</tr>
<tr>
<td>BC215</td>
<td>3875del4</td>
</tr>
<tr>
<td>BC260</td>
<td>5382insC</td>
</tr>
<tr>
<td>BC294</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC403</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC408</td>
<td>5382insC</td>
</tr>
<tr>
<td>BC412</td>
<td>185insA</td>
</tr>
<tr>
<td>BC497</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC516</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC517</td>
<td>185delAG</td>
</tr>
<tr>
<td>BC530</td>
<td>185delAG</td>
</tr>
</tbody>
</table>

TASK 2: We have identified tumor blocks from 10 of the mutation carriers listed in the Table above. We have obtained materials from four mutations carriers. (Two tumor specimens from family BC260, one from BC92 and BC215).

TASK 3: The comparison of familial and sporadic breast tumors is designated to start after month 12.

TASK 4: Using polymorphic dinucleotide and tetranucleotide microsatellite repeat markers, patterns of allelic losses were studied at loci known to be commonly lost in breast cancer. Primer sequences were obtained from the Genome Database. PCR amplification and electrophoresis was performed as described previously. (15)
In one case in which fresh tumor was available, Southern blotting was performed in order to confirm the presence of absence of the *PTEN* coding sequence DNA in tumor cell line as well as constitutional DNA. Genomic DNA was digested overnight with restriction enzymes EcoR1, HindIII, KpnI, BamH1, and MboI. Digested DNA was blotted on Hybond® membranes according to directions provided by the manufacturer. DNA probes were prepared by amplification of the coding region(s) of the *PTEN* gene. Hybridization with 32P-labeled probe was carried out using standard techniques. (16)

TASK 5: This task has been eliminated as recommended by the study section reviewers.

CONCLUSION: We have made substantial progress in the identification of subjects who are mutations carriers who will be candidates for characterization of the acquired changes in their tumors. Ongoing recruitment of subjects and identification of their tumor materials is ongoing.
REFERENCES:
Frye, C., Weaver-Feldhaus, J., Ding, W., Gholami, Z., Sodervist, P., Terry, L.,
Jhanwar, S., Berchuck, A., Iglehart, J., Marks, J., Ballingler, D., Barrett, J., Skolnick,
M., Kamb, A. and Wiseman, R. BRCA1 mutations in primary breast and ovarian
polymorphisms of human DNA by gel electrophoresis as single-strand conformation
variation in the structure of the protein-coding region of the human p53 gene. Gene, 70:
11. Kamb, A., Gruis, N., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S.,
Stockert, E., Day, R., Johnson, B. and Skolnick, M. A cell cycle regulator potentially
12. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S., Puc, J., Miliaresis,
C., Rodgers, L., McCombie, R., Bigner, S., Giovanella, B., Ittmann, M., Tycko, B.,
Hibshoosh, H., Wigler, M. and Parsons, R. PTEN, a putative protein tyrosine
phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275:
13. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, A., Harshman, K., Tavtigian,
S., Liu, Q., Cochran, C., Bennett, L. M., Ding, W., Bell, R., Rosenthal, J., Hussey, C.,
Tran, T., McClure, M., Frye, C., Hattier, T., Phelps, R., Haugen-Strano, A., Katcher,
H., Yakumo, K., Gholami, Z., Shaffer, D., Stone, S., Bayer, S., Wray, C., Bogden, R.,
Dayananth, P., Ward, J., Tonin, P., Narod, S., Bristow, P. K., Norris, F. H.,
Helvering, L., Morrison, P., Rosteck, P., Lai, M., Barrett, C., Lewis, C., Neuhausen,
S., Cannon-Albright, L., Goldgar, D., Wiseman, R., Kamb, A. and Skolnick, M. H. A
Strong Candidate for the Breast and Ovarian Cancer Susceptibility Gene BRCA1. Science,
