
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5510--98-8146

NAC: An Adaptive Case-Based
Reasoning Tool for Experimenting
with Retrieval and Indexing

LiWu CHANG

PATRICK R. HARRISON

LAURA C. DAVIS

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

March 13, 1998

\
<0$h W

jfgiQ QUALSxf I2JSPEÜTED §"

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave Blank) 2. REPORT DATE

March 13, 1998

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

NAC: An Adaptive Case-Based Reasoning Tool for Experimenting
with Retrieval and Indexing

5. FUNDING NUMBERS

PN - 55-6470
PE - 62234N
TA - IT4101

6. AUTHOR(S)

LiWu Chang, Patrick R. Harrison, and Laura C. Davis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5510-98-8146

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

NAC is a testbed for experimenting with concepts of retrieval and indexing in Case-Based Reasoning (CBR). The paper
describes similarity functions and decision functions used for retrieval as well as methods for re-indexing and case organization.
The paper also describes methods for weighting attributes, analyzing their dependence and evaluating the importance index of a
single stored case. Two examples of how to use NAC are provided. Methods employed for retrieval and indexing are based on
mathematically sound techniques developed in classification, clustering and decision analysis. NAC includes basic functions for
specifying similarity, normalizing data and evaluation. Retrieval is done using both nonparametric (e.g., nearest neighbor) and
parametric (i.e., Bayesian) statistical procedures with weighted attributes. New indices for cases are generated using clustering
methods. Cases are re-organizing using the new indices, NAC also allows the user to test the predictive accuracy of retrieval
methods and the quality of indices generated in (re)-indexing. NAC includes adaptive functions for enhancing the performance
of retrieval and indexing. Important functions for adaptation include weighting and selecting attributes, learning dependency
relationships and calculating typicality for each stored case. The NAC environment was designed so that additional techniques
and metrics can easily be added.

14. SUBJECT TERMS

Case-based reasoning Indexing Clustering
Retrieval Similarity Nearest Neighbor

15. NUMBER OF PAGES

21
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-891

Prescribed by ANSI Std 239-18

298-102

CONTENTS

1. INTRODUCTION 1

2. BASIC STRUCTURES 2

3. CASE RETRIEVAL 3

3.1 Similarity Metrics 3
3.2 Decision Functions for Case Retrieval 4

4. METHODS 5

4.1 Incremental Clustering Mode 6
4.2 Hierarchical Clustering 7

5. METHODS FOR CALCULATING IMPORTANCE INDEX 8

5.1 Weighting Attributes 9
5.2 Analyzing Dependency Relationship 10
5.3 Calculating Typicality 11

6. EXAMPLES OF THE USE OF NAC 11

7. COMBINED USE OF DIFFERENT FUNCTIONS: ON-GOING WORK 12

8. SUMMARY 13

9. REFERENCES 14

APPENDIX 1 (CASE BUTTON) 16

APPENDIX 2 (NAC USER'S INFORMATION) 17

Preceding Page Blank

in

NAC: An Adaptive CBR Tool for Experimenting with
Retrieval and Indexing

1 Introduction

The goal of Case-Based Reasoning (CBR) is to effectively use past experiences in prob-
lem solving. CBR has at its core, adaptive methods for memory indexing, retrieval and
organization. NAC was designed as a testbed for studying these adaptive memory func-
tions for retrieval, indexing and organization on real-world problems. The evolution of
NAC was based on an abstract model of memory that provides a theorical basis for NAC
analogs of human capacities to classify, cluster, organize, index and retrieve information.
[Harrison, Chang & Meyrowitz, 1994].

Adaptation is generally viewed as a process for achieving optimum results. Contents
of adaptive methods range from the control of reflexive responses to knowledge compila-
tion and concept formation. We consider two aspects of adaptation which are relevant to
retrieval and indexing functions in memory based reasoning. The first aspect concerns
dynamic updating of similarity measurements for case retrieval. In NAC, the computation
of similarity is like evidence combination which pools the measure of difference of each
attribute. Factors, such as the importance weights and dependency relationships of
attributes, that have great impact on the computation, are accounted for as the components
of adaptation. In dynamic environments, the importance weights of attributes vary as new
events occur. Consequently, the similarity measurements are also updated.

The second aspect concerns the organization of cases. One reason for organizing cases
is to facilitate coherent retrieval and control search attention. In NAC, new indices are gen-
erated using clustering methods (e.g., incremental clustering). Adaptive procedures are
used to update clusters in incremental clustering. Context or perspective information may
be incorporated in case organization as latent factors, each corresponding to a subset of
attributes. As a result, different cases can be retrieved from different perspectives.

Figure 1 shows the top level NAC interface. It provides a user interface designed for
experimentation with the analogs mentioned above. It provides support for running multi-
ple experiments and comparing results. Section 6 describes two examples of the use of
NAC, and Appendices 1 and 2 provide additional information for the NAC software user.
NAC provides the means to implement models of memory and to do case-based reasoning.
It is a testbed for testing concepts in retrieval and (re)-indexing. A variety of functions
have been implemented in NAC. These include similarity metrics, adaptive functions and
methods of classification and clustering for organizing cases. NAC is intended to be a scal-
able tool. It was designed so that any number of new similarity, normalization and evalua-
tion functions can be added with a minimum of effort. The same idea applies to the
adaptive and classification functions. The discussion here does not imply that the func-
tions provided in NAC are inclusive. They should be considered a typical starting set.

Manuscript approved February 2, 1998

Experimental Setup

IjfCl&terJng^fcoth'-:

Adaptive Methods

^PiJp00^\

Number of Neighbors: J

Random Psuitiber Seed: 0

rile Test Percentage 1
i i i i i i i i i

Similarity Function: Normalization Function: Evaluation Functioi

Ss^sv tm^^\^r-^T^ i 1 *5.i:-,%-?:. ^.'ij

Figure 1. NAC Top-Level Interface

2 Basic Structures

A case may have structures of great complexity. Nonetheless, the reference to a case
often can be summarized by the index set. A case such as one concerning the Gulf war
could be encoded with indices of humanity, oil supply, territorial dispute and so on. Under
this assumption, our discussion of case retrieval and organization is in the light of the com-
putation of the index set. For routine retrieval, cases may be extensively indexed to speed
search. For novel retrieval, index sets are likely to be revised, transformed and expanded
over time. There may exist structural relationship among indices. One objective of case
organization is to explore the hidden structures.

The basic type of index representation used in NAC is the attribute list which is proba-
bly the dominant type in many applications (e.g., database). The value of attributes may be
of nominal, ordinal or interval scale. Inference and decision are carried out with a proba-
bility distribution function (referred to as PM, i.e., probability distribution metric) or with-
out one (referred to as DM, i.e., distance metric). In the case of decision without a model
(DM), the non-parametric method, voting k-Nearest Neighbor (kNN), procedure is used.
On the other hand, in the case of decision with a probabilistic metric (PM), Bayes decision
rule is used for estimation when data is of nominal type, while for data of ordinal or inter-

val scale, Parzen approach [Parzen, 1962] with a normal kernel function is used for esti-
mation. For continuous variables, Gaussian distribution is perhaps the most commonly
used density function. However, we do not use Gaussian distribution in the current version
of NAC due to the fact that many distributions may not fit the Gaussian model well.

3 Case Retrieval

Retrieval is an interactive decision-making process with the goal of selecting cases
and ranking the selections. NAC considers three forms of retrieval:

1) Given a target case, retrieve the most similar case. In this situation, the index set of
the target is compared against that of each stored case.

2) Given an query, retrieve a case that explains the query best. The query is encoded
in terms of the index set and the decision is based on the encoded relations.

3) Retrieve exemplar cases from a category according to information about that cate-
gory. Decision functions such as Bayesian theory and kNN are employed to handle differ-
ent forms of retrieval, knowing that they can be used interchangeably in many
circumstances. Ranking relies on the given similarity metrics.

3.1 Similarity metrics

The measured distance between data points is the basis for defining similarity. The
distance is measured with respect to one attribute. Similarity is obtained from pooling
measures over several attributes.

The intersection between attribute lists is used as a similarity metric when data is of
nominal scale. The difference of an attribute is either 0 or 1. The similarity of two cases is
determined according to the number of l's divided by the total number of attributes. For
data of ordinal or interval scale, the Minkowski metric [e.g., Jain & Dubes, 1988] which
generalizes Euclidean distance is a common one,

j l/X

^wajx\Xrj-Xsj\'

where w is the weight of attribute. The final similarity measure may be multiplied by the
weight associated with each stored case.

In case of ordinal or parametric estimation, the proposed similarity metric is based on
the difference measure between joint conditional probability (jcp) density functions of two
categories (or classes), i.e.,

[XfK.-='|ca>-"<Fr'M2]

where "Fr stands for the i'th attribute, "/" stands for the possible values or states of the
i'th attribute and "C" is the category or class label. This equation reaches the minimum 0
when two jcp functions are identical and have the maximum value 2. Note that, in the case
of ordinal and interval scaled data, p() is the Parzen function.

NAC provides options for similarity measures. Options include linearization and
standardization where the former metric linearizes the data so that all values fall into the
unit interval, and the latter one normalizes the data with standard deviation. Normalization
removes the difference between scales associated with measures. For example, standard-
ization takes into account the covariance structure of the data and differentiates those
points that are close to the centroid from those that are far away. The negative effect is that
normalization removes the correlation information among features which may be impor-
tant in the computation (e.g., linear regression analysis] [Sachs, 1984]).

3.2 Decision functions for case retrieval

NAC incorporates the voting kNN (nearest neighbor) as the decision metric (DM).
The voting kNN bases its decision on the frequency count of the majority class label seen
in the first k nearest neighbors. Variations to the frequency count rule are possible. For
example, membership count may be used in place of frequency count (i.e., each count is
replaced by its membership), where membership can be assigned to 1 over the measure of
similarity. The peformance of different kNN models are close. The kNN procedure is
viewed as a type of linear kernel function.

If the joint conditional probability distribution (jcp) is available between a query and
attributes, a Bayesian decision rule can be applied. The probabilistic network model
[Pearl, 1988] is employed when Bayesian theory is used for decision making. In some sit-
uations, the jcp needs to be learned inductively from stored cases. In NAC, the jcp is esti-
mated from data using the multi-nominal distribution when data is nominal under the
assumption of conjugate prior [Berger, 1985]. We compute the jcp for each attribute. The
estimated value of each entry of the jcp, with conjugate prior, is determined by the ratio

(l+nfc)/(nf + nc)

where nyc is the number of data of cluster c with feature value/ Hy is the number of feature

values, and nc stands for the number of data in the cluster c [Anderson & Matessa, 1992].
If nc grows faster than nt as more data arrive, this expected value will be close to the fre-

quency count. In the absence of any information, jcp is uniformly distributed with 1 'nf .

Note that the range of values of an attribute is assumed to be known. In the absence of this
information, an estimate needs to be given to the total number of possible attribute values.

Data may be missing for some training cases. In the case of missing data, the final result
may be obtained from averaging over all possible values that the attribute can take. This
approach becomes impractical when the number of training cases is large for a large range
of attribute values. In NAC, the unknown value of an attribute is viewed as a new category

for nominal values. In the case of ordinal or interval-scaled values, the missing data are
ignored.

When training cases do not cover and we do not know all possible values of attributes,
it may be the case that an attribute value of input instances does not equal any existing
value of that attribute. An equal likelihood ratio is assumed to account for the ignorance.

The performance of kNN based on different membership counts varies for different
inputs. Therefore, NAC uses a traditional voting model. The asymptotic error analysis for
voting kNN model has long been documented [e.g., Fukunaga, 1990], while it is unavail-
able for many other variations of kNN. It is calculated under the assumption that the prob-
ability of a particular class given the test data is the same as that of its nearest neighbor.
The amount of data required for this calculation is sensitive to dimensionality. Due to the
effect of dimensionality, the asymptotic error analysis may not be a good performance
indicator. In fact, kNN performs well in many empirical studies with relatively small sam-
ples. The reason might be that data occupy only lower dimensions due to high degree of
correlation and the dimensionality affects every estimated class probability distribution
roughly in the same way [Friedman, 1994].

The most similar case will be returned from a retrieval. In terms of a probabilistic net-
work, we may select a case that maximizes the posterior probability of a particular class.
We may also select exemplars from a class with respect to input information. The exem-
plar is the desired case. The difference between the two methods is that Bayes needs to
encode new cases to probability distribution functions. In the case of updating probabilis-
tic information with uncertain evidence, the Bayesian method is useful. Decision-based
retrieval has also been used in the area of Information/Text Retrieval and Extraction (e.g.,
[Del Favero & Fung, 1994][Croft & Turtle, 1993]).

4 Methods for Organizing Cases

Casebase (CB) organization is a process that explores underlying relations among
attributes and cases. The result may be a hierarchical representation of stored cases. The
new structures can be described by using existing attributes or new terms. A CB structure
such as la discriminant network may be indexed with existing weighted attributes, while a
a CB structure generated using unsupervised learning needs new terms are needed for
each cluster. The current focus of case organization in NAC is on using unsupervised
structure learning with clustering methods. In this section, we describe methods for decid-
ing the number of clusters (i.e., the indices) generated from clustering.

The general approach to clustering is to agglomerate areas of similar measurements in
a feature space. This holds for many situations except under very noisy conditions. Clus-
tering may be carried out in a hierarchical or an incremental mode. Briefly, hierarchical
clustering takes all data into account and usually proceeds from bottom-up, while the
incremental approach decides, for each case, whether it should be assigned to one of the
existing categories or should be given a new label based on a cluster criterion g. The two
modes can be used separately or in combination. NAC uses the nearest neighbor principle

in both modes as the criterion for agglomerating two clusters. We experimented with sim-
ilarity metrics such as density measure and likelihood. The likelihood results work from a
probabilistic model whereas density search control takes advantage of kNN for clustering.
We considered not only the clustering form but also the quality of the methods (i.e., the
ability to handle various distributions).

4.1 Incremental clustering mode

In the case of the probabilistic metric (PM), clustering proceeds by incrementally
updating the conditional probability distribution as new instances are processed. The jcp is
initially null. As new instances are incorporated, the jcp expands the number of clusters.
On the other hand, in DM, the nearest neighbor distance is updated.

Two ways of assigning new labels are no-revision and a revision strategy. In the first,
as clustering proceeds, no revision to the contents of clusters is taken. A cluster label is
assigned based on posterior probabilities of the candidate clusters. In NAC, the rejection
criterion g for PM is related to the maximum value of probability that a cluster Cj could
have, i.e.,

n<mfluc(P<Fi|Cj»>'
i

Suppose the new arrival is assigned to cluster Cj. Criterion g measures the ratio
between the maximum likelihood in the presence of the new data and the maximum possi-
ble probability that the cluster Cj could have. The idea is that if the arriving data are truly
desirable, the result of the maximum likelihood value in the presence of this data is
expected to be close to that of the maximum possible probability. In the case of DM, the
maximum likelihood rule is replaced by the density measure of each cluster. Many other
forms of g can be defined [e.g., Jobson, 1991].

Using the revision strategy in incremental clustering, error at an earlier stage is
assumed to have an impact on decisions at a later stage. Revision adjusts the contents of
clusters as soon as the label of a new case is assigned. Once a case arrives, NAC updates
the average nearest neighbor distance, S, decides the label for the new arrival and revises
(e.g., split, merge etc.) contents of existing clusters according to S. Finally, the new arrival
is classified to an existing cluster if its first nearest neighbor distance is smaller than S. A
case is removed from its cluster if it is at least S distance away from other points in the
presence of the new arrival.

The no-revision strategy was used in COBWEB [Fisher, 1987]. The revision strategy is
similar to adaptive k-means where the means and variance of each cluster is adjusted for
each new label re-assignment. This strategy involves computation based on global infor-
mation. The modified version of COBWEB (Gennari etc., 1989) also mentioned the use of
split and merging operators. The difference is that revision in NAC is based on global
measurements. The second strategy takes longer time but yields less misplaced cases than
the first one. In fact, revision is necessary for any kind of incremental process. NAC
imposes a strict criterion for assigning new cases to existing clusters in the incremental

clustering phase and compensates for this by merging in the second phase. If every case is
assigned a new cluster label then the clustering becomes a hierarchical approach.

4.2 Hierarchical clustering

In NAC, there are two ways to start hierarchical clustering. In one approach, a hierarchi-
cal procedure evaluates the clustering criterion for combination with each cluster contain-
ing just one case at the beginning. The second way starts with the search according to the
measure of denseness of each case (i.e., mode). The denseness around a case is calculated
by counting the number of neighbor cases inside its neighborhood with radius S. The
search starts with cases that have the highest density and ends with cases that have desig-
nated boundary density values. Cases selected in each search path constitute an initial
cluster. At this level, NAC can either lower the boundary density value to continue the
search or continue with the combining operation.

The criterion for mergence is based on similarity metrics. In the case of DM, the crite-
rion is the shortest distance between two clusters. For PM, NAC averages the distribution
difference, i.e,

[PiF/Ci) - PiF/Cj)]2 x P{F./C$

over clusters other than i. In NAC, the proposed clustering criterion for determining the
cluster to be merged differs from the normative nearest distance hierarchical clustering in
that distance is not the only determinant factor. Actually, the criterion is based on the sim-
ilarity measure as well as the number of cases in a cluster. This criterion postpones the
processing of large clusters so that it yields dottier clusters than does the pure nearest dis-
tance approach.

The optimality criterion for determining the optimal number of new clusters differs in
non-parametric and parametric approaches. In the probabilistic model, the optimality cri-
terion is determined by the posterior probability of the number of clusters given stored
cases, i.e.,

Pr(I\S)= a- jPr(s\T, I, Bn)Pr{T\Bn, l)dT
T

Pr(Bn, I)

where I, 5, T, Bn stands for the number of indices (i.e., clusters), sample set, parameters
with structure Bn and the structure Bn (i.e., the topology of a network), respectively. The
result of clustering differs for different Bns. For a given Bn, the best number of clusters is
the one that maximizes the following expression [Cooper & Herskovits, 1991] with uni-
form prior of/:

(nf-l)\/(nf + nc-l)\xY[nf(I
c*

This expression will be evaluated over all attributes. In DM, it is meaningful to talk about
the distance between data points. The optimality criterion is determined as a function of
the size of clusters, the intra-cluster density measure and inter-cluster distance measure
with respect to cluster Ci, i.e.,

sizeiCJxi-logdlntraClusterDensityiC^/ilnterClusterDistiCi))))

where the separability measure is defined in terms of inter-cluster distance. The measure
of inter-cluster density can be estimated by dispersion analysis. In the current version of
NAC, this measure is related to the distance calculated from the minimum spanning tree.
A similar form is defined for Parzen functions in PM.

Different I's are ranked according to their Pr(I\S) values. To simplify the generated
index structure, those I's with high Pr(J\S) values are retained. In our experiments with
several test data sets, the optimality criterion gives a reasonable prediction as we compare
the results with raw data. However, in a fairly randomized pattern, the optimality metric
become less informative. In multivariate statistical analysis, the optimality criterion is
determined by more than one metric. For noisy data, we experimented with methods for
removing ambiguous samples, where ambiguous samples are those samples that are
equally likely to be assigned to more than one cluster. We investigated a similar form of
the optimality criterion in a probabilistic model for non-parametric functions.

As compared to other clustering systems, such as AUTOCLASS and Anderson's cate-
gorizing system, NAC aims at an integrated approach. In NAC, several different clustering
approaches were incorporated for comparative analysis.

5 Methods for Calculating Importance Index

NAC considers three types of factors that affect the measure of similarity. The first
type of factor is related to selectively weighting attributes in the environment so that only
important aspects will be attended to. One weighting method is to evaluate the informa-
tiveness of attributes. The second type of factor is the dependency relationship among
attributes. The fact is that a Bayesian model with independence assumptions among
attributes (i.e., naive Bayesian) would deteriorate decision performance if some attributes
are indeed statistically dependent. The third factor is related to the calculation of the
importance index of each stored class. Cases with high ranking values are retained or used
for other applications (e.g., model design).

Relationships among attributes and cases may be inductively learned from stored
cases. Learning methods differ according to evaluation schemes and search strategies
[Langley, 1994]. Evaluation proceeds in two ways: First, learning may be based on statis-

tical information in stored cases used for training. Second, learning could take advantage
of cross-validation procedures that repeatedly divided training cases into two parts with
one part for training and the other part for evaluation. The two schemes are also referred to
as filter and wrapper, respectively. Due to its complexity, the wrapper evaluation scheme is
applied only to learn binary weights. In the current version of NAC, a greedy search strat-
egy is used for most situations. However, in the analysis of dependence relationships, due
to the non-monotonic nature of probability computation, exhaustive search may be
needed.

5.1 Weighting attributes

The key feature of the proposed approach to attribute weighting is to evaluate the
measure of informativeness of each attribute. In the current version, weighting is carried
out in the entire feature space, rather than in several sub-regions. Suppression of irrelevant
features generally improves performance.

The informativeness is measured in two ways. In the first way, weights are computed
with jcp and no cross-validation is involved. An attribute has high discriminability if the
jcp of one class is very dissimilar from those of other classes. The similarity metric
defined in section 3.1 is used as the measure of discriminability of two classes. The overall
discriminability of an attribute j is equal to the summation of the similarity measures for
all pair of classes. Finally, the weight associated with a feature can be obtained by homo-
morphically transforming the discriminability of attribute j from the [0,2] interval to the
whole real line.

The second approach is to select the subset of attributes via cross-validation proce-
dure. The selection process is carried out by comparing error rate of tests with different
subsets of attributes. Start with the null set. One attribute is added to the attribute set at the
end of each test run. Instead of randomly picking up an attribute to test the order of
attributes to be selected is ranked according to the measure of informativeness. That is, the
more informative attribute is selected earlier. For each run, the training data is randomly
divided into two parts. This division is repeated a number of times. The average correct
test ratio of divisions is recorded and stands for the utility score of the subset of attributes
under consideration. The final selection of the desired subset of attributes is the one with
the highest scores. Often, a large percentage of the features can be suppressed.

Our experiments with letter-recognition tests indicate that estimation, based on both
kNN and Bayes analysis, using attributes with adjusted weights yields better results than
those not using adjusted weights. The improvement of error rate is around 8 percent on
average of 10 repetitions with 1000 samples (50 test-percentage used). Binary selection
yields better results, but requires extremely longer training time than the weighting
method. For some distributions, weighting may be counterproductive. The issue concern-
ing the discrepancy between exhaustive search and the proposed informative search has
not yet been analyzed in NAC. Incremental weight adjustment has been extensively dis-
cussed in neural network literatures and is not included in the current version of NAC.

The difference between the proposed weighting method and value-difference metric
(VDM) [Stanfill & Waltz, 1986] is that the similarity metric of the former computes the
difference of distributions between two classes whereas the metric defined in VDM evalu-
ates the difference of two values of an attribute (for data of nominal scale). The proposed
metric is similar to the disorder measure of C4.5. The weighting procedure was done by
first dividing each class into sub-classes via clustering method and then learning the infor-
mative attributes based on samples of sub-classes. This is currently under investigation.

5.2 Analyzing dependency relationship

The objective is to discover a partition of attributes that best represents the stored cases
by exploring underlying dependencies among attributes. We consider two aspects. In the
first aspect, suppose each case has a category label attached. For nominal-scaled data, the
proposed approach derives the dependent relationship between attributes on the basis of
improved error rates for test results. The improvement is measured before and after
attributes are joined. This approach iteratively joins together different attributes and
selects the combination with the highest predicted accuracy. Search halts when the join
does not yield better results. Unlike attribute selection, at each test run, a partition, rather
than a subset, of attributes is under evaluation. Also unlike attribute selection, no priority
is assigned to attributes. Hence, the current problem deals with a much larger search
space. In the case of an ordinal or interval scaled measure, Parzen functions are used to
estimate probability density for each attribute. Following the same steps, we repeatedly
evaluate with different partitions of attributes.

In the second aspect, no information about category label is available. We may employ a
statistical test t to test dependency when data is in nominal form. One example is the K

2

(chi-square) test with a given significance level. In this approach, the joint probability
(e.g., Pr(A,B)) is assumed to be the expected value and the multiplication of probability
density of each constituent (i.e., Pr(A)Pr(B)) is the observation. The hypothesis is to test
how well the observed values fit the expected values.The search strategy is the same as
before. This approach is also applicable to the case when a category label is available. The
Kolmogorov-Smirnov test can be used when data is at least ordinal level [Sachs, 1984].

The approach for independency test when a class label is available is discussed in
[Pazzani, 1995]. Test results with a congressional voting record data file showed 3 to 4
percent improvement. However, one concern with this approach is that the joined
attributes quickly take up huge amounts of memory. In fact, the memory space required
for a fully joined probabilistic distribution is exponential proportional to the number of
values of attributes. The second problem with the join operation is that it's hard to tell
from learned results whether the change in error rate is truly due to a dependency relation-
ship or other factors. The halting condition for search is based on the parsimonious crite-
rion, not on any probabilistic properties. We may construct a network representation
[Pearl, 1988] from the learned results for better conceptual illustration of the relationships.

When attributes of an input case are of different types, trait analysis or profile analysis
may be needed for dealing with probabilistic dependency. Here, we briefly describe an

10

approach for handling attributes of different scales. (This approach has not yet been incor-
porated in the current version of NAC.) We use Bayes rule (i.e., Pr(A\B)= Pr(A,B)/Pr(B))
to estimate the conditional probability distribution. If A is of interval and B is of nominal
scale, Pr(A\B=b) is a Parzen function described by instances that satisfy B=b. On the
other hand, with A nominal and B interval scale, for a particular value of A=a, the denom-
inator of Pr(A=a\B=b) is described by the Parzen function of Pr(B) with all instances and
its numerator is estimated by instances satisfying A=a. By the same token, we can esti-
mate probability distributions when attributes of ordinal type are involved.

5.3 Calculating typicality

This method differs because it assigns weights to each stored case or sample. The
idea is based on the assumption that data points of high typicality give better prediction.
Therefore, a relatively small set of representatives are selected from a distribution and the
reduced set hopefully maintains a predictability similar as the original set of cases. Typi-
cality is also used as a criterion for selecting exemplars or representatives.

In DM, typicality of an instance is determined by the ratio of the number of times the
instance is referenced (e.g., evaluated as the nearest neighbor to other points) and the num-
ber of times it is correctly referenced. With PM, typicality of an instance can be computed
in terms of its membership. Suppose the instance is in class Ci, membership is the summa-
tion of the ratio between the likelihood of this instance and the maximum possible proba-
bility of Ci, i.e,

P(Fj = j[Cy(max(P<FJlC)))

Although the measure of typicality is computed via a. filter scheme, it can be obtained
using a cross-validation procedure. Typicality in unsupervised learning is calculated by
selecting the set of representatives with a distribution similar to the original distribution.

6 Examples of The Use of NAC

Example 1 (classification)

To use a classification method, click on the Data button to load a data file and then spec-
ify values for functions in the Experimental Setup. Last, click on Train-and-Test to start
running. Test results will be shown in a pop-up window.

Suppose the letter-recognition (LR) test of the CUI data base is selected. The user
clicks on the Data button and specifies the number attributes in the input data (i.e., 16 for
LR), white space characters used in the data set, and the data type (i.e., numerical for LR).
The user then loads the filename (e.g., 11000). The user might click on the Minkowski sim-
ilarity function since the values in the LR test are of interval scale. For comparison, the
user selects a Random Number Seed that is greater than zero (e.g., 3). Using the kNN
decision rule with k=l and under 50% File Test Percentage, the error rate is 66.8%. With

ii

the same experimental setting, the user may test the attribute weighting method by click-
ing on Slt_Wgt and choosing the option weight-all. The user then re-runs the test. The
error rate becomes 77.2%. The result of the second test is shown in a different pop-up win-
dow. To switch the test data file, use the right most mouse button to click on Data, select
Clear Dataset and go to load new data file.

Example 2 (clustering)

The steps for using the clustering methods are almost identical to those for classifica-
tion. The only difference is that there is no need to set File Test Percentage since all data
are used for clustering. After clicking on the Clustering setting, the user is asked to select
between a density or probability model, between normal, manual or automatic mode and
between incremental or hierarchical form.

Suppose that the animal categorization data set [Martin & Billman, 1994] is used. This
data set contains information about 10 animals (i.e., macaw, leopard, finch, hamster,
pigeon, goldfish, guppy, catfish, gopher and angel fish). Each animal is described by a list
of nominal scaled attributes - found, food, covering, legs, mobility, reproduction and
appearance. Suppose automatic mode and probability model are chosen. The suggested
number of clusters is 3 with the partition {finch, macaw, pigeon}, {angel-fish, goldfish,
guppy, catfish} and {hamster, leopard, gopher}. The cluster label of each category is given
in the form of an integer. The same results are obtained by using a density model. The
probability distribution associated with the current partition is available.

7 Combined Use of Different Functions: On-going Work

The objective is to use classification, clustering methods and other adaptive functions in
combination. Among many possible combinations, one is to select a clustering method
first and then classify new cases based on results obtained from clustering. One problem is
generating new labels. How would those labels be recognized or accepted in different
domains? We currently assume that some training samples with externally given labels are
available and can be used to adjust and tune the internally generated ones. For instance,
the cluster labelled with "24" may be renamed after the class label of the majority of the
training samples assigned to the cluster.

The organization of cases with different perspectives needs to use clustering methods
as well as methods for analyzing dependency relationships. The fact is that those attributes
may reflect various perspectives from which they were extracted or selected. In clustering,
using too many dependent attributes may render the result ambiguous. There are two rea-
sons for this. First, the measure of similarity is perspective-sensitive. For instance, Guinea
pig is closer to Leopard than Macaw from the animal taxonomic perspective whereas it is
closer to Macaw than Leopard if our perspective is pet. Clustering should be carried out
with respect to a particular perspective. Second, if the number of attributes with one per-
spective significantly exceeds that of another one, the result of clustering will likely be
dominated by the one with more attributes. Hence, we need to separate attributes and orga-
nize cases with respect to different perspectives.

12

In our approach, the property of perspective is similar to the notion of a factor or a hid-
den structure, i.e., subsets of closely related attributes become statistically independent
once the hidden structure is known. The desired hidden structure corresponds to a partition
of cases. We apply clustering methods to the derivation of its property. We assume that
attributes that belong to the same perspective are dependent.

The outcome may contain several subsets of attributes. Those subsets may or may not
be exclusive. To show the result, we use the same example of animal categorization. After
applying dependence analysis, the subset of attributes {found, food} as well as {covering,
legs, mobility} are selected. The first subset generates two clusters and the second one
generates three clusters. With externally provided information, the first subset can be iden-
tified with the notion of "affinity" with two values <pet,wild> and the second one corre-
sponds to "species" with three values <bird, fish, mammal>. The notions of affinity and
species corresponds to two different perspectives. From the perspective of species,
attributes {covering, legs, mobility} are thematic while other attributes are contextual. In a
probabilistic network model, a perspective is represented as a top node. In this example,
the top nodes include "affinity", "species", "reproduction" and "appearance". "Covering",
"legs" and "mobility" are the child nodes of "species" and "found" and "food" are
attached to "affinity". The top nodes may share child nodes. With each perspective, the
joint probability density function associated with links connecting the parent and child
nodes can be determined. By adjusting the clustering criteria, we could obtain different
taxonomical structures.

8 Summary

NAC was designed as an experimental tool that supports basic adaptive retrieval and
indexing functions. Important functions of adaptation involve weighting/selecting
attributes, learning dependency relationships and calculating typicality for each stored
case. Informativeness measures are used to guide search. In dynamic environments, the
informativeness of attributes varies. Hence its value is updated in response to environmen-
tal changes. For non-parametric estimation, new cases are simply stored, while for para-
metric density functions, the joint conditional probability density is calculated using a
Dirichlet distribution under the conjugate prior assumption. In NAC, the computation of
similarity is viewed as evidence combination, rather than simple vector operations. As we
just mentioned, two influential factors for evidence combination are the informativeness
and dependency relationships of attributes. Case organization utilizes both classification
and clustering methods.

For clustering, NAC supports incremental and hierarchical modes as well as kNN and
probability methods. An adjustable version of the incremental form was adopted. New
indices for cases are generated by using clustering methods. New indices may be either in
the form of new terms or in the form of a probability distribution. The case structure can
either be a probabilistic network model with new labels as the parent node and attributes
as the child nodes or be a discriminant network with one clustering outcome as the parent
node and its next generation of clustering outcomes as the child nodes. Case retrieval with
new indices is expected to be more effective and coherent. We mentioned that information

13

about perspective needs to be incorporated into case organization. The perspective infor-
mation was represented in terms of hidden structure and the results suggest that cases
should be organized in multiple ways. As a result, different cases could be retrieved from
different perspectives.

NAC facilitates different response modes. The user may choose automatic clustering
which requires the least intervention or the trial-and-error (manual) mode where the user
is asked to provide information at each step. Many considerations and on-going examples
were mentioned in each section. The current version of NAC deals with data represented
as a feature list. The immediate goal is to explore processing capabilities for nested or
structured representation using more structured objects from domains such as engineering
design.

9 References

Anderson, J. & Mates, M. (1992) "Explorations of an Incremental, Bayesian Algorithm
for categorization". Machine Learning, Val 9, NO. 4, Oct. 1992, pp 275-308.

Atkeson, C, Moore, A. & Schaal, S. (1995) "Locally weighted learning", (submitted)
Artificial Intelligence Review.

Cheeseman, P. & Stutz, J. (1995) "Bayesian Classification (AutoClass): Theory and
Results". Advances in Knowledge Discovery and Data Mining (eds. Fayyad, U., Piatetsky-
Shapiro, G., Smyth, P. & Uthurusamy, R), The MIT Press, pp 153-180.

Cooper, G. & Herskovits, E. (1991) "A Bayesian method for the induction of probabilistic
■networks from data". TR SMI-91-1. University of Pittsburgh.

Croft, W & Turtle, H. (1993) "Retrieval Strategies for Hypertext". Information Processing
and Management, 29, pp 313-324.

Del Favero, B. and Fung,R. (1994) "Bayesian Inference with Node Aggregation for Infor-
mation Retrieval". The Second Text REtrieval Conference (TREC-2), pp 151-161.

Harrison, P., Chang, L. & Meyrowitz, A. (1994) "Memory Organization for Case-Based
Reasoning", Proceedings of World Congress on Expert Systems, 1994.

Fisher, D. (1987) "Conceptual Clustering, Learning from Examples, and Inferences". Pro-
ceedings of the 4'th International Workshop on machine Learning, pop 38-49. Irvin, CA:
Morgan Kaufmann.

Friedman, J. (1994) "Flexible Metric Nearest Neighbor Classification". TR Stanford Uni-
versity.

Fukunaga, K. (1990) "Introduction to Statistical Pattern Recognition". Academic Press,
Inc.

14

Jain, A. & Dubes, R. (1988) Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs, NJ.

Jobson, J. (1991) Applied Multivariate Data Analysis. Springer-Verlag.

Kolodner, J. (1993) Case-Based Reasoning. Morgan Kaufmann.

Lagley, P. (1994) "Selection of Relevant Features in Machine Learning". TR 94-3 Institute
for the Study of Learning and Expertise.

Martin, J. & Billman, D. (1994) "Acquiring and Combining Overlapping Concepts".
Machine Learning, Vol. 16, 1994, pp 121-155.

Parzen, E. (1962) "On estimation of a probability density function and mode", Ann. Math.
Statist. Vol 33, pp. 1065-1076,1962.

Pazzani, M. (1995) "Searching for Attribute Dependencies in Bayesian Classifiers". Pro-
ceedings of AI and Statistics Conference, 1995, pp.424-429.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kafumann.

Sachs, L. (1984) Applied Statistics. Springer-Verlag.

Stanfill, C. & Waltz, D. (1986) "Toward Memory-Based Reasoning". Communications of
the ACM, 29(12), 1213-1228.

Schänk, R. (1982) Dynamic Memory: A theory of learning in computers and people. New
York: Cambridge University Press.

15

APPENDIX 1 (Case button)

In classification, to save the results (e.g., the weight associated with each attribute) of
the current test data into a case, click on the option make of the Case button before running
the test. At the end of the test the user is asked to indicate whether the result of the test is
positive or negative. Those cases can be stored in a designated file by clicking on the
option save as. Because attribute weights are highly domain dependent, applications have
to examine whether the index set of test data matches that of stored data as well as ensure
that the differences in the distributions of test and stored data are insignificant.

In clustering, if some control parameters are very expensive to compute, those param-
eters can be stored into a case where the index set is described by geometric measurements
about the data set:

CASEi
Index:-

overall_average_distance 4.38
overall_variance 117.
occupancy 160.
average_distance_of_ 1 'st_nbr 1.4
variance of l'st nn 0.516

Information:-
scale 0.01
boundary 1.

Constraints:-
pos/neg +

To retrieve cases, click on apply. Success or failure of retrieval is determined by an
interval associated with indices. Values that fall outside the interval are rejected.

16

APPENDIX 2 (NAC user's information)

NAC Interface Button

[File] This button allows users to access functions to load and save the current experimental configuration
so that one may repeat experiments.

[Load Configuration File] loads previously saved configuration file.

[Save Configuration As] saves current experimental settings into a file. Users provide the file name.

[Quit] quits NAC. Options [Default Configuration] and [Save Configuration] are not implemented.

[Data] This button allows users to load and manipulate the dataset that you wish to use for testing.

[Load Dataset] has three functions.

-[Number of Attributes] specifies the number of attributes used for describing an instance in data file.

-[Whitespace Charaters] specifies which characters are to be read as [whitespace]. Whitespace sep-
arates attributes. Simply type the characters that you wish to have used as whitespace.

•[Data Type] selects CHAR if values of input are characters

-<Load Dataset> selects input data file.

[Clear Dataset] clears input data.

[Dataset Browser] displays weights of attributes in the textpane.

[Train and Test] This button activates procedures for running the actual experiment. Message regarding
the test results will be poped up in Textpane. It includes experimental configuration, number of input data,
percentage of test and percentage of correct estimation.

[Detailed Results] shows information of estimation of each testing instance.

[Selected Instances] prints the information about the most "typical" instance selected from each class

[Graph] <not implemented>

[Case] This function includes choices of "add", "save" and "apply". The user selects "add" to record the test
result as a case, "save" to create a case file storing cases and "apply" to load the case file and display stored
cases if needed. In the current version of NAC, this function is used only to store test results from classi-
fictaion and clustering.

[Reset] This button re-initiates NAC.

[Help] It provides this user's guide.

♦♦Experimental Setting**
[C/C] choices Users may use NAC for the purpose of classification and clustering.

[Classification] This function is for decision-theoretic based retrieval.

[Clustering] This function is used for re-indexing.

-[Method] Similarity is based on the function of nearest neighbor distance and the size of cluster. Other
options can be k-means and single-link method.

-[Mode] It includes Normal, Manual and Auto. Choice depends on the degree of external intervention.
For instance, Auto requires only input data file.

-[Increment] The choice is between batch and incremental modes of clustering. If "Combined use" is
selected, NAC runs clustering first and then classifying data with respect to the computed clusters.

[Number of Neighbors] This sliding bar sets the value of k for the K-th nearest neighbor algorithm.

[Random Number Seed] This control allows you to set a seed so as to randomly divide input samples into
partitions, e.g., testing and training. If it is left as zero the random number seed will be determined by the
clock. Partitions will remain unchanged for the same test if the seed that is greater than 0 is chosen.

17

[File Test Percentage] Use this sliding bar to set the percentage of the data file that you will use as test
cases.

[Similairty Functions] Select one of the three options for measuring similarity of different scales of data.

-[Minkowski] the measure of difference is for data of interval scale or above.

-[U-test] for data of ordinal scale.

-[Interset] the intersection or matching operation is used data of nominal scale.

[Normalization Function] Normalization is used to adjust scales of dimensions.

[None]uses original input data.

[Linear]adjusts values of input data to within the range of [0,1].

[Standard Deviation] computes the unbiased variance.

[Decision Function] Decision function calculates final results on the basis of values associated with
attributes.

[Direct kNN] employs the standard voting kNN decision model.

[Bayes Statistics] evaluates in terms of Bayes framework. Information necessary to Bayesian reasoning is
derived from input data.

[Adaptive Critics] This function is to enhance retrieval accuracy by evaluating importance index.

[None]

[Weighting]

-[weight-all] evaluates importance of an attribute based on probability distributions of all classes.

-[selection] selects a subset of attributes via cross-validation

[Dependency Test]

-[CITest] conducts dependency/conditional dependency test.

-[CbAttr] conjoins several different attributes if the join yields better predictive accuracy.

[Type] calculates importance index of each instance.

18

