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1    Executive Summary 

Multi-material interfaces are sites of failure initiation in composite materials. The develop- 
ment of reliable quantitative criteria for failure initiation in electronic components, adhesively 
bonded joints and laminated composites is obviously very important. At present there are no 
universally accepted procedures for the evaluation of fatigue and durability characteristics 
of structural, mechanical and electronic components made of composite materials. 

This project was concerned with the development of mathematical methods and compu- 
tational procedures for the determination of functionals which can be correlated with failure 
initiation events in composite materials subjected to thermal and mechanical loads. The 
approach is based on the assumption that failure initiation events are associated with the 
natural straining modes, analogously to the well established correlation between generalized 
stress intensity factors in linear elastic fracture mechanics and crack propagation events. 

Failure criteria must be formulated in terms of functionals the exact values of which are 
finite. Stresses corresponding to the exact solution are usually infinity in singular points. The 
numerically computed stresses are, of course, finite but very sensitive to the discretization. 
Therefore stresses cannot be used for formulating failure criteria. 

The specific objectives of the project were: 
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1. Develop procedures for the numerical determination of the eigenpairs A; and fa that 
characterize the natural straining modes and natural flux states at singular points in 
heterogeneous bodies. 

2. Develop a method for numerical determination of the generalized stress intensity and 
flux intensity factors in heterogeneous bodies subjected to thermal and mechanical 
loading. 

In addition, development of methods for the estimation of limit loads for fiber-reinforced 
composites in compression was undertaken. The instability of fibers is an important consid- 
eration in the design of fiber-reinforced composites. 

1.1    Summary of accomplishments 

• A reliable numerical method for the determination of the flux and stress fields at 
multi-material interfaces in thermoelastic problems has been developed. The method 
involves numerical determination of the eigenpairs of the asymptotic expansion by a 
procedure called the modified Steklov method and determination of the coefficients by 
a procedure based on the complementary energy principle. 

• A test implementation has been completed and the effectiveness of the method estab- 
lished through benchmark studies. 

• Industrial application has been made possible by a Phase I STTR grant to Engineering 
Software Research and Development, Inc. (ESRD) and Washington University. The 
two-dimensional thermoelastic capabilities have been implemented in the commercial 
FEA code StressCheck. This is an unique capability which is now being used for 
investigation of the correlation of observed failure events in lap-shear test specimen 
with generalized stress intensity factors. This work, started on August 1, 1997 is being 
performed in collaboration with Raytheon TI Systems. 

• The original scope of work was extended to include numerical simulation of failure of 
homogeneous and composite elastic materials through loss of stability. This work, per- 
formed in collaboration with Dr. Manil Suri of the University of Maryland and Dr. Ivo 
Babuska of The University of Texas, Austin, led to a clarification of some fundamen- 
tal theorems related to the numerical simulation of problems of elastic stability. A 
doctoral dissertation has been completed [3]. 



1.2    Personnel supported 

Faculty: 
Dr. Barna A. Szabo (PI) 

Post-doctoral persons: 
Dr. Ricardo L. Actis (part time) 
Dr. Xian-Zhong Guo (part time) 
Dr. Gyorgy Kiralyfalvi 

Graduate Students: 
Mr. Andre Tamagnini Noel (D.Sc. candidate, Graduated May, 1996) 
Mr. Gyorgy Kiralyfalvi (D.Sc. candidate, Graduated May, 1997) 
Ms. Li Zhang (D.Sc. candidate) 

1.3    Consultative and advisory functions 

The Principal Investigator presented briefings to eight Air Force contractors and one Navy 
laboratory: 

1. McDonnell Douglas Aerospace St. Louis, MO (contact persons: Mr. Scott Fields, Mr. 
Daniel Dudley) April 25, 1996 

2. Boeing Aerospace, Downey, CA. Dr. Saeed Paydarfar visited Washington University 
and was briefed on the scope and objectives of the project. May 19, 1997 

3. Boeing Aircraft Co., Wichita, KS (contact person: Mr. Phillip Legate) June 4, 1997 

4. Cessna Aircraft Co, Wichita, KS (contact person: Mr. Milan Radovanov) June 5, 1997 

5. Raytheon TI Systems, Dallas, TX (contact person: Dr. Terry Baughn) July 29, 1997 

6. Lockheed-Martin, Fort Worth, TX (contact person: Mr. Michael Barnhart) July 30, 
1997 

7. Allied Signal, Phoenix, AZ (contact person: Dr. Malak Malak 602-231-3701) Septem- 
ber 5, 1997 

8. Structures Division, NAWCAD, Patuxent River, MD (contact person: Dr. David Bar- 
rett 301-342-9360) September 8, 1997 



9. Lockheed-Martin, Marietta, GA (contact person: Dr. Stephen P. Engelstad 770- 
494-9714) March 3, 1998. This presentation was made to members of a govern- 
ment/industry consortium known as the Composites Affordability Initiative. Members 
represent each of the major US aerospace companies and the Air Force and Navy. This 
particular meeting was hosted by Lockheed Martin. 

1.4    Publications and presentations 

[1] Noel, A. and B. Szabö. Formulation of geometrically non-linear problems in the spatial 
reference frame. Int. J. Numer. Methods Eng., 40:1263-1280, 1997. 

[2] Noel A. T. Spatial Formulation and Numerical Solution of Geometrically Nonlinear 
Problems in Finite Elasticity. D.Sc. Dissertation, Sever Institute of Technology, Wash- 
ington University, St. Louis, Missouri, 1996. 

[3] I. Babuska, and B. Szabö. New problems and trends in the finite element method. In 
J. R. Whiteman, editor, The Mathematics of Finite Elements and Applications, pages 
1-33, Chichester, 1997. John Wiley and Sons. 

[4] B. Bertöti, E. and Szabo. Adaptive selection of polynomial degrees on a finite element 
mesh. To appear in Int. J. Numer. Meth. Engng., 1998. 

[5] I. Päczelt and T. Szabö, B. and Szabo. Solution of elastic contact problems by the 
p-version of the finite element method. 4th U.S. National Congress on Computational 
Mechanics, August, 1997. 

[6] S. A. Prost-Domaski, B. A. Szabö, and G. I. Zahalak. Large-deformation analysis of 
nonlinear elastic fluids. Computers and Structures, 64:1281-1290, 1997. 

[7] B. Szabö and Z. Yosibash. Numerical analysis of singularities in two dimensions. Part 2: 
Computation of generalized flux/stress intensity factors. Int. J. Numer. Meth. Engng., 
39:409-434, 1996. 

[8] B. Szabö and Z. Yosibash. Superconvergent extraction of flux intensity factors and first 
derivatives from finite element solutions. Comput. Meth. Appl. Mech. Engrg., 129:349- 
370, 1996. 

[9] B. A. Szabö. Hierarchic models and discretizations. Symposium on Advances in Com- 
putational Mechanics, The University of Texas at Austin, January 1997. 



101 B. A. Szabö and R. A. Actis. Failure analysis of composite materials. International 
Mechanical Engineering Congress and Exposition, November, 1996 Atlanta, GA. 

Ill G. Kiralyfalvi. Linear Models of Elastic Stability. D.Sc. Dissertation, Sever Institute of 
Technology, Washington University, St. Louis, Missouri, 1997. 

121 B. A. Szabö and G. Kiralyfalvi. Mathematical models of buckling and stress stiffening. 
4th U.S. National Congress on Computational Mechanics, August, 1997. 

131 R- Szabö, B. and Actis. The problem of model selection in numerical simulation. 4th 
U.S. National Congress on Computational Mechanics, August, 1997. 

141 Y. Volpert, T. Szabö, I. Päczelt, and Szabö B. Application of the space enrichment 
method to problems of mechanical contact. Finite Elements in Analysis and Design, 
24:157-170, 1997. 

151 Y. Wang, P. Monk, and B. Szabö. Computing cavity modes using the p-version of the 
finite element method. IEEE Transactions of Magnetics, 32:1934-1940, 1996. 

161 Z. Yosibash and B. A. Szabö. A note on numerically computed eigenfunctions and 
generalized stress intensity factors associated with singular points. Engineering Fracture 
Mechanics, 54(4):593-595, 1996. 

171 Z. Yosibash and B. A. Szabö. Failure analysis of composite materials and multi-material 
interfaces Proceedings, 1995 Design Engineering Technical Conferences, ASME DE- 
Vol. 83:133-139, 1995. 

181 Z. Yosibash and B. Szabö. Numerical analysis of singularities in two dimensions. Part 
1: Computation of eigenpairs. Int. J. Numer. Meth. Engng., 38:2055-2082, 1995. 

191 Z. Yosibash Numerical thermo-elastic analysis of singularities in two-dimensions. In- 
ternational Journal of Fracture, 74:341-361, 1996. 

201 Z. Yosibash Computing edge singularities in elastic anisotropic three-dimensional do- 
mains International Journal of Fracture, 86:221-245, 1997. 

211 G. Kiralyfalvi and B. Szabö. Quasi-Regional Mapping for the p-Version of the Finite 
Element Method. Finite Elements in Analysis and Design, 27:85-97 1997. 

1.5    Transitions 

The new capabilities have been made available to Air Force laboratories and contractors 
through a professional quality software called StressCheck. StressCheck is being developed 



and marketed by Engineering Software Research and Development, Inc., located in St. Louis, 
MO. The current users of Stress Check include Boeing Aircraft Company (on several loca- 
tions); Piper Aircraft Co., Northrop Grumman Corporation; Cessna Aircraft Co. NASA 
Johnson Space Center and others. 

A collaborative effort was started with Raytheon TI System for an experimental inves- 
tigation of realtionships between generalized stress intensity factors and failure initiation 
events at bonded interfaces. 

McDonnell Douglas Aerospace St. Louis (now Boeing) funded a project with ESRD for a 
particular specialization of the material and geometric nonlinear analysis capabilites within 
the p-version of the finite element method for application to the analysis of cold-worked 
holes and attachment lugs. This technology was developed at Washington University under 
AFOSR sponsorship. 

2    Technical description 

Singular points are those points in a structural component where a reentrant corner occurs 
(like cracks and V-notches), material properties abruptly change along a free edge, interior 
points of three (or more) zones of different materials intersect, or an abrupt change in 
boundary conditions occurs, see Fig. 1. 

Interior Reentrant Edge 

Figure 1: Typical singular points associated with multi-material interfaces. 

In the vicinity of these singular points the exact solution of the problem of elasticity is 
of the form: 

oo 

(1) UEX = T/Air
Xi}i(0) 

t=i 

where UEX is the exact displacement vector function, r and 0 are polar coordinates centered 
def on the singular point, <£,■ = {<j)i\x <t>i\y} is a piecewise smooth vector function, and A,- are 

coefficients. Eq. (1) is an asymptotic expansion of the exact solution at the singular point. 



Within a radius of convergence the exact solution of the problem of elasticity can be written 
in this form. The exponents A; (numbered such that Ai < A2 < A3 ...) and the corresponding 

functions fa{6) depend on the material properties and the geometric details at the singular 
point. These can be determined by solving an eigenvalue problem. Details are given in 
Section 2.3. A well known example is linear elastic fracture mechanics in two dimensions 
where Ai = 1/2 and 

^   =   2G 

("~9 
K) 

e   1    3d 
cos - — - COS — 

2     2        2 

.   0     1  .   30 
sin sin —- 

2     2       2 

(2) 

(3) 

G is the shear modulus, K = 3 — Av for plane strain, K = (3 — v)/(l + v) for plane stress 
where v is Poisson's ratio. 

In linear elastic fracture mechanics A,- and fa have been determined by classical methods, 
and only the stress intensity factor, which is proportional to A\, has to be determined by 
numerical means. For details see, for example, [6]. 

In the general case of multi-material singularities, such as those shown in Fig. 1, not 
only Ai but also Aj and fa(9) have to be determined by numerical means. The elastic stress 
is infinity in the singular point when 0 < Ai < 1 and A\ ^ 0 and/or 0 < A2 < 1 and 
A2 7^ 0, etc. A natural straining mode is the strain state associated with a particular 
term of the asymptotic expansion, eq. (1). As explained in Section 2.1, the natural straining 
modes provide a linkage between linear computations and observed failure initiation or failure 
propagation events. 

In heat conduction the asymptotic expansion is analogous to eq. (1): 
00 

fe^V'^) (4) 
i=l 

where TEX is the exact solution of the heat conduction problem and fa are piecewise smooth 
scalar functions. The coefficients A{ are called flux intensity factors. 

Numerical accuracy is essential because unless the accuracy of the computed data is 
known it would not be possible to tell whether the working hypothesis is wrong or the 
numerical errors are too large, or both. In some cases a large error in the working hypothesis 
is nearly canceled by a similarly large numerical error, leading to false conclusions. 

2.1    Basic principles and assumptions 

Consider the neighborhood of a singular point.   It is assumed in the following that the 
principles of continuum mechanics remain valid everywhere within the body up to the fail- 



ure initiation event. The possibility of strongly nonlinear behavior in the neighborhood of 
singular points is not excluded, however. 

Figure 2: Definition of TNL and TEL- 

Let UNL = {«i UV}NL be the solution of the general nonlinear continuum mechanics 
problem. It is expected that failure initiation will depend on U^L (more precisely some 
functionals computable from UNL) in the strongly nonlinear region of the singular point 
bounded by a boundary TNL, as shown in Fig. 2. This region is called the process zone. Let 
TEL be a curve outside of T^LI and let G be an operator which associates the solution UNL 

of the nonlinear problem inside T^L with the boundary condition QEL specified on TEL, that 
is: 

G(<JEL) = UEX,        9EL = UNL\TEL 

where QEL — U^L\TEL denotes the trace of UEX on TEL- Denote the exact solution of the 
linear elastic problem by UEL- The basic assumptions (which are valid in linear elastic 
fracture mechanics) are stated in the following: 

Assumption A: 

Inside of TEL the error G{UNL\VEL) - G(UEL\YEL) is so small that conclusions based on 
G{UEL\TEL) are sufficiently close to the conclusions based on G(UNL\TBL) for practical pur- 
poses. This assumption is expected to be valid whenever the nonlinear behavior is confined 
entirely to some small region inside TEL- 

Assumption A leads to the important conclusion that failure initiation, which depends on 
the solution of the nonlinear problem inside of TJVL, can be determined through the solution 
of the linear elastic problem, even though all basic assumptions of the linear theory may be 



violated inside of TNL- Consequently failure initiation in the neighborhood of the singular 
point can be predicted on the basis of the linear theory of elasticity. (This is because UEL 

defines uNL\rBL.) 

Assumption B: 

There exists a physical principle which establishes the relationship between crack initi- 
ation and the stress field on the basis of information obtained from the linear solution UEL 

only. Linear elastic fracture mechanics (LEFM) is a typical application of Assumption B. 

In general, the linear solution UEL is not known, only an approximation to UEL, which 
will be denoted by UFE, is known. Therefore the following assumption is necessary: 

Assumption C: 

There exist a norm || • || such that when ||«JSL — UFE\\ is sufficiently small then the physical 
principle of Assumption B is not sensitive to the replacement of UEL with UFE- Of course, 
the norm || • || is expected to depend on the physical principle of Assumption B, which is 
material-dependent. If conclusions are to be based on UFE then upp has to be close to UEL 

in this particular norm. 

Based on these assumptions linear computations can be used for the prediction of fail- 
ure initiation and failure propagation even though failure processes are highly nonlinear in 
nature. There are two key elements of failure initiation analysis: 

1. A hypothesis concerning the relationship between certain parameters of the stress or 
strain field and observed failure initiation or crack propagation events. 

2. Convincing experimental confirmation that the hypothesis holds independently of vari- 
ations in geometric attributes, loading and constraints. 

It would not sensible to perform experiments without a hypothesis based on the functionals 
that characterize the stress or strain fields in the neighborhood of critical points and com- 
putations cannot provide useful information about the conditions under which failure occurs 
without experimental data. 

For details on the algorithms developed for the computation of the natural straining 
modes at multi-material interfaces and the generalized stress intensity factors we refer to 
[12], [7], [8] [10], [11]. 

Remark 2.1 The assumption that the material is elastic on TEL is not essential. Similar 
considerations apply to nonlinear elasticity and the deformation theory of plasticity. In fact, 
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the methods of LEFM have been extended to the deformation theory of plasticity through 
the use of the J-integral [2], [5]. 

In the following the procedures developed for the computation of eigenpairs and their 
coefficients in heat conduction and elasticity are outlined and illustrated by examples. Ad- 
ditional information can be obtained from the references listed. 

2.2    The problem of heat conduction 

The index notation is used in the following. For two dimensional problems the range of the 
indices is 2, and for three dimensional problems the range is 3. The summation convention is 
used. The formulation of the mathematical is described for the problem of heat conduction. 

The heat balance equation is analogous to the equilibrium equation in elasticity: 

-qiti + Q = 0 (5) 

where: <# is the flux vector (in W/m2 units) and Q is the rate of heat generation per unit 
volume (in W/m3 units). Multiplying eq. (5) by the scalar function v, integrating and 
applying Green's lemma, we have: 

— / q{V {dV = / Qv dV — \ qiUiV dS. 
Ja     ' Ja Jr 

Using Fourier's law of heat conduction (which is analogous to Hooke's law): 

qi = —Jiij l,j 

where Kij is assumed to be independent of T, we have for all v £ i71(0): 

/ KijV,iTj dV= I QvdV- I qmv dS. (6) 
Ja Ja JT 

This is analogous to the principle of virtual work in elasticity. Alternatively, the exact 
solution of the heat conduction problem is the minimizer of the functional IT: 

7r(T) = i / KijT,iTj dV- I QTdV+ [ qimTdS (7) 
l Ja Ja Jr 

on the set of the admissible temperature fields. This is analogous to the principle of minimum 
potential energy in elasticity. 
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Figure 3: Typical singular point in 2D. Definition of ÜR. 

2.3    Computation of Aj and <f>i(6) 

The procedure for the numerical approximation of the eigenpairs A; and (j>i(0) is briefly 
described for the problem of heat conduction. Additional details are available in [8]. 

Consider a small neighborhood of a singular point bounded by a circle of radius R and 
denoted by tip., as shown in Fig. 3. Let Q = 0 on Q,R X t where t is the thickness, assumed 
to be constant, and u = 0 on Ti and T2 and seek solutions of the form: 

r = rxct>(e). 

Noting that 

_ dT dr      dT d9 
7,1     —     TT~ — 1" dr dxi  '   dO dxi      dr r d6 

T2   = dTdr_     dTd0__§Zsin0    I^Icosö 
dr dx2     d6 dx2      dr r dO 

and rii = {cos 6 sin0}, we write: 

/   qiwo dS   =   X I  (Kn cos2 0 + K12 sin 20 + K22 sin2 0)Tv tdO 
JrR JrR 

L dr 
((K22 - Kn) sin 0 cos 0 + K12 cos 20) —v tdO. 

rR dO 

We are now in a position to apply eq. (6) which results in: 

(£(T, v) - M{T, v)) - \M(T, v) = 0 (8) 
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where: 

B(T,v)   *   t   KijvtfjdV 

M(T,v)   =    f  (Kn cos2 9 + Kl2 sin20 + K22 sin2 9)Tvtd9 
JTn 

dT 
M{T,v)   =    /   ((AM - Ku) sin 9 cos 9 + K12 cos 29)-J-vtd9 

JTR OV 

We seek A > 0, T € ff1^*). ÖT/ÖÖ G I2(rB) such that eq. (8) is satisfied for all v G 
-^H^B)- This non-symmetric eigenvalue problem can be solved numerically. 

Remark 2.2 In the case of isotropic materials Af(T, v) = 0 hence the eigenvalue problem 
is symmetric. In the special case Kij = KSij, where K is constant, we have: 

/   T,iVtidV-X f   Tvtd9 = 0. 
/QR JTR 

The corresponding strong form is: 
AT=0 

subject to the boundary conditions 

dT     A 
u = 0 on Ti, T2;   -~- = ~^T on FR. 

or      R 

Remark 2.3 Af(T,v) is non-symmetric, nevertheless all eigenvalues are real. 

Remark 2.4 A,- do not converge monotonically. No minimum principle is involved. 

Remark 2.5 The formulation is analogous for any set of homogeneous boundary conditions 
on Ti, T2. 

The Steklov method on ÜR requires hp-meshing. This is because the rate of convergence 
of p-extensions is low due to the presence of the singular point. Therefore it is better to 
use a modified domain Q,R shown in Fig. 4. Using Q,R is called the modified Steklov method. 
Detailed discussions on the procedures are available in references [8], [12], [7]. 

Remark 2.6 The modified Steklov method will find not only those eigenfunctions which lie 
in i/1(f)ß) but also eigenfunctions corresponding to negative values of A. 
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Figure 4: The domain 0^. 

2.4    Extraction of the flux intensity factors 

Analogously to eq. (1) the temperature field in the neighborhood of singular points is of the 
form: 

00 

r=i;^(tf) (9) 

where: A{ represents the generalized ßux intensity factors, A; and </>; are the eigenpairs 
characterized by the topological details at the singular point and the material properties. 

Once the finite element solution is available, the flux intensity factors can be computed 
from the finite element solution by the contour integral method, the complementary energy 
method, and the Li projection method. These are briefly described in the following. 

2.4.1 The contour integral method 

The contour integral method is a procedure which utilizes the orthogonality of eigenfunctions 
and the fact that if Aj is an eigenfunction then — A; is also an eigenfunction. For details we 
refer to [1], [6]. 

2.4.2 The complementary energy method 

Define: 
nc(?i)=fx/    CijqiqjdV-       qtriiTFEtdO 

where Cij is the inverse of K^\ qi satisfies the heat balance equation: —qi,i + Q = 0 (and 
prescribed homogeneous flux boundary conditions); TFE is the temperature computed by 
the finite element method. 
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Letting $ = —K{jT,j and minimizing the complementary energy functional nc(<&) with 
respect to A,-, yields approximations to the generalized flux intensity factors. 

2.4.3    The L2 projection method 

This method involves the projection of UFE onto the space spanned by the eigenfunctions. 
Specifically, A{ are determined from the condition: 

Ja   UFE-J2Air
Xi4>i(ey\rXj^(G)rdrde = 0       j = 1,2,... ,n 

which yields n equations for Ai, i = 1,2,..., n. 

2.5 Example: The slit domain problem 

Consider the problem AT = 0 on a unit circle slit along the axis x2 with the boundary 
conditions 

T = 0 on Ti,    q2 — 0 on T2,    qn = q^ = x2 on T3. 

In this case: Ax = 0.25, A2 = 0.75, A3 = 1.25. This is a very challenging problem from the 
point of view of numerical approximation by the finite element method, owing to the fact 
that the lowest eigenvalue is 1/4, hence the theoretical rate of convergence1 of the p-version 
is 1/4 and the theoretical rate of convergence of the h-version is 1/8. The error is most 
effectively controlled by hp-extension, utilizing geometrically graded meshes [6]. 

The finite element mesh, consisting of 12 elements, and the temperature distribution at 
p = 8 (trunk space) is shown in Fig. 6. The p-convergence of the energy and A\, A2, A3 are 
shown in Table 1. The extrapolated values are shown in the last row. It is seen that the 
rate of convergence is close to the theoretical rate of 0.25. 

2.6 Example: Two-material internal interface problem 

Consider the problem AT = 0 on a unit circle. On the first quadrant has the material 
properties are Kn — K22 = 10.0, Ki2 = 0 on the other three quadrants Ku = K22 = 1.0, 
A"i2 = 0. On the boundary qn = f(0) where f(0) is a function given by Oh and Babuska in 

[4]- 
xThe theoretical rate of convergence is given by ß in the a priori estimate \\UEX — «Ffi|U(fi) < kN & 

were A: is a positive constant and N is the number of degrees of freedom. See [6]. 
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Figure 5: The slit domain problem. 

2.7    The problem of thermo-elasticity 

The equations of equilibrium are: 
<*ijj + Fi = 0 (10) 

Multiplying (10) by a test function V{ and applying Green's lemma, the generic form of the 
principle of virtual work is obtained: 

j a\f$ dV = J FiVi dV + j TiVi dS 

where 
(v) def J- / , \ 

is the small strain tensor corresponding to the virtual displacement V{ and 

ajf = Eijki(e$ - akiT) 

is the stress tensor corresponding to uf, au represents the coefficients of thermal expansion 
and T is the temperature. 

Remark 2.7 The temperature field T is continuous but e^' does not have to be continuous. 

Remark 2.8 Eijki may be a function of T. 

An alternative formulation is the principle of minimum potential energy: 

n(«) d=f \JQEiiM{^-aiir){^--aur)iv 

- [ FwidV- [ TimdS 
Ja Jr 
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L* 

ID = SOL 
Run = 8 
Fnc = U 
Max=  1.89Sle+0fl 

Min= -7.9321e-01 

1.9000e+00 

1.6000e+00 

1^* lJOOOe+00 

ll&$!£ 1.0000e+00 

7.0000e-01 

1 4.0000e-01 

1  1.0000e-01 

1 -2.0000e-01 

I -S.0000e-01 

^H -8.n000e-01 

Figure 6: The slit domain problem: Mesh layout and contour plot of T, p=8, trunk space. 

The exact solution of the problem of elasticity minimizes the potential energy: 

n(tfE.x') =   min n(w) 
u€E(Q.) 

(11) 

where II is the potential energy and E(ti) represents the space of admissible functions. In 
the case of isotropic materials the Euler equations are: 

GV2
Ui + (A + G)(ujj)ti = -Fi + ßT,i 

def 
where 

ß a^ (3A + 2G)a. 

where A is the Lame parameter, G is the shear modulus and a is the coefficient of thermal 
expansion. 
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Table 1: p-Convergence of the energy and Ai, A2, A3. Twelve-element mesh. The extrapo- 
lated values are shown in the last row. 

p N Potential 

Energy 

Rate of 

Conv. 

Est.'d 

Rel. Err. 
At A2 A3 

1 12 -1.977649 0.00 35.62 0.794380 -0.901532 0.373088 

2 36 -2.141858 0.39 23.31 1.004779 -0.953011 0.457475 

3 66 -2.178293 0.29 19.56 1.110997 -0.964365 0.455113 

4 108 -2.196471 0.24 17.39 1.168927 -0.968574 0.453430 

5 162 -2.208072 0.23 15.85 1.203440 -0.969836 0.452681 

6 228 -2.216175 0.22 14.68 1.226336 -0.970035 0.452696 

7 306 -2.222206 0.22 13.74 1.243025 -0.970053 0.452696 

8 396 -2.226874 0.22 12.97 1.255925 -0.970047 0.452703 

00 00 -2.264978 0.25 0 1.359910 -0.970047 0.452696 

2.8    Computation of thermal stress intensity factors 

Outline of the solution algorithm. 

1. Assuming that the displacement field at the singular point is of the form 

Ui = r"*,-(0) 

compute the eigenpairs fij, $ij(0) j = 1,2,... using the modified Steklov method 
where the second index on $jj represents the ordinal number of the eigenfunction. 
This involves the solution of a non-symmetric eigenvalue problem of the form: 

(B(ui, Vi) — Af(iti, Vi)) — nM(ui, V{) — 0 

The eigenvalues are usually complex. Both the real and imaginary parts must be 
considered. 

2. Construct the homogeneous part of the statically admissible stress field a\j    from 

where Cj represents the generalized stress intensity factors. Specifically, 

a-\f = -Eijki{uk<l + uiik). 
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Material 1 

Material 2 

Figure 7: Problem definition: Two-material internal interface 
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Figure 8: Two-material internal interface problem: The first four eigenfunction <j>i(0), cor- 
responding to Ai = 0.7317. 

3. The particular solution er^    satisfies 

on £IR and the homogeneous traction boundary conditions on Ti, 1^. In general it 

is difficult to construct a\j '. Note, however, that a\j ' is of the order rx where A = 

Amin > 0 is the smallest eigenvalue of the thermal problem. On the other hand, cr\j is 

of order rß~l where \i == ^min > 0 is the smallest eigenvalue of the elasticity problem. 

4. Construct the complementary energy functional on QR: 

nc(<Tjj)      =      -   /      CijklCTijCTkl dV —   I      (Tij ,(FEh rijU]    'tds 
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This indicates that if R is sufficiently small then a\jj may be neglected. 

5. Compute the thermal stress intensity factors C] ' by minimizing nc(<7^ ') on YRH for 
a sequence of decreasing radii Rk, k = 1,2,... ,n. 

6. Use Richardson extrapolation to find 

Ci = lim Cf\ 

2.9    Example: Cracked panel subject to thermal load 

A centrally cracked panel is subjected to T = 100 at the perimeter; T = 0 on the crack 
faces. Kn = K22 = 1.0; K12 = 0; E = 1.0, v - 0.3, a = 0.01, plane strain. L = w = 50.0, 
a = 1 is shown in Fig. 9. The p-convergence of the first thermal stress intensity factor Ai 
computed with Richardson extrapolation, is shown in Fig. 11 and the results reported by 
Yosibash in [10] using direct computation are given in Table 2. 

Table 2: Results reported by Yosibash using direct computation 

R/a 0.5 0.1 0.01 0.001 0.0006 

Cx 0.4908 0.3781 0.3528 0.3491 0.3481 

2.10    Sources of errors 

The methods used for computing the finite element solution, the eigenpairs and the gener- 
alized flux intensity factors, are approximate methods, hence certain errors are incurred: 

1. In numerical work the asymptotic expansion is truncated to a few terms. 
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Figure 9: The cracked panel problem. 

2. The eigenpairs are only approximations. Therefore q, do not satisfy the heat balance 
equation exactly. 

3. The prescribed temperature on YR is approximate, computed from the finite element 
solution. 

Nevertheless, numerical experience has indicated that this method of extraction is supercon- 
vergent well beyond the range of accuracy required in engineering work [8]. 

2.11    Stability problems 

This topic is of substantial interest in aerospace engineering because the sizes of compression 
members are determined primarily by stability considerations. It is also of great importance 
in micromechanics where the strength of the composite materials is often determined by 
the buckling of fibers. The formulation and investigation of stability problems in the fully 
three-dimensional setting was undertaken. Details are available in a doctoral dissertation 
[3]. A brief outline is presented in the following. Define: 

„0 def v   * 

where a*; is the pre-buckling stress state. We are interested in finding «,• € E(fl) such that: 

/   CijklUijVkj dV + A  /   (T^U^iVaj dV = 
Jit, •/&£ 

/ FiVidV + I   TiVidS+ j TCijkiauVij dV 
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Figure 10: The mesh, temperature distribution and the resulting deformation. 

o 
for all Vi G E(£l). Note: <T*J must be such that: 

I / (Cijki + ^crßSik)üitjük,i dV < oo 

for all Ui € E(Q). The set of A for which a solution exists is the resolvent set. The complement 
is the spectrum. The spectrum may be point, continuous or residual. 

The work done by the initial stress afj due to the product terms of the Green-Lagrange 
strain tensor is incorporated in the strain energy: 

Ufa)  =  -   /   CijklUjlki dV + -   I   (TijÜajÜaj dV. 
v v ' 

work of <r? 

where üi is a small increment of displacement and etj is the small strain. 
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Figure 11:   p-Convergence of the first thermal stress intensity factor C\ computed with 
Richardson extrapolation. 

Biot (1938) and Prager (1947) proposed a different formulation. Their definition is: 

U{üi) = - / Cijkieijlki dV + - / a%(üaiüaj-€ailaj)dV 
2. Jo, l Ja 

The potential energy is: 

n(w;) = U(üi) - / Fiüi dV —        %üi dS + I TCijkiOikiüitj dV 

We seek ü; € E(Q) such that the potential energy is stationary: 

XTT/_ , def (dll(üi + evi)\ ^°/n, 
SIl(ui) =    —*-£ -        = 0       v e E(Q). 

3e e=0 

The principle of virtual work in the case of initial stress: 

/ CijkiüijVkjdV + / oQjü^iVaj dV = 

I FiVi dV+ f    TM dS+ [ TCijkictkiVij dV 

23 



Ld.Fct=  1.8346e-01 

Run = 4 

Fnc = Formula 

Max=  4.5846e-02 

Min= -4.5847e-02 

4.5000e-02 

3.5000e-02 

2£000e-02 

1^000e-02 

5.0000e-03 

-S.0000e-03 

-1.5000e-02 

-2.5000e-02 

-3.5000e-02 

I -4.5000e-02 

def Figure 12: Lockheed test problem 2: The function un = uxnx + uyn 

for all Vi € E(ü). 

Although two mathematical models of the general theory of elastic stability exist in the 
classical literature, some fundamental questions concerning the existence of a solution, the 
properties of the spectrum, and their relationship to loss of stability had not been investigated 
previously. Two working hypotheses were advanced: 

1. The spectrum is a point spectrum, hence it is meaningful to consider the lowest nonzero 
eigenvalue as an indicator of the onset of instability; 

2. The minimal eigenvalue of the finite dimensional problem converges to its infinite 
dimensional counterpart as the finite element space is enlarged (i.e., the degrees of 
freedom are increased). 
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Both classical formulations were implemented in fully three-dimensional setting so that nu- 
merical experiments could performed. For thin structures the results closely matched the 
classical results. It was found that the two classical models yield virtually identical results. 

In a parallel investigation the first working hypothesis was proven by Professors Manil 
Suri and Ivo Babuska. At present it is not known whether the second hypothesis can be 
proven, but the available numerical results have not contradicted it. 

The relationship between the limits of elastic stability estimated by the use of linear 
models and incremental models was investigated. It was found that for conservative loads 
a close relationship exists but the treatment of follower loads through the solution of linear 
eigenvalue problems does not appear possible, with the exception of very special cases, such 
as the buckling of circular rings. See, for example, [9]. 

The problem of modeling the elastic buckling of fibers in fiber-matrix composites was 
investigated. A model problem has been solved. For the investigation of the stability of a 
large number of fibers the use of periodic boundary conditions is necessary. Implementation 
of periodic boundary conditions and further investigation of the stability of fibers is being 
planned for 1998. 
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